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Abstract: Background: Genome-wide association studies have identified hundreds of loci that
influence a wide variety of complex human traits; however, little is known regarding the
biological mechanism of action of these loci. The recent accumulation of functional
genomics ("omics"), including metabolomics data, has created new opportunities for
studying the functional role of specific changes in the genome. Functional genomic
data are characterized by their high dimensionality, the presence of (strong) statistical
dependency between traits, and—potentially—complex genetic control. Therefore, the
analysis of such data requires specific statistical genetics methods.

Results: To facilitate our understanding of the genetic control of omics phenotypes, we
propose a trait-centered, network-based conditional genetic association (cGAS)
approach for identifying the direct effects of genetic variants on omics-based traits. For
each trait of interest, we selected from a biological network a set of other traits to be
used as covariates in the cGAS. The network can be reconstructed either from
biological pathway databases or directly from the data, using a Gaussian Graphical
Model applied to the metabolome. We derived mathematical expressions which allow
comparison of the power of univariate analyses with conditional genetic association
analyses. We then tested our approach using data from a population-based KORA
study (n=1784 subjects, 1.7 million SNPs) with measured data for 151 metabolites.

Conclusions: We found that compared to single-trait analysis, performing a genetic
association analysis that includes biologically relevant covariates increases the power
of the analysis by providing more accurate estimates of genetic effects; however,
analysis can either gain additional power or even lose power, depending on specific
pleiotropic scenarios, for which we provide empirical examples. We also show the
importance of properly selecting sets of traits to be entered in the multivariate analysis.
In the context of analyzed metabolomics data, the knowledge-based network approach
has increased power. Nevertheless, we believe that our analysis shows that neither a
prior-knowledge-only approach nor a phenotypic-data-only approach is optimal, and
we discuss possibilities for improvement.
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Abstract 38 

Background: Genome-wide association studies have identified hundreds of loci that influence a 39 

wide variety of complex human traits; however, little is known regarding the biological mechanism 40 

of action of these loci. The recent accumulation of functional genomics (“omics”), including 41 

metabolomics data, has created new opportunities for studying the functional role of specific 42 

changes in the genome. Functional genomic data are characterized by their high dimensionality, 43 

the presence of (strong) statistical dependency between traits, and—potentially—complex genetic 44 

control. Therefore, the analysis of such data requires specific statistical genetics methods. 45 

Results: To facilitate our understanding of the genetic control of omics phenotypes, we propose a 46 

trait-centered, network-based conditional genetic association (cGAS) approach for identifying the 47 

direct effects of genetic variants on omics-based traits. For each trait of interest, we selected from 48 

a biological network a set of other traits to be used as covariates in the cGAS. The network can be 49 

reconstructed either from biological pathway databases or directly from the data, using a Gaussian 50 

Graphical Model applied to the metabolome. We derived mathematical expressions which allow 51 

comparison of the power of univariate analyses with conditional genetic association analyses. We 52 

then tested our approach using data from a population-based KORA study (n=1784 subjects, 53 

1.7 million SNPs) with measured data for 151 metabolites.  54 

Conclusions: We found that compared to single-trait analysis, performing a genetic association 55 

analysis that includes biologically relevant covariates increases the power of the analysis by 56 

providing more accurate estimates of genetic effects; however, analysis can either gain additional 57 

power or even lose power, depending on specific pleiotropic scenarios, for which we provide 58 

empirical examples. We also show the importance of properly selecting sets of traits to be entered 59 

in the multivariate analysis. In the context of analyzed metabolomics data, the knowledge-based 60 

network approach has increased power. Nevertheless, we believe that our analysis shows that 61 

neither a prior-knowledge-only approach nor a phenotypic-data-only approach is optimal, and we 62 

discuss possibilities for improvement.  63 
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 3 

Short abstract 65 

We propose a trait-centric network-based conditional approach for performing a genetic 66 

association analysis of multivariate omics phenotypes. This approach can incorporate existing 67 

biological knowledge regarding biological pathways obtained from external sources and is 68 

designed to specifically test for direct genetic effects. We applied this approach to existing 69 

metabolomics data and found that it increases power by having increased accuracy of genetic effect 70 

estimates in the presence of specific “counterintuitive” pleiotropic scenarios in which genetically 71 

induced and residual covariance are opposite. We provide examples of different pleiotropic 72 

scenarios, and we discuss possible additional applications for this approach.   73 
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Background 74 

Genome-wide association studies (GWASs) are a highly popular method for identifying alleles 75 

that affect complex traits in humans, including the risk of common diseases. In the past decade, 76 

GWASs have enabled the identification of thousands of loci, significantly increasing our 77 

understanding of the genetic basis underlying the control of complex human traits [1]. On the other 78 

hand, this has had only a limited impact on the development of biomarkers and therapeutic agents; 79 

in most cases, any association found using GWAS approach can only serve as a starting point for 80 

future research, rather than providing a direct answer to the question of the genetic region’s precise 81 

biological function. The recent accumulation of functional genomics (or “omics” for short) data—82 

including information regarding the levels of gene expression (the transcriptome), metabolites (the 83 

metabolome), proteins (the proteome), and glycosylation (the glycome)—can provide new insight 84 

into the functional role of specific changes in the genome [2,3].  85 

Metabolomics is an emerging field that has been studied extensively in the past decade. A 86 

number of GWASs of metabolites have been performed using various platforms [4–8], revealing 87 

literally dozens of loci associated with variations in various lipid species, amino acids, and other 88 

small molecules. Linking the variants that underlie these variations in metabolomics with various 89 

diseases can provide functional insight into the many disease-related associations that were 90 

reported in previous studies, including cardiovascular and kidney disease, type 2 diabetes, cancer, 91 

gout, venous thromboembolism, and Crohn’s disease [5].  92 

However, analyzing metabolomics data requires specialized statistical methods due to their 93 

characteristically high dimensionality and the presence of statistical dependencies that reflect 94 

biological relationships between different variables. Conventional univariate GWAS (uGAS) 95 

approaches ignore any possible dependencies between different omics traits, which can confound 96 

the biological interpretation of the results and may lead to a loss of statistical power. On the other 97 

hand, utilizing multivariate phenotype information increases the statistical power of the association 98 

tests compared to univariate analysis [9–12]. Despite a large number of methodological studies, 99 

however, only a few empirical multivariate GWASs have been published using data for humans. 100 

We recently demonstrated [13] that using a multivariate analysis can substantially increase the 101 

power of locus identification in the context of human N-glycomics; indeed, not only did our 102 

multivariate analysis double the number of loci identified in the analysis sample, but also all five 103 

novel loci were strongly replicated. With respect to metabolomics, Inouye et al. [6] performed a 104 

multivariate GWAS on 130 metabolites (grouped in 11 sets) measured in approximately 6600 105 

individuals. They found that multivariate analysis doubled the number of loci detected in this 106 

sample; seven of these additional loci discovered were novel loci that had not been identified 107 
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 5 

previously in other GWAS analyses of related traits. While no replication of novel loci was 108 

performed by Inouye et al., we compared the authors’ results with a recently published univariate 109 

GWAS of metabolomics derived from a cohort containing nearly 25,000 individuals [8]. We found 110 

that three of the seven SNPs reported by Inouye et al. have a p-value < 5 × 10-11 for at least one 111 

metabolite (i.e., are significant at the genome-wide level after Bonferroni correction for 130 112 

analyses). These findings provide empirical evidence supporting the value of using multivariate 113 

methods to analyze the genomics of metabolic traits, at least in the context of locus discovery.  114 

It should be noted that these multivariate methods and tests were developed by statistical 115 

geneticists to specifically increase the power of gene identification. In such “gene-centric” tests, 116 

the model that includes the effects of genotype on multiple traits is contrasted with the null model 117 

in which the gene has no effect on any trait analyzed. Although useful and powerful for genetic 118 

mapping, this approach may have limited interpretability in a context in which one is interested in 119 

the genetic control and biology of specific trait or a subset of traits (the “trait-centered” view). 120 

Several statistical methods have been suggested to address the question of which specific traits are 121 

affected in an analyzed ensemble (see for example [10,14]). One such method is based on 122 

conditional analysis [15], in which a “target trait” is analyzed as a genotype-dependent variable 123 

and related traits are included in the regression model as covariates. Such a modeling approach 124 

allows—at least in theory—one to rule out indirect genetic effects (e.g., effects that are in fact 125 

solely mediated through some other trait) and study only the genetic effects that directly affect the 126 

trait of interest.  127 

Here, we present a statistical model in which a given trait depends on a genetic 128 

polymorphism and in which a number of related traits are included in the model as covariates. In 129 

this model, the relationship between the genotype and the trait of interest is our primary focus. 130 

Analyzing such a model allows us to identify the direct effect of genetics on the trait of interest. 131 

We first contrast our conditional genetic association (cGAS) approach with the standard model in 132 

which a trait of interest depends solely on genotype, without other traits used as covariates (i.e., 133 

the univariate genetic association—or uGAS—model). We do so by mathematically deriving 134 

expressions that allow us to examine the relative power of the uGAS and cGAS approaches, and 135 

we identify the situations in which these models are expected to yield different results.  136 

As might be expected—and as demonstrated here—the choice of covariates plays a critical 137 

role in conditional analyses. First, we used the assumption that the covariates (i.e., biologically 138 

relevant traits) are known. Second, we explored the problem of selecting appropriate covariates, 139 

and we tested the approaches by performing a proof-of-principle study using metabolomics data 140 

consisting of 151 metabolites (Biocrates assay) obtained from the KORA F4 study (n=1785 141 

individuals). Specifically, we selected covariates based on existing knowledge from metabolite 142 
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biochemical networks (BN-cGAS) and using a data-driven approach based on Gaussian Graphical 143 

Modeling (GGM-cGAS). Finally, we compare and discuss the obtained results, and we discuss 144 

possible applications for this analysis based on biologically and/or statistically relevant traits.   145 

 146 

  147 
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Results 148 

The power of performing a conditional analysis of genetic associations 149 

We start with the theoretical substantiation and identification of specific scenarios in which 150 

adjusting for biologically relevant covariates can modify the power of an association analysis.  151 

Let us consider a trait of interest, y, covariate c, and genotype g. We can formulate this 152 

problem in terms of a linear regression as follows: 𝑦 = 𝛽𝑔 ∗ 𝑔 + 𝛽𝑐 ∗ 𝑐 + 𝑒, where 𝛽𝑔 and 𝛽𝑐 are 153 

the effects of the genotype and covariate, respectively, and 𝑒 is the residual noise. Without a loss 154 

of generality, we assume that all random variables in this equation are distributed with a mean of 155 

zero and a standard deviation of 1; if this is not the case, one would need to use partial regression 156 

coefficients and covariance instead of the correlation parameters that we use here. Given these 157 

assumptions made, the joint distribution of y, g, and c can be specified using a set of three 158 

correlation coefficients, 𝜌. Given specific parameters, the value of the “univariate” score test 159 

statistic for the association between y and g is calculated as follows: 𝑇𝑢
2 = 𝑛 𝜌𝑦𝑔

2 /𝜎𝑢
2, where n is 160 

the sample size and 𝜎𝑢
2 = 1 − 𝜌𝑦𝑔

2  is the residual variance of y. For the conditional test, 𝑇𝑐
2 =161 

𝑛 𝛽𝑦𝑔
2 /𝜎𝑐

2 = 𝑛(𝜌𝑦𝑔 − 𝛽𝑦𝑐𝜌𝑐𝑔)2/𝜎𝑐
2, where 𝛽 represents the partial correlation coefficients from 162 

the conditional model and 𝜎𝑐
2 is the residual variance of y. Consequently, the log-ratio of the 163 

conditional and univariate test statistics can be partitioned into two components:  164 

log (
𝑇𝑐

2

𝑇𝑢
2

) = log (
𝜎𝑢

2

𝜎𝑐
2

) + log ([1 −
𝛽𝑦𝑐𝜌𝑐𝑔

𝜌𝑦𝑔
]

2

)                                            (1) 165 

Because the first term in Eq. (1) is dependent only upon residual variances of the two 166 

models, we call this term the “noise” component. The second term depends upon the correlations 167 

between traits and between the traits and the genotype; we call this term the “pleiotropic” 168 

component. Because the noise component (𝜎𝑢
2/𝜎𝑐

2) is always >1, any possible decrease in the ratio 169 

between univariate and conditional tests is determined by the sign and the magnitude of the term 170 

𝛽𝑦𝑐𝜌𝑐𝑔/𝜌𝑦𝑔. If this term is negative, there will always be an increase in the power of the 171 

conditional analysis.  172 

We can re-write 𝛽𝑦𝑐𝜌𝑐𝑔/𝜌𝑦𝑔 as 𝛽𝑦𝑐𝜌𝑦𝑐
∗ , where 𝜌𝑦𝑐

∗ = 𝜌𝑐𝑔/𝜌𝑦𝑔 is the quantity interpreted 173 

in a Mendelian randomization analysis as the effect of the covariate on the trait independent of 174 

non-genetic confounders [16]. Note that whereas 𝜌𝑦𝑐
∗  reflects the covariance between the trait and 175 

the covariate (which is induced by the effect of the genotype), 𝛽𝑦𝑐 is related to the residual (in 176 

most cases, environmental) sources of covariance between y and c. Thus, we conclude somewhat 177 

surprisingly that when genotype-induced and environmental correlations are similar in sign (i.e., 178 

both are positive or both are negative), the product 𝛽𝑦𝑐𝜌𝑦𝑐
∗  is positive and the contribution of the 179 
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second term in Eq. (1) to the relative power is negative. Note that the contribution of the first term 180 

in Eq. (1) is always positive; therefore, even if 𝛽𝑦𝑐𝜌𝑦𝑐
∗  is positive, the power of a conditional 181 

analysis may still be higher than the power of a univariate analysis. In contrast, an “unexpected” 182 

product (in which the signs are different and hence 𝛽𝑦𝑐𝜌𝑦𝑐
∗  is negative) contributes positively to 183 

the relative power of the conditional model. Note that in such a situation, the power of a conditional 184 

analysis will always be higher than the power of a univariate analysis.  185 

We can readily extend Eq. (1) to a situation in which k covariates are included in the 186 

conditional model. Denoting the coefficients of correlation between g and covariate i as 𝜌𝑔𝑖 and 187 

the partial coefficients of regression of y on covariate i as 𝛽𝑖 yields the following equation: 188 

log (
𝑇𝑐

2

𝑇𝑢
2

) = log (
𝜎𝑢

2

𝜎𝑐
2

) + log ([1 −
1

𝜌𝑦𝑔
∑ 𝛽𝑖𝜌𝑔𝑖

𝑘

𝑖=1

]

2

)                                          (2) 189 

When appropriate covariates are selected, performing cGAS using individual-level data 190 

becomes rather trivial and can be achieved using standard statistical and software tools in which 191 

one estimates the effects of a SNP and covariates. However, cGAS becomes somewhat less trivial 192 

if one chooses to use summary-level univariate GWAS data such as data available from previously 193 

published studies. The formalization of cGAS in terms of summary univariate GWAS statistics is 194 

described in Supplementary Note 1. Here, we used methods based on analyzing summary-level 195 

data.  196 

 197 

Network-based selection of covariates 198 

The ability to select appropriate covariates is extremely important, as it can have direct 199 

implications regarding the outcome of the analysis. If the biological/biochemical relationships 200 

between traits of interest are known and are summarized in a database(s), this knowledge can be 201 

used directly, for example by using all direct neighbors as covariates. We refer to this approach as 202 

a biochemical-network driven cGAS (BN-cGAS). Alternatively, the network can be reconstructed 203 

in a hypothesis-free, empirical manner from the data, for example using a Gaussian Graphical 204 

Model (GGM) [17]. We refer to this approach as a GGM-cGAS.  205 

We compared cGAS and uGAS by performing a genome-wide analysis of genetic effects 206 

using summary-level data obtained from the KORA F4 study. This study included 151 metabolites 207 

measured in 1784 individuals using the Biocrates assay and imputed at 1,717,498 SNPs.  208 

First, we examined the potential of using cGAS when the covariates are selected based on 209 

a known biochemical network (i.e., BN-cGAS). Thus, our analysis was restricted to a subset of 210 

105 metabolites for which at least the one-reaction-step immediate biochemical neighbors are 211 

known [17]. This biochemical network incorporates only lipid metabolites, and the pathway 212 
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reactions cover two groups of pathways: (1) fatty acid biosynthesis reactions, which apply to the 213 

metabolite classes lyso-PC, diacyl-PC, acyl-alkyl-PC, and sphingomyelins; and (2) β-oxidation 214 

reactions that reflect fatty acid degradation and apply to acylcarnitines. The β-oxidation model 215 

consists of a linear chain of C2 degradation steps (C10 to C8 to C6, etc.). The number of covariates 216 

ranged from 1 to 4, with mean and median values of 2.48 covariates and 2 covariates, respectively. 217 

Table 1 lists the 11 loci that were significant in either BN-cGAS or uGAS and fell into 218 

known associated regions (see Supplementary Note 2). Of these 11 loci, ten and nine loci could 219 

be identified by BN-cGAS and uGAS, respectively. Compared to uGAS, BN-cGAS identified one 220 

fewer locus (ETFDH), but identified two more (ACSL1 for PC ae C42:5 and PKD2L1 for lyso-221 

PC a C16:1). It is interesting to note that for ACSL1, the effect of SNP rs4862429 on PC ae C42:5 222 

was highly significant (p=7e-11) with BN-cGAS, but was not significant (p=0.7) with uGAS; this 223 

outcome is to be expected under the model of unexpected pleiotropy.  224 

Next, to test whether using BN-cGAS increases the average power of the association 225 

analysis, we compared the BN-cGAS and uGAS chi-square test results for the loci listed in Table 226 

1. Within a given locus, we compared the maximum test value. The ratio of the average maximum 227 

test statistic between BN-cGAS and uGAS was 1.59; however, a paired-sample Wilcoxon test 228 

comparing the best chi-square test results between BN-cGAS and uGAS was not significant 229 

(p=0.067).  230 

For the SNPs listed in Table 1, we then used Eq. (2) to partition the log-ratio of the BN-231 

cGAS and uGAS statistics values into “noise” and “pleiotropic” components. As shown in Figure 232 

1, the ratio is determined primarily by the second (i.e., “pleiotropic”) term in Eq. (2). Moreover, 233 

with the exception of the SLC22A4 locus, the SNP-trait pairs for which BN-cGAS had increased 234 

power are the pairs in which the second term in Eq. (2) is either positive or close to zero. In 235 

contrast, in the SNP-trait pairs that were not identified using BN-cGAS, the “pleiotropic” term in 236 

Eq. (2) had a strong negative contribution.  237 

Next, we investigated the variance-covariance structure of the loci with positive and 238 

negative pleiotropic terms. We therefore selected a locus in which the pleiotropic component’s 239 

contribution to power was positive (rs174547 at FADS1) and a locus in which the pleiotropic 240 

component’s contribution to power was negative (rs8396 at ETFDH). Figure 2 shows the 241 

corresponding correlations between the SNP, the trait, and the covariates involved, together with 242 

the partial coefficients for the conditional regression of the trait on the SNP and the covariates. 243 

With respect to FADS1 (Figure 2A), the correlations between the SNP and the trait (lyso-244 

PC a C20:4) and between the SNP and the covariate (lyso-PC a C20:3) are in opposite directions, 245 

generating negative genetically induced covariance between lyso-PC a C20:4 and lyso-246 

PC a C20:3. In contrast, the residual correlation between the trait and the covariate is positive. 247 
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Therefore, the value of the partial coefficient of regression between the SNP and lyso-PC a C20:4, 248 

conditional on lyso-PC a C20:3, is greater than that of the coefficient of regression without 249 

covariates.  250 

With respect to the second example, ETFDH (Figure 2B), we found that the conditional 251 

regression of C10 on rs8396 and two covariates (C8 and C12, two medium-chain acylcarnitines) 252 

led to a smaller SNP partial regression coefficient compared to an unconditional regression; this 253 

is because all of the terms in ∑ 𝛽𝑖𝜌𝑔𝑖
𝑘
𝑖=1 /𝜌𝑦𝑔 are positive.  254 

 255 

256 

Figure 1. Decomposition of the log-T2 ratio for cGAS and uGAS into pleiotropic and noise 257 

components. Vertically grouped trios (each composed of a square, triangle, and asterisk) 258 

correspond to one of fourteen associations in Table 1. The position of a trio on the x-axis 259 

corresponds to the log-ratio between conditional and univariate test statistic. On the y-axis, the 260 

asterisk corresponds to the log-ratio. The value of the pleiotropic component is depicted by a 261 

square, and the value of the noise component is depicted by a triangle. Each trio is shown in gray, 262 

except the trios representing the ACADM, SLC22A4, and PLEKHH1 loci, for which we have two 263 

different associations. The two dotted lines correspond to the regression lines for the two 264 

components. The three dark-green vertical lines indicate the associations that were significant in 265 

the cGAS analysis but not in the uGAS analysis, and the two dark-red lines indicates the 266 

associations that were significant only in the uGAS analysis. 267 
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 268 

 269 

Figure 2. Matrix of correlations (above diagonal line) and the partial coefficients of regression of 270 

the trait of interest on the SNP genotype and covariate(s) (the first column below diagonal line) 271 

for the FADS1 (A) and ETFDH (B) loci. Names of traits used as covariates are in red. The number 272 

in a cell indicates the value of correlation (partial regression coefficient). The area of a square is 273 

proportional to the absolute value of correlation (partial regression coefficient); the effect 274 

magnitude is also reflected by square’s color (the scale provided at the bottom of the graph). The 275 

FADS1 locus represents scenario in which the pleiotropic term in Eq. (2) is strongly positive, while 276 

for ETFDH this term is negative.  277 

 278 

Although using a known biochemical network to select covariates has many advantages, it 279 

may be somewhat unpractical and perhaps even harmful, as our biochemical knowledge is still 280 

relatively incomplete. Therefore, we explored the potential of performing a cGAS in which the 281 

covariates are selected using a data-driven approach (GGM-cGAS). The network of metabolites 282 

was reconstructed using Gaussian Graphical Models based on partial correlations. For a given 283 

metabolite, we selected covariates based on significant partial correlations. Specifically, we used 284 

the following threshold as proposed previously [17]: a p-value < 285 

(0.01/number of calculated partial correlations), which corresponds to a cut-off at p <8.83 × 10-7. 286 

The network used in our analysis is shown in Supplementary Figure S1.  287 

To compare GGM-cGAS with BN-cGAS, we used the same set of metabolites that we used 288 

for BN-cGAS to run our GGM-cGAS analysis; these results are presented in Supplementary 289 

Table S1. We found 16 SNP-trait pairs clustered at 10 loci that were detected by either GGM-290 

cGAS or BN-cGAS. More covariates were included in the GGM-cGAS analysis (ranging from 1 291 
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to 18, with mean and median values of 7.6 covariates and 7 covariates, respectively) than in the 292 

BN-cGAS analysis. Thus, we predicted that GGM-cGAS would have relatively more power than 293 

BN-cGAS due to reduced noise (term 1 in Eq. (2)); on the other hand, GGM-cGAS might lose 294 

power because of reduced occurrence of unexpected pleiotropy (term 2 in Eq. (2)).  295 

For the best SNP-trait pairs detected by GGM-cGAS or BN-cGAS, we computed the 296 

components in Eq. (2) and compared these components using a paired-sample Wilcoxon test. We 297 

found that the noise component in Eq. (2) was always larger for GGM-cGAS, with a mean 298 

difference of 0.66 (p=3 × 10-5). Moreover, the second “pleiotropic” component in Eq. (2) was on 299 

generally smaller in GGM-cGAS than for BN-cGAS, with a mean difference of -0.54 (p=0.013); 300 

nevertheless, for three out of 16 GGM-cGAS SNP-trait pairs, the pleiotropic component was 301 

positive. The average chi-square value was 33% smaller for GGM-cGAS than for BN-cGAS, 302 

indicating an average loss of power (although this loss was not significant; p=0.5 based on a paired 303 

Wilcoxon test), yet 22% larger for GGM-cGAS than for uGAS (p=0.8 based on a paired Wilcoxon 304 

test). We therefore conclude that although GGM-cGAS may not serve as an ideal proxy for 305 

analyzing a bona fide biochemical network, it can still have increased power due to reduced target 306 

trait residual variance and the potential to detect unexpected pleiotropy.  307 

Next, we investigated further the potential of using cGAS under realistic conditions to a 308 

full extent by analyzing all 151 available metabolites using GGM-cGAS and comparing these 309 

results with the results of uGAS (Table 2 and Supplementary Figure S2). In total, uGAS detected 310 

15 loci at the genome-wide significance level p<5 × 10-8/151 (i.e., p<3.3 × 10-10). On the other 311 

hand, GGM-cGAS identified 19 significant loci using the same threshold. As expected, the 312 

standard errors of the genetic effect estimates were smaller for GGM-cGAS than for uGAS (Table 313 

2 and Supplementary Figure S3). A total of 14 loci were detected by both uGAS and GGM-314 

cGAS. GGM-cGAS failed to identify one locus that was identified by uGAS (C5:1-DC at 315 

rs2943644), but identified five loci that were missed by uGAS. Three of the five loci identified 316 

solely by GGM-cGAS affect amino acids, and the remaining two loci affect acylcarnitines. It is 317 

important to note that the loci identified by BN-cGAS (when we analyzed 105 metabolites) are a 318 

subset of the 19 loci that were identified by GGM-cGAS (when we used all 151 metabolites).  319 

Finally, we searched the available literature for the loci listed in Table 2 (see 320 

Supplementary Note 2 for details). From the 20 loci that we report here, 15 were found to be 321 

significant at the genome-wide level in a recent large (n=7478) meta-analysis of Biocrates 322 

metabolomics data reported by Draisma et al. [7]. Some of the metabolites analyzed in our study 323 

were not analyzed by Draisma et al. [7]; nevertheless, for 11 out of these 15 loci, we observed a 324 

significant association for the same SNP-metabolite pair; for three loci, the strongest association 325 

was with a metabolite in the same class, and for one locus the strongest association was with a 326 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 13 

metabolite from a different lipid class (see Supplementary Table S2). For the other five loci that 327 

were not significant in the study by Draisma et al. [7], we determined whether these five loci were 328 

significant and replicated in a study by Tsepilov et al. [18]. It should be noted that Tsepilov et al. 329 

analyzed the ratios of metabolites and also used the KORA F4 data set in their discovery stage, 330 

although they used another cohort (TwinsUK) for replication. Of these five loci, two were also 331 

significant in the study by Tsepilov et al. [18]; moreover, for both of these loci the metabolite 332 

analyzed in our study was included in the ratios analyzed by Tsepilov et al. One of the five loci 333 

was associated with the same trait in two other studies [19,20]. Finally, we found no prior 334 

published evidence of any association with metabolites for rs2943644 (LOC646736) or 335 

rs17112944 (LOC728755); therefore, we conclude the observed associations with rs17112944 and 336 

rs2943644 as likely false positives, and these two loci were excluded from further consideration.  337 

 338 

 339 
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Table 1. Eleven loci identified by BN-cGAS and uGAS on metabolites for which at least one one-reaction-step neighbor was available.  340 

              uGAS cGAS 

Locus SNP Metabolite chr:pos Gene effA/refA EAF beta (se) P-value Beta (se) P-value Ncov 

uGAS & cGAS 

1 rs211718 C8 1:75879263 ACADM T/C 0.30 -0.45 (0.034) 3.26E-37 -0.10 (0.012) 4.83E-17 1 

1 rs211718 C12 1:75879263 ACADM T/C 0.30 -0.04 (0.036) 2.19E-01 0.20 (0.014) 1.67E-40 3 

2 rs7705189 PC ae C42:5 5:131651257 SLC22A4 G/A 0.47 0.15 (0.034) 8.65E-06 0.06 (0.009) 1.49E-10 3 

2 rs419291 C5 5:131661254 SLC22A4 T/C 0.38 0.26 (0.035) 7.03E-14 0.17 (0.029) 1.01E-08 1 

3 rs9368564 PC aa C42:5 6:11168269 ELOVL2 G/A 0.25 -0.29 (0.039) 1.14E-13 -0.15 (0.024) 1.63E-10 3 

4 rs12356193 C0 10:61083359 SLC16A9 G/A 0.17 -0.51 (0.046) 1.84E-27 -0.42 (0.042) 1.67E-22 1 

5 rs174547 lyso-PC a C20:4 11:61327359 FADS1 C/T 0.70 0.61 (0.033) 1.24E-69 0.66 (0.024) 2.96E-141 1 

6 rs2066938 C4 12:119644998 ACADS G/A 0.27 0.73 (0.033) 2.42E-93 0.72 (0.032) 2.13E-100 1 

7 rs10873201 PC ae C36:5 14:67036352 PLEKHH1 T/C 0.45 -0.26 (0.034) 4.37E-14 -0.21 (0.018) 2.38E-30 2 

7 rs1077989 PC ae C32:2 14:67045575 PLEKHH1 C/A 0.46 -0.30 (0.034) 2.23E-18 -0.06 (0.016) 5.33E-05 3 

8 rs4814176 PC ae C40:2 20:12907398 SPTLC3 T/C 0.36 0.24 (0.035) 5.74E-12 0.25 (0.023) 1.58E-25 4 

Only uGAS 

9 rs8396 C10 4:159850267 ETFDH C/T 0.71 0.26(0.037) 2.11E-12 0.05 (0.011) 6.67E-07 2 

Only cGAS 

10 rs4862429 PC ae C42:5 4:186006834 ACSL1 T/C 0.31 0.02(0.037) 6.62E-01 -0.06 (0.010) 6.57E-11 3 

11 rs603424 Lyso-PC a C16:1 10:102065469 PKD2L1 A/G 0.80 0.23(0.042) 5.34E-08 0.21 (0.031) 1.39E-11 1 

Notes: The best SNP-metabolite pair is shown for each locus. chr:pos refers to the physical position of the SNP; EAF, effect allele frequency; beta (se), the estimated effect and standard 341 

error of the SNP; effA/refA, effect allele/reference allele; P-value, the p-value of the additive model; Gene, the most likely (according to DEPICT) associated gene in the region; Ncov, 342 

the number of covariates used in cGAS.  343 
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Table 2. Twenty loci identified by GGM-cGAS and uGAS.  345 

       uGAS cGAS 

Locus SNP Metabolite chr:pos Gene effA/refA EAF beta (se) P-value beta (se) P-value Ncov 

uGAS & cGAS 

1 rs211718 C6 (C4:1-DC) 1:75,879,263 ACADM T/C 0.30 -0.48 (0.034) 4.64E-42 -0.13 (0.017) 2.00E-13 7 

1 rs7552404 C6 (C4:1-DC) 1:75,908,534 ACADM G/A 0.30 -0.48 (0.034) 3.10E-42 -0.12 (0.017) 3.25E-13 7 

2 rs483180 Ser 1:120,069,028 PHGDH G/C 0.30 -0.24 (0.037) 3.34E-11 -0.24 (0.028) 1.50E-17 2 

2 rs477992 Ser 1:120,059,099 PHGDH A/G 0.70 0.24 (0.037) 5.15E-11 0.24 (0.028) 5.82E-18 2 

3 rs2286963 C9 2:210,768,295 ACADL G/T 0.63 -0.49 (0.032) 1.10E-49 -0.48 (0.027) 1.48E-67 3 

4 rs8396 C10 4:159,850,267 ETFDH C/T 0.71 0.26 (0.037) 2.02E-12 0.04 (0.010) 1.49E-05 8 

4 rs8396 C7-DC 4:159,850,267 ETFDH C/T 0.71 -0.09 (0.037) 1.67E-02 -0.13 (0.020) 3.29E-11 8 

5 rs419291 C5 5:131,661,254 SLC22A4 T/C 0.38 0.26 (0.035) 7.03E-14 0.17 (0.026) 2.28E-10 3 

5 rs270613 C5 5:131,668,482 SLC22A4 A/G 0.61 -0.26 (0.035) 7.93E-14 -0.17 (0.026) 8.48E-11 3 

6 rs9393903 PC aa C42:5 6:11,150,895 ELOVL2 A/G 0.75 0.29 (0.039) 2.19E-13 0.18 (0.020) 4.51E-19 6 

6 rs9368564 PC aa C42:5 6:11,168,269 ELOVL2 G/A 0.25 -0.29 (0.039) 1.14E-13 -0.19 (0.021) 7.84E-19 6 

7 rs816411 Ser 7:56,138,983 PHKG1 C/T 0.51 -0.22 (0.034) 2.15E-10 -0.19 (0.026) 5.16E-13 2 

7 rs1894832 Ser 7:56,144,740 PHKG1 C/T 0.51 0.21 (0.034) 3.23E-10 0.19 (0.026) 1.69E-13 2 

8 rs12356193 C0 10:61,083,359 SLC16A9 G/A 0.17 -0.51 (0.046) 1.84E-27 -0.27 (0.034) 9.72E-16 3 

9 rs174547 lyso-PC a C20:4 11:61,327,359 FADS1 C/T 0.70 0.61 (0.033) 1.44E-69 0.07 (0.011) 1.41E-10 9 

9 rs174556 PC ae C44:4 11:61,337,211 FADS1 T/C 0.27 0.09 (0.038) 1.55E-02 0.21 (0.014) 3.16E-46 3 

10 rs2066938 C4 12:119,644,998 ACADS G/A 0.27 0.73 (0.033) 5.87E-94 0.71 (0.025) 1.31E-151 2 

11 rs12879147 PC aa C28:1 14:63,297,349 SYNE2 A/G 0.85 -0.46 (0.050) 2.07E-19 -0.12 (0.019) 5.94E-11 14 

11 rs17101394 SM(OH) C14:1 14:63,302,139 SYNE2 A/G 0.83 -0.32 (0.050) 1.00E-10 -0.10 (0.011) 1.17E-17 7 

12 rs1077989 PC ae C36:5 14:67,045,575 PLEKHH1 C/A 0.46 -0.26 (0.034) 3.42E-14 -0.08 (0.010) 8.25E-16 10 

12 rs1077989 PC ae C32.2 14:67,045,575 PLEKHH1 C/A 0.46 -0.30 (0.034) 2.23E-18 -0.05 (0.016) 1.31E-03 6 

13 rs4814176 SM(OH).C22:1 20:12,907,398 SPTLC3 T/C 0.36 0.03 (0.035) 4.51E-01 -0.07 (0.009) 1.10E-16 10 
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13 rs4814176 SM(OH) C24:1 20:12,907,398 SPTLC3 T/C 0.36 0.24 (0.035) 5.40E-12 0.09 (0.013) 3.04E-11 9 

14 rs5746636 Pro 22:17,276,301 PRODH T/G 0.24 -0.31 (0.039) 3.00E-15 -0.32 (0.034) 1.91E-20 2 

Only uGAS 

15 rs2943644 C5:1-DC 2:226,754,586 LOC646736 C/T 0.68 0.32 (0.042) 5.14E-14 0.09 (0.022) 3.58E-05 5 

Only cGAS 

16 rs1374804 Gly 3:127,391,188 ALDH1L1 A/G 0.64 0.20 (0.036) 1.88E-08 0.21 (0.030) 8.08E-13 3 

17 rs4862429 PC ae C42:5 4:186,006,834 ACSL1 T/C 0.31 0.02 (0.037) 6.62E-01 -0.06 (0.008) 1.25E-12 8 

18 rs603424 C16:1 10:102,065,469 PKD2L1 A/G 0.80 0.16 (0.042) 9.51E-05 0.14 (0.018) 1.32E-13 9 

19 rs2657879 Gln 12:55,151,605 GLS2 G/A 0.21 -0.24 (0.042) 2.82E-08 -0.27 (0.031) 9.37E-18 5 

20 rs17112944 C6:1 14:27,179,297 LOC728755 A/G 0.90 -0.28 (0.059) 2.09E-06 -0.21 (0.032) 1.38E-10 9 

Notes: The best SNP-metabolite pair is shown for each locus. chr:pos refers to the physical position of the SNP; EAF, effect allele frequency; beta (se), the estimated effect and standard 346 

error of the SNP; effA/refA, effect allele/reference allele; P-value, the p-value of the additive model; Gene, the most likely (according to DEPICT) associated gene in the region; Ncov, 347 

the number of covariates used in cGAS. 348 
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Discussion  351 

We report a new “trait-centric” approach for analyzing genetic determinants of multivariate 352 

“omics” traits by performing a network-based conditional genetic association analysis (cGAS). In 353 

the context of metabolomics, for each trait we selected a set of other metabolites to be used as 354 

covariates in our genetic association analysis. The selection of covariates can be either mechanistic 355 

(e.g., based on known biological relationships between traits of interest) or data-driven (e.g., based 356 

on partial correlations). Importantly, this approach can use either individual-level or summary-357 

level data. We first mathematically compared the power of conditional and standard single-trait 358 

genetic association analyses (univariate genetic association, uGAS), and we identified scenarios 359 

in which these analyses are expected to produce different results; next, we applied cGAS to 151 360 

metabolomics traits (Biocrates panel) in a large (n=1784 individuals) population-based KORA 361 

cohort.  362 

We found that the log-ratio between the cGAS and uGAS test statistic can be decomposed 363 

in a “noise” component (which depends on residual variance of the trait and is always positive) 364 

and a “pleiotropic” component. The pleiotropic component is negative in cases in which 365 

genetically induced covariance (between the trait of interest and the trait used as the covariate) and 366 

the residual covariance have the same sign (i.e., act in the same direction). The pleiotropic 367 

component is positive in cases in which the genetically induced covariance and residual covariance 368 

act in opposite directions.  369 

Should one expect that genetically induced and residual covariance act in the same or 370 

opposite directions? In the context of complex polygenic traits, one would expect that genetic and 371 

environmental correlations have the same sign. This is reflected in animal breeding studies; for a 372 

recent example in humans, see [21]. It should be noted that a negative sign for the pleiotropic 373 

component does not necessarily indicate higher power of the uGAS, as the noise component may 374 

still dominate the relative non-centrality parameter. This will happen, for example, when 𝜌𝑐𝑔 (the 375 

effect of the genotype on the covariate) is small while 𝛽𝑦𝑐 (partial residual regression between the 376 

trait and covariate) is relatively large, thereby reducing 𝜎𝑐
2.  377 

Nevertheless, in the case of metabolomic traits, genetic and environmental sources do not 378 

necessarily generate consistent covariance. Moreover, for a given locus that affects the activity of 379 

an enzyme involved in a biochemical reaction, the unexpected inconsistency between genetically 380 

induced covariance and residual covariance may not be so unexpected after all. Indeed, consider 381 

an allele associated with an increased activity of an enzyme that converts substrate A into product 382 

B. One would expect that the levels of A and B are positively correlated; one would also expect 383 
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that the allele is positively correlated with the level of product B and negatively correlated with 384 

the level of substrate A. This is precisely the scenario that yields a positive value for the second 385 

term in Eq. (1), thus providing an additional increase in power above and beyond the power 386 

provided by the first term in Eq. (1) (noise reduction).  387 

Our empirical investigation of real data on the genetic association between the genome and 388 

metabolites confirmed the existence of both scenarios. An extreme example of concordance 389 

between genetic covariance and residual covariance is provided by the effects of rs8396 on C10, 390 

with C8 and C12 used as covariates (see Figure 2B). The ETFDH gene, which was prioritized by 391 

DEPICT as the best candidate in this region (with a false-discover rate <5%), encodes the enzyme 392 

electron transfer flavoprotein (ETF) dehydrogenase, which plays a role in mitochondrial fatty acid 393 

oxidation. During this process, the acyl group is transferred from a long chain acylcarnitine to a 394 

long-chain acetyl-CoA, which is then catabolized. ETF dehydrogenase participates in the catabolic 395 

process by transferring electrons from acyl-CoA dehydrogenase to the oxidative phosphorylation 396 

pathway. Thus, the ETFDH gene should affect all forms of long-chain acylcarnitines in the same 397 

way, and we can expect that the pleotropic effect of this gene on the acylcarnitines in our example 398 

(C8, C10, C12, etc.) will be unidirectional. The presence of unidirectional genetic effects and the 399 

positive correlation between these acylcarnitines makes the second term in Eq. (2) negative, which 400 

determines that—in this situation—univariate GAS has more power than cGAS. 401 

An empirical example of discordance between genetically induced covariance and residual 402 

covariance is provided by the effects of the SNP rs174547 on lyso-PC a C20:4, with lyso-PC a 403 

C20:3 used as a covariate. This SNP exhibits opposite correlations with lyso-PC a C20:4 and lyso-404 

PC a C20:3, resulting in negative genetically induced covariance between these traits. At the same 405 

time, the residual correlation between these traits is positive, resulting in steep increase in the 406 

power of conditional analysis. In this region, the FADS1/2/3 gene cluster is an attractive candidate, 407 

providing the detected model with biological relevance. The FADS1 gene encodes the enzyme 408 

fatty acid desaturase 1, whereas the two traits differ by only one double bond. Thus, this example 409 

mimics perfectly the biochemical scenario in which we would expect a conditional analysis to 410 

have increased power. 411 

The trait-centric methods considered here provide an attractive framework to identify and 412 

study direct genetic effects on a trait of interest. Conditional analysis is an attractive option in cases 413 

in which we wish to clearly interpret the results in terms of the effect of the genotype on a particular 414 

trait. Such specific interpretation may be important when comparing genetic association results 415 

obtained for our trait of interest with results obtained for other traits (e.g., using the methods 416 

described in [22–24]). It should be noted, though, that a trait-centric approach is not intended to 417 

maximize the power of identifying genes that affect metabolomics as a whole. Such a gene-centric 418 
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view would favor analysis using joint—and not conditional—modeling of sets of traits. Such an 419 

approach can maintain power across a wide range of scenarios, including the scenario of 420 

concordance between genetically induced and residual covariance [13]. In this gene-centric 421 

framework, other formulations of conditional analysis have also been proposed [25] in order to 422 

specifically increase power of gene identification by selecting covariates that—using our 423 

terminology—affect the “noise reduction” component of the model while avoiding the problems 424 

associated with the pleiotropic component.  425 

The proper selection of sets of biologically related traits is extremely important for the 426 

conditional genetic association analysis method described here, as well as for multivariate methods 427 

that model the joint effects of genotype on an ensemble of traits. Here, we considered two 428 

alternative approaches—knowledge based and data-driven—to finding the networks of related 429 

traits, with a subnetwork centered around a trait of interest used as the analyzed set. In principle, 430 

in the context of analyzed metabolomics data, the knowledge-based network approach has slightly 431 

higher power in the context of trait-centric genetic association analysis. However, we believe that 432 

our analysis revealed that both approaches are suboptimal. The knowledge-based network 433 

reconstruction has many advantages, but it may be somewhat unpractical, as our biochemical 434 

knowledge is still relatively incomplete. Secondly, by reconstructing the network while relying 435 

only on current knowledge, we may be missing new knowledge that may be revealed by the data. 436 

Finally, by including neighbors that are based only on biochemical information, we may miss 437 

covariance induced by technical confounders; adjusting for this may increase the power of analysis 438 

[25]. Learning the network from the same data that were used for genetic analysis has the 439 

disadvantages of potentially ignoring existing knowledge and being sensitive to sample size. 440 

Finally, we note that the total observed correlation between metabolites is determined by the 441 

balance between genetic and environmental sources of covariance; it is possible to imagine a 442 

situation in which total correlation is smaller than one or more of its components, and our analysis 443 

provides examples of such a situation. We may speculate that—ideally—one should use a method 444 

that allows one to combine prior knowledge and new information obtained from the data, thereby 445 

allowing the simultaneous learning of the structure of dependencies between different metabolites 446 

and between the metabolites and the genome. Such learning from the data while allowing for the 447 

incorporation of previous knowledge (e.g., biochemical relations between traits) might be achieved 448 

by applying, e.g. a machine-learning approach that allows for differential shrinkage. It is also 449 

important to note that the proper application of such an approach would require the availability of 450 

vast samples of data, thereby allowing for separate training, validation, verification, testing, and 451 

replication of detected dependencies and associations.  452 

  453 
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Materials and Methods 454 

KORA study 455 

The KORA study (Cooperative Health Research in the region of Augsburg) is a series of 456 

population-based studies in the region of Augsburg in Southern Germany [26]. KORA F4 is a 457 

follow-up survey (conducted from 2006 through 2008) of the baseline KORA S4 survey, which 458 

was conducted from 1999 through 2001. All study protocols were approved by the ethics 459 

committee of the Bavarian Medical Chamber, and all participants provided written informed 460 

consent.  461 

The concentration of 163 metabolites were measured in 3061 serum samples obtained from 462 

KORA F4 participants using flow injection electrospray ionization tandem mass spectrometry and 463 

the AbsoluteIDQ p150 Kit (Biocrates Life Sciences AG, Innsbruck, Austria) [27]. After applying 464 

quality control screening, a total of 151 metabolite measurements were used in our analysis. 465 

Details regarding the methods and quality control of the metabolite measurements, as well as 466 

details regarding the metabolite nomenclature, have been published previously [27]. The 467 

nomenclature for the metabolites in this study is provided in Supplementary Table S3.  468 

Genotyping was performed using the Affymetrix 6.0 SNP array (534,174 SNP markers 469 

after quality control), with further imputation using HapMap2 (release 22) as a reference panel, 470 

resulting in a total of 1,717,498 SNPs (for details, see ref. [28]). Both the metabolite concentrations 471 

and genotype were available for 1785 participants in the KORA F4 study. 472 

 473 

Statistical analysis  474 

Partial correlation coefficients and their p-values were calculated using the “ppcor” package [29] 475 

in R. Graphical representations were generated using the “ggm” [30] package in R. Consistent 476 

with previous studies [17], we considered a partial correlation coefficient to be significant at p 477 

< 0.01/(151*150/2) (i.e., p<8.83 × 10-7). 478 

 For the GWAS analysis, we used OmicABEL software [31]. Prior to GWAS, all traits were 479 

first adjusted for the participant’s sex, age, and batch effect; subsequently, the residual traits were 480 

transformed using an inverse-normal transformation [32]. The genotypes from the KORA F4 481 

cohort were used. Only SNPs that had a call rate ≥0.95, R2≥0.3, Hardy–Weinberg equilibrium 482 

(HWE) p≥10-6, and MAF ≥0.1 (1,717,498 SNPs in total) were included in the analysis. The 483 

genomic control method was used to correct for any possible inflation of the test statistics. The 484 

genomic control [33] lambda value for all traits was between 1.00 and 1.03.  485 

In a specific analysis (i.e., cGAS or uGAS), we defined independent loci as groups of 486 

genome-wide significant associations that were separated by at least 500 kb or were located on 487 
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different chromosomes. The strongest association (i.e., the association with the lowest p-value) 488 

was selected to represent this locus. The cGAS and uGAS results were considered to reflect 489 

different loci if the strongest associations were in loci that were separated by at least 500. The 490 

threshold for the genome-wide significance for 151 traits was set to p=5 × 10-8/151 (i.e., 491 

p=3.31 × 10-10). 492 

 When partitioning the log(cGAS/uGAS) test statistics into the noise and pleiotropic 493 

components (see Eq. (2) and Figure 1), we used all known loci that were significant in either the 494 

cGAS or uGAS analysis (see Table 1). If a locus included two SNPs associated with different 495 

traits, we included both associations during partitioning. If a locus included two SNPs associated 496 

with the same trait, to be conservative we included only the locus with the lower uGAS p-value 497 

during partitioning. After partitioning, we compared the pleiotropic and noise components using 498 

the paired-samples Wilcoxon test. For comparing the chi-square test results for the two methods, 499 

for each locus we first selected the method that yielded the strongest association (and hence the 500 

largest chi-square value). We compared that chi-square value with the maximal chi-square value 501 

observed for the second method within a 500-kb region centered around the strongest association 502 

observed using the first method.  503 

 504 

In silico functional annotation  505 

We conducted functional annotation for our findings. To prioritize genes in associated regions, 506 

gene set enrichment, and tissue/cell-type enrichment analyses, we used DEPICT software [34] 507 

(release 140721) with the following settings: flag_loci = 1; flag_genes = 1; flag_genesets = 1; 508 

flag_tissues = 1; param_ncores = 2; and further manual annotation (h37 assembly). All 27 SNPs 509 

(clustered in 20 loci) identified by cGAS or uGAS (see Table 2) were included in the analysis. If 510 

more than one gene was annotated for a SNP by DEPICT, we selected the gene with the lowest 511 

nominal DEPICT P-value. In most cases, the results of manual annotation matched the annotation 512 

results using DEPICT annotation (see Supplementary Note 2). In addition, we looked up each 513 

SNP using the Phenoscanner [35] database to check whether it was previously reported to be 514 

associated with metabolic traits at p<5 × 10-8 and proxy r2 <0.7.  515 
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Supplementary Note 1 – cGAS using summary level data 518 

Supplementary Note 2 – Literature search for loci identified by cGAS and uGAS 519 
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GWAS – genome-wide association study 531 

cGAS – conditional GWAS 532 

uGAS – univariate GWAS (trait-by-trait) 533 
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