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1. General Considerations  

1.1. Solvents and Reagents  

Tetrahydrofuran (THF) and triethylamine (Et3N) were sparged with argon and dried by passing through 

alumina columns using argon in a Glass Contour solvent purification system. Dichloromethane (CH2Cl2) was 

freshly distilled over calcium hydride under a N2 atmosphere prior to each use. N-Boc-piperidine (1c), 

N-methyl-2-pyrrolidinone (1p) and N-methyl-2-piperidinone (1n) were obtained from commercial vendors 

and used as received. Reagents for the fluorination reaction were purchased from commercial vendors as 

follows: Silver tetrafluoroborate (AgBF4, 99%) was purchased from Oakwood Chemicals and stored in a 

glovebox. Selectfluor® was purchased from Matrix Scientific. Acetone (HPLC) was purchased from Fisher 

Scientific. Water (HPLC) was purchased from Fisher Scientific.  

 

1.2. Experimental Procedures  

Unless otherwise noted in the experimental procedures, reactions were carried out in flame or oven-dried 

glassware under a positive pressure of N2 in anhydrous solvents using standard Schlenk techniques. Reaction 

temperatures above room temperature (22–23 °C) were controlled by an IKA® temperature modulator and 

monitored using liquid-in-glass thermometers. Reaction progress was monitored using a combination of 

LC/MS analysis (via a Shimadzu LCMS-2020 (UFLC) equipped with the LC-20AD solvent delivery system, 

a SPD-20AV prominence UV/Vis detector (SPD-M20A Photo Diode Array), and a Thermo Scientific 

Hypersil GOLD HPLC column (5 µm particle size, 4.6 × 50 mm)), and thin-layer chromatography (TLC) on 

SiliCycle Siliaplates (glass backed, extra hard layer, 60 Å, 250 µm thickness, F254 indicator). Flash column 

chromatography was performed with either glass columns using Silicycle silica gel (40–63 µm particle size) 

or with a Yamazen Smart Flash EPCLC W-Prep 2XY (dual channel) automated flash chromatography system 

on prefilled, premium, universal columns using ACS grade solvents. Preparative thin layer chromatography 

was performed on SiliCycle Siliaplates (glass backed, extra hard layer, 60 Å, 250 µm thickness, F254 

indicator). 

 

1.3. Analytical Instrumentation  
1H NMR and 13C NMR data were recorded on Bruker AVQ-400, AVB-400, RDX-500, AV-600 and AV-700 

spectrometers using CDCl3 as solvents, typically at 20–23 °C. Chemical shifts (δ) are reported in ppm relative 

to the residual solvent signal (δ 7.26 for 1H NMR, δ 77.16 for 13C NMR in CDCl3, δ 3.31 for 1H NMR, δ 

49.00 for 13C NMR in CD3OD). The 19F NMR spectra were acquired on an AVQ-400 spectrometer and 

internally referenced to CFCl3 (δ 0.00). Data for 1H, 13C and 19F NMR spectroscopy are reported as follows; 

chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, hept = 

heptet, m = multiplet, br = broad), coupling constant (Hz), integration. Melting points were determined using 

a MEL-TEMPTM apparatus and are uncorrected. Optical rotations were measured on a Perkin-Elmer 241 
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polarimeter. High-resolution mass spectra (HRMS) were obtained from the Catalysis Facility of the Lawrence 

Berkeley National Laboratory (supported by the Director, Office of Science, of the US Department of Energy 

under contract no. DE-AC02-05CH11231) using a PerkinElmer AxION 2 TOF-MS.  

 

2. Experimental Procedures for Preparation of Starting Materials  

2.1. Preparation of N-Protected Cyclic Amines 

 
Phenyl(piperidin-1-yl)methanone (1a) was prepared according to a published procedure. Spectral data were 

in full agreement with the reported literature values (44).  

 

 
1-(Piperidin-1-yl)ethan-1-one (1b) was prepared according to a published procedure. Spectral data were in 

full agreement with the reported literature values (45). 

 

 
2,2-Dimethyl-1-(piperidin-1-yl)propan-1-one (1d) was prepared according to a published procedure. 

Spectral data were in full agreement with the reported literature values (46). 

 

 

Azetidin-1-yl(phenyl)methanone (1e) was prepared according to a published procedure. Spectral data were 

in full agreement with the reported literature values (44). 

 

 

Phenyl(pyrrolidin-1-yl)methanone (1f) was prepared according to a published procedure. Spectral data were 

in full agreement with the reported literature values (44). 
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Azepan-1-yl(phenyl)methanone (1g) was prepared according to a published procedure. Spectral data were in 

full agreement with the reported literature values (47). 

 

 

Azocan-1-yl(phenyl)methanone (1h):  A 25 mL round-bottomed flask was charged with a solution of 

azocane (300 mg, 3.02 mmol) and Et3N (0.57 mL, 4.1 mmol) in CH2Cl2 (5.0 mL) and cooled to 0 °C. Benzoyl 

chloride (0.320 mL, 2.75 mmol) was added dropwise over 5 min and the resulting mixture was warmed to 

room temperature. After 24 h, the reaction mixture was quenched with 1 M HCl aq. (5.0 mL) and the phases 

were separated. The aqueous phase was extracted with CH2Cl2 (10 mL × 3). The combined organic layers 

were washed with brine (2.0 mL), dried over MgSO4, filtered and concentrated under reduced pressure. The 

crude residue was purified by column chromatography (SiO2, 50% EtOAc/hexanes) to provide the title 

compound (400 mg, 66%) as a yellow oil. 
1H NMR (400 MHz, CDCl3): δ 7.41–7.34 (m, 5H), 3.62 (t, J = 6.1 Hz, 2H), 3.31 (br, 2H), 1.86 (br, 2H), 

1.61–1.59 (m, 8H); 
13C NMR (101 MHz, CDCl3) δ 171.5, 137.7, 129.0, 128.5, 126.4, 51.2, 46.7, 27.0, 26.5, 26.4, 25.6, 24.2; 

HRMS (ESI): Calc’d for C14H20NO [M+H]+: 218.1539, found: 218.1535. 

 

 
(4-Methylpiperidin-1-yl)(phenyl)methanone (1i) was prepared from 4-methylpiperidine using a procedure 

analogous to that for the preparation of 1h. Spectral data were in full agreement with the reported literature 

values (48). 
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(2-Methylpiperidin-1-yl)(phenyl)methanone (1j) was prepared according to a published procedure. Spectral 

data were in full agreement with the reported literature values (49). 

 

 
(2-Ethylpiperidin-1-yl)(phenyl)methanone (1k) was prepared from 2-ethylpiperidine using a procedure 

analogous to that used for the synthesis of 1h. The title compound was obtained as a colorless oil (525 mg, 

81%). 
1H NMR (600 MHz, CDCl3, ca. 1:1 mixture of rotamers): δ 7.38–7.33 (m, 5H), 4.81 (br, 0.5H), 4.57 (br, 

0.5H), 3.67 (br, 0.5H), 3.49 (br, 0.5H), 3.02 (br, 0.5H), 2.78 (br, 0.5H), 1.81–1.76 (m, 1H), 1.74–1.31 (m, 7H), 

0.95 (br, 1.5H), 0.73 (br, 1.5H); 
13C NMR (151 MHz, CDCl3, mixture of rotamers): δ 170.9, 137.3, 129.1, 128.5, 126.6, 56.1, 49.8, 43.3, 37.0, 

28.8, 28.0, 26.4, 25.9, 22.8, 19.2, 10.8 (One 13C signal is overlapping with others due to amide rotation); 

HRMS (ESI): Calc’d for C14H20NO [M+H]+: 218.1538, found: 218.1540. 

 

 
(3,5-Dimethylpiperidin-1-yl)(phenyl)methanone (1l) was prepared from 3,5-dimethylpiperidine (mixture of 

cis and trans) using a procedure analogous to that for the preparation of 1h. Spectral data were in full 

agreement with the literature values (50). 

 

 

(Octahydroquinolin-1(2H)-yl)(phenyl)methanone (1m) was prepared from trans-decahydroquinoline using 

a procedure analogous to that used for the synthesis of 1h. The title compound was obtained as a yellow oil 

(276 mg, 53%). 
1H NMR (400 MHz, CDCl3): δ 7.36 (br, 5H), 3.50 (td, J = 10.7, 3.2 Hz, 1H), 2.43–2.28 (m, 2H), 2.29–2.24 

(m, 1H), 1.79–1.52 (m, 7H), 1.49–1.16 (m, 4H), 1.13–1.03 (m, 1H); 
13C NMR (101 MHz, CDCl3): 171.6, 137.8, 129.3, 128.4, 126.9, 61.3, 42.4, 38.2, 33.2, 30.5, 26.7, 26.3, 25.6, 

23.7; 

HRMS (ESI): Calc’d for C16H22NO [M+H]+: 244.1696, found: 244.1697. 
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Methyl (S)-1-Benzoylpiperidine-2-carboxylate (1n) was prepared from L-pipecolic acid methyl ester 

hydrochloride using a procedure analogous to that used for the preparation of 1h. Spectral data were in full 

agreement with the reported literature values (51). 

 

 

Methyl Benzoyl-L-prolinate (1o) was prepared from L-proline methyl ester hydrochloride using a procedure 

analogous to that used for the synthesis of 1h. Spectral data were in full agreement with the reported literature 

values (52). 

 

 
1-Pivaloylpiperidin-2-one (1r) was prepared from 2-piperidinone and pivaloyl chloride using a procedure 

analogous to that used for the synthesis of 1h. The title compound was obtained as a colorless oil (456 mg, 

83%). 
1H NMR (500 MHz, CDCl3): δ 3.50 (br s, 2H), 2.46 (t, J = 5.8 Hz, 2H), 1.85–1.84 (m, 4H), 1.28 (s, 9H); 
13C NMR (126 MHz, CDCl3): δ 190.0, 173.2, 47.2, 43.7, 34.0, 27.7, 22.7, 21.5; 

HRMS (ESI): Calc’d for C10H18NO2 [M+H]+: 184.1332, found: 184.1333. 

 

 
1-Benzoylpiperidine-3-carboxylic acid (1s) was prepared according to a published procedure. Spectral data 

were in full agreement with the reported literature values (53). 
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1-Benzoylpiperidine-4-carboxylic acid (1t) was prepared according to a published procedure. Spectral data 

were in full agreement with the reported literature values (54). 

 

2.2. Preparation of Peptides 

Representative Procedure for Methyl Ester Hydrolysis 

 

 
A 100 mL round-bottom flask was charged with a solution of 1p (1.24 g, 5.00 mmol) in 3:1 THF: H2O (10 

mL) and cooled to 0 °C. LiOH•H2O (210 mg, 25.0 mmol) was added and the resulting mixture was warmed to 

room temperature. After 13 h, the reaction mixture was cooled to 0 °C and acidified with 1 M HCl aq. (10 

mL) to pH <2. The solution was then diluted with EtOAc (10 mL) and the aqueous layer was extracted with 

EtOAc (10 mL × 3). The combined organic layers were washed with brine (5.0 mL), dried over MgSO4, 

filtered and concentrated under reduced pressure to afford S1, which was used in the next step without further 

purification. 

 

Representative Procedure for Condensation Reaction 

 

 

Methyl ((S)-1-Benzoylpiperidine-2-carbonyl)-L-valinate (3a): A 100 mL round-bottomed flask was 

charged with a solution of L-valine methyl ester hydrochloride (922 mg, 5.50 mmol) in CH2Cl2 (45 mL) and 

cooled to 0 °C. iPr2NEt (0.96 mL, 5.5 mmol) was added dropwise over 5 min and the resulting mixture was 

stirred at 0 °C for 10 min. To this solution were added the crude S1, hydroxybenzotriazole (HOBt: 676 mg, 

5.00 mmol) followed by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC: 1.05 g, 5.50 

mmol) and the resulting mixture was warmed to room temperature. After 19 h, the reaction mixture was 

cooled to 0 °C and quenched with 1 M HCl aq. (10 mL). The phases were separated and the aqueous phase 

was extracted with CH2Cl2 (10 mL × 3). The combined organic layers were washed with brine (10 mL), dried 

over MgSO4, filtered and concentrated under reduced pressure. The crude residue was purified by column 

chromatography (SiO2, 25% to 50% EtOAc/ hexanes) to provide the title compound (1.23 g, 71% over 2 
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steps) as a white amorphous solid. 

Optical Rotation: [α]22
D = −100 (c 0.770, CHCl3); 

1H NMR (600 MHz, CDCl3, ca. 3:1 mixture of rotamers): δ 7.44 (br s, 5H), 7.10 (d, J = 6.6 Hz, 0.75H), 6.60 

(br, 0.25H), 5.29 (s, 0.75H), 4.79 (br, 0.25H), 4.64 (br, 0.25H), 4.52 (s, 0.75H), 4.42 (br, 0.25H), 3.76 (s, 3H), 

3.72 (s, 0.75H), 3.04 (t, J = 12.4 Hz, 0.75H), 2.86 (br, 0.25H), 2.35–2.30 (m, 1H), 2.27–2.20 (m, 1H), 1.93–

1.84 (m, 0.75H), 1.76–1.74 (m, 1.25H), 1.68–1.47 (m, 3H), 0.93 (d, J = 6.9 Hz, 6H); 
13C NMR (151 MHz, CDCl3, peaks of major rotamer are listed): δ 172.5, 172.0, 170.9, 135.2, 130.2, 128.6, 

127.1, 57.1, 52.6, 52.1, 46.1, 30.9, 25.5, 25.3, 20.5, 19.2, 17.7; 

HRMS (ESI): Calc’d for C19H27N2O4 [M+H]+: 347.1965, found: 347.1959. 

 

 
Methyl (S)-1-(Benzoyl-L-alanyl)piperidine-2-carboxylate (3b) was prepared from methyl 

(S)-piperidine-2-carboxylate (55) and N-benzoyl-L-alanine according to the representative procedure. The title 

compound was obtained as a colorless foam (1.37 g, 86% over 2 steps). 

Optical Rotation: [α]22
D = −54 (c 1.7, CHCl3); 

1H NMR (600 MHz, CDCl3, ca. 4:4:1:1 mixture of rotamers): δ 7.78 (d, J = 7.5 Hz, 2H), 7.45 (t, J = 7.5 Hz, 

1H), 7.42–7.41 (m, 1H), 7.38 (t, J = 7.5 Hz, 2H), 5.35 (d, J = 5.3 Hz, 0.4H), 5.29 (d, J = 5.3 Hz, 0.4H), 5.14 

(quint, J = 6.8 Hz, 0.4H), 5.10 (quint, J = 6.8 Hz, 0.4H), 5.04 (quint, J = 6.8 Hz, 0.1H), 4.94 (quint, J = 6.8 Hz, 

0.1H), 4.87 (d, J = 4.0 Hz, 0.1H), 4.62 (d, J = 4.9 Hz, 0.1H), 4.54 (d, J = 12.8 Hz, 0.1H), 4.48 (d, J = 13.9 Hz, 

0.1H), 3.86 (d, J = 12.8 Hz, 0.4H), 3.80 (d, J = 13.3 Hz, 0.4H), 3.75 (s, 0.3H), 3.70 (s, 1.2H), 3.68 (s, 1.2H), 

3.59 (s, 0.3H), 3.28–3.21 (m, 0.8H), 2.77–2.69 (m, 0.2H), 2.33 (d, J = 13.6 Hz, 0.1H), 2.27–2.23 (m, 0.9H), 

1.72–1.71 (m, 2H), 1.65–1.59 (m, 1H), 1.51–1.28 (m, 3H), 1.42 (d, J = 6.8 Hz, 1.5H), 1.41 (d, J = 6.8 Hz, 

1.5H); 
13C NMR (151 MHz, CDCl3, peaks of 2 major rotamers are listed): δ 172.6, 172.4, 171.3, 171.2, 166.3, 166.2, 

134.2, 134.2, 131.5, 128.5, 128.5, 127.1, 127.0, 52.5, 52.4, 52.3, 52.3, 46.0, 45.8, 43.5, 43.4, 26.6, 26.4, 25.2, 

25.1, 20.9, 19.6, 18.2 (Two 13C signals are overlapping with others); 

HRMS (ESI): Calc’d for C17H22N2O4Na [M+Na]+: 341.1472, found: 341.1471. 
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Methyl ((S)-1-Benzoylpiperidine-2-carbonyl)-L-valyl-L-alaninate (3c) was prepared from 3a and L-alanine 

methyl ester hydrochloride according to the representative procedure. The title compound was obtained as a 

white amorphous solid (864 mg, 69% over 2 steps). 

Optical Rotation: [α]22
D = −105 (c 2.01, CHCl3); 

1H NMR (600 MHz, CDCl3, ca. 4:1 mixture of rotamers): δ 7.43 (br s, 5H), 7.17 (d, J = 7.3 Hz, 0.8H), 6.79 

(br, 0.2H), 6.62 (d, J = 5.0 Hz, 0.8H), 6.46 (br, 0.2H), 5.29 (s, 0.8H), 4.79 (br, 0.2H), 4.58 (quint, J = 7.2 Hz, 

1H), 4.35 (br, 0.2H), 4.33–4.30 (m, 1H), 3.74 (s, 3H), 3.71 (br, 0.8H), 3.05 (t, J = 12.8 Hz, 0.8H), 2.88 (br, 

0.2H), 2.32–2.12 (m, 2H), 1.85–1.52 (m, 5H), 1.41 (d, J = 7.2 Hz, 3H), 0.95 (d, J = 6.7 Hz, 6H); 
13C NMR (151 MHz, CDCl3, peaks of major rotamer are listed): δ 173.2, 172.7, 171.3, 170.5, 135.2, 130.4, 

128.7, 127.3, 58.4, 53.0, 52.5, 48.2, 46.2, 30.8, 25.7, 25.5, 20.8, 19.5, 18.2, 17.9; 

HRMS (ESI): Calc’d for C22H31N3O5Na [M+Na]+: 440.2156, found: 440.2151. 

 

 
Methyl Benzoyl-L-prolyl-L-valinate (3d) was prepared from N-benzoyl-L-proline (56) and L-valine methyl 

ester hydrochloride according to the representative procedure. The title compound was obtained as a white 

solid (538 mg, 81%). 

Melting Point: 104–106 °C; 

Optical Rotation: [α]22
D = −142 (c 0.960, CHCl3); 

1H NMR (600 MHz, CDCl3): δ 7.45–7.38 (m, 5H), 7.33 (br, 1H), 4.80 (s, 1H), 4.49 (t, J = 6.4 Hz, 1H), 3.71 

(s, 3H), 3.51 (s, 1H), 3.44 (s, 1H), 2.43 (s, 1H), 2.18–2.16 (m, 1H), 2.02 (s, 2H), 1.81 (s, 1H), 0.92 (d, J = 6.4 

Hz, 3H), 0.89 (d, J = 6.4 Hz, 3H); 
13C NMR (151 MHz, CDCl3): δ172.2, 171.1, 171.0, 136.4, 130.3, 128.5, 127.0, 59.8, 57.6, 52.1, 50.4, 31.1, 

27.1, 25.5, 19.2, 17.8; 

HRMS (ESI): Calc’d for C18H24N2O4Na [M+Na]+: 355.1628, found: 355.1627. 

 

2.3. Preparation of Enamides  
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(3,4-Dihydropyridin-1(2H)-yl)(phenyl)methanone (10a) was prepared according to a published procedure. 

Spectral data were in full agreement with the reported literature values (57).  

 

 

A 100 mL round-bottomed flask was charged with a solution of tert-butyl 

4-methyl-2-oxopiperidine-1-carboxylate (58) (2.00 g, 9.38 mmol) in dioxane (40 mL) and cooled to 0 °C. HCl 

(4.0 M solution in dioxane, 7.00 mL, 28.1 mmol) was added and the resulting mixture was warmed to room 

temperature. After 16 h, the reaction mixture was concentrated under reduced pressure to afford a white solid, 

which was used in the next step without further purification. The solid was dissolved in MeCN (30 mL) and 

the resulting solution was cooled to 0 °C. To this solution was added Et3N (3.92 mL, 28.1 mmol), DMAP (115 

mg, 0.938 mmol) and BzCl (1.31 mL, 11.3 mmol) and the reaction mixture was heated to 70 °C. After 12 h, 

H2O (1.0 mL) was added and the reaction mixture was allowed to continue to stir at 70 °C for an additional 1 

h. The solution was then allowed to cool to room temperature, poured into a separatory funnel, and washed 

with sat. NaHCO3 aq. (20 mL). The aqueous phase was extracted with EtOAc (10 mL × 2). The combined 

organic layers were washed with 1 M HCl (10 mL) and brine (10 mL), dried over MgSO4, filtered and 

concentrated under reduced pressure. The crude residue was purified by column chromatography (SiO2, 5% to 

15% EtOAc/ hexanes) to provide S2 (1.47 g, 73% over 2 steps) as a white solid.  

Melting Point: 74–77 °C; 
1H NMR (500 MHz, CDCl3): δ 7.54 (d, J = 7.4 Hz, 2H), 7.46 (t, J = 7.4 Hz, 1H), 7.38 (t, J = 7.4 Hz, 2H), 

3.95 (dt, J = 12.9, 4.3 Hz, 1H), 3.64 (ddd, J = 12.9, 11.5, 4.0 Hz, 1H), 2.59 (ddd, J = 16.4, 4.6, 1.9 Hz, 1H), 

2.23 (dd, J = 16.4, 10.9 Hz, 1H), 2.13–2.05 (m, 2H), 1.65–1.57 (m, 1H), 1.10 (d, J = 6.4 Hz, 3H); 
13C NMR (126 MHz, CDCl3): δ 174.8, 173.4, 136.2, 131.6, 128.2, 128.0, 45.4, 42.9, 30.9, 28.8, 21.3; 

HRMS (ESI): Calc’d for C13H16NO2 [M+H]+: 218.1176, found: 218.1183. 

 

 

N
Bz

N

Me

Boc
O

HCl

dioxane, RT

BzCl
DMAP, Et3N

MeCN, 70 °C N

Me

Bz
O

S2

N

Me

Bz



 S12 

(4-Methyl-3,4-dihydropyridin-1(2H)-yl)(phenyl)methanone (10b) was prepared from S2 according to a 

published procedure (57). The title compound was obtained as a colorless oil (323 mg, 74%). 
1H NMR (500 MHz, CDCl3, ca. 3:1 mixture of conformers): δ 7.45–7.35 (m, 5H), 7.22 (br, 0.25H), 6.37 (d, J 

= 7.9 Hz, 0.75H), 5.08 (br, 0.25H), 4.68 (d, J = 7.9 Hz, 0.75H), 4.03 (br, 0.75H), 3.59–3.55 (m, 1H), 3.47 (br, 

0.25H), 2.34 (br, 1H), 2.02 (br, 0.75H), 1.83 (br, 0.25H), 1.55 (br, 0.75H), 1.40 (br, 0.25H), 1.02 (d, J = 7.0 

Hz, 3H); 
13C NMR (126 MHz, CDCl3, peaks of major conformer are listed): δ 169.3, 135.1, 130.2, 128.4, 128.2, 126.3, 

113.8, 39.9, 30.0, 27.4, 21.3; 

HRMS (ESI): Calc’d for C13H16NO [M+H]+: 202.1226, found: 202.1226. 

 

 
Phenyl(2,3,4,5-tetrahydro-1H-azepin-1-yl)methanone (10c) was prepared according to a published 

procedure. Spectral data were in full agreement with the reported literature values (59).  

 

3. Experimental Procedures for the Silver-Mediated Fluorination 

3.1. Representative Procedure for the Silver-Mediated Monofluorination of Cyclic Amines  

 

 
To a 1-dram vial was added sequentially 1a (18.9 mg, 0.100 mmol), AgBF4 (77.9 mg, 0.400 mmol), 

Selectfluor® (142 mg, 0.400 mmol) and 1:9 acetone: H2O (0.5 mL) The resulting mixture was heated to 40 °C 

and held at this temperature. After 1 h, the reaction mixture was partitioned with EtOAc (0.5 mL) and H2O 

(0.5 mL) and the phases were separated. The aqueous phase was extracted with EtOAc (1.5 mL × 3) and the 

combined organic layers were concentrated under reduced pressure. The crude residue was purified by 

preparative thin-layer chromatography (50% EtOAc/hexanes) to provide 

N-(4-fluorobutyl)-N-formylbenzamide (2a) (18.0 mg, 81%) as a pale yellow oil. 

1H NMR (600 MHz, CDCl3): δ 8.93 (s, 1H), 7.57 (t, J = 7.2 Hz, 1H), 7.53–7.48 (m, 4H), 4.48 (dt, J = 47.6, 

5.6 Hz, 2H), 3.92 (t, J = 7.1 Hz, 2H), 1.82–1.72 (m, 4H); 
13C NMR (151 MHz, CDCl3): 172.5, 164.3, 133.7, 132.3, 129.1, 128.9, 83.6 (d, J = 165.2 Hz), 40.2, 28.0 (d, J 

= 20.2 Hz), 24.2 (d, J = 5.0 Hz); 
19F NMR (376 MHz, CDCl3): δ −217.5 – −217.9 (m, 1F); 
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HRMS (ESI): Calc’d for C12H14FNO2Na [M+Na]+: 246.0906, found: 246.0906. 

 

 

N-(4-Fluorobutyl)-N-formylacetamide (2b): The title compound was prepared according to the 

representative procedure using 1b. Purification by preparative thin-layer chromatography (25% 

EtOAc/hexanes) provided the title compound (7.2 mg, 45%) as a colorless oil. 
1H NMR (600 MHz, CDCl3): δ 9.16 (s, 1H), 4.45 (dt, J = 47.0, 5.7 Hz, 2H), 3.73 (t, J = 7.3 Hz, 2H), 2.41 (s, 

3H), 1.74–1.62 (m, 4H); 
13C NMR (151 MHz, CDCl3): δ 171.2, 162.8, 83.6 (d, J = 165.3 Hz), 39.6, 27.9 (d, J = 20.0 Hz), 24.3 (d, J = 

4.3 Hz), 23.0; 
19F NMR (376 MHz, CDCl3): δ −217.8 (tt, J = 47.9, 24.4 Hz, 1F); 

HRMS (EI): Calc’d for C7H13FNO2 [M+H]+: 162.0925, found: 162.0933. 

 

 

tert-Butyl (4-Fluorobutyl)(formyl)carbamate (2c): The title compound was prepared according to the 

representative procedure using 1c. Purification by preparative thin-layer chromatography (25% 

EtOAc/hexanes) provided the title compound (8.6 mg, 39%) as a colorless oil. 
1H NMR (600 MHz, CDCl3): δ 9.17 (s, 1H), 4.45 (dt, J = 47.0, 5.7 Hz, 2H), 3.63 (t, J = 7.1 Hz, 2H), 1.73–

1.63 (m, 4H), 1.54 (s, 9H); 
13C NMR (151 MHz, CDCl3): δ 163.2, 152.6, 84.2, 83.6 (d, J = 165.2 Hz), 40.2, 28.2, 27.8 (d, J = 20.0 Hz), 

24.4 (d, J = 5.0 Hz); 
19F NMR (376 MHz, CDCl3): δ −217.9 (tt, J = 48.1, 25.7 Hz, 1F); 

HRMS (ESI): Calc’d for C10H19FNO3 [M+H]+: 220.1343, found: 220.1351. 

 

 

N-(4-Fluorobutyl)pivalamide (2d): The title compound was prepared according to the representative 

procedure using 1d. Purification by preparative thin-layer chromatography (25% EtOAc/hexanes) provided 

the title compound (12.3 mg, 70%) as a white solid. 

Melting Point: 67–69 °C; 
1H NMR (600 MHz, CDCl3): δ 5.70 (br, 1H), 4.47 (dt, J = 47.2, 5.8 Hz, 2H), 3.29 (t, J = 6.8 Hz, 2H), 1.76–
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1.61 (m, 4H), 1.19 (s, 9H); 
13C NMR (151 MHz, CDCl3): δ 178.6, 83.9 (d, J = 164.6 Hz), 39.1, 38.8, 27.9 (d, J = 19.9 Hz), 27.7, 25.9 (d, 

J = 4.4 Hz); 
19F NMR (376 MHz, CDCl3): δ −219.0 (tt, J = 47.4, 25.8 Hz, 1F); 

HRMS (ESI): Calc’d for C9H19FNO [M+H]+: 176.1445, found: 176.1442. 

 

 

N-(2-Fluoroethyl) benzamide (2e): The title compound was prepared according to the representative 

procedure using 1e. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided 

the title compound (6.7 mg, 40%) as a colorless oil. 
1H NMR (400 MHz, CDCl3): δ 7.80 (d, J = 7.5 Hz, 2H), 7.51 (t, J = 7.5 Hz, 1H), 7.43 (t, J = 7.5 Hz, 2H), 

6.63 (br, 1H), 4.60 (dt, J = 47.4, 4.9 Hz, 2H), 3.77 (dq, J = 28.3, 4.9 Hz, 2H); 
13C NMR (101 MHz, CDCl3): δ 167.8, 134.2, 131.8, 128.7, 127.1, 83.0 (d, J = 166.4 Hz), 40.6 (d, J = 19.7 

Hz); 
19F NMR (376 MHz, CDCl3): δ −223.0 – −223.5 (m, 1F); 

HRMS (ESI): Calc’d for C9H11FNO [M+H]+: 168.0819, found: 168.0825. 

 

 

N-(3-Fluoropropyl) benzamide (2f): The title compound was prepared according to the representative 

procedure using 1f. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided the 

title compound (6.0 mg, 33%) as a pale yellow waxy solid. 
1H NMR (400 MHz, CDCl3): δ 7.76 (d, J = 6.9 Hz, 2H), 7.51 (t, J = 6.9 Hz, 1H), 7.43 (t, J = 6.9 Hz, 2H), 

6.44 (br, 1H), 4.61 (dt, J = 47.3, 6.0 Hz, 2H), 3.63 (q, J = 6.0 Hz, 2H), 2.04 (dquint, J = 28.2, 6.0 Hz, 2H); 
13C NMR (101 MHz, CDCl3): δ 167.8, 134.6, 131.6, 128.7, 127.0, 83.0 (d, J = 163.9 Hz), 37.4 (d, J = 4.1 Hz), 

30.3 (d, J = 19.2 Hz); 
19F NMR (376 MHz, CDCl3): δ −218.9 – −219.3 (m, 1F); 

HRMS (ESI): Calc’d for C10H13FNO [M+H]+: 182.0976, found: 182.0976. 

 

 
N-(5-Fluoropentyl)-N-formylbenzamide (2g): The title compound was prepared according to the 

representative procedure using 1g. Purification by preparative thin-layer chromatography (50% 
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EtOAc/hexanes) provided the title compound (15.6 mg, 67%) as a colorless oil. 
1H NMR (700 MHz, CDCl3): δ 8.92 (s, 1H), 7.57 (t, J = 7.5 Hz, 1H), 7.53 (d, J = 7.5 Hz, 2H), 7.49 (t, J = 7.5 

Hz, 2H), 4.45 (dt, J = 47.3, 6.1 Hz, 2H), 3.88 (t, J = 7.5 Hz, 2H), δ 1.81–1.68 (m, 4H), 1.49 (quint, J = 7.5 Hz, 

2H); 
13C NMR (176 MHz, CDCl3): δ 172.5, 164.4, 133.7, 132.3, 129.1, 128.9, 83.9 (d, J = 164.7 Hz), 40.5, 30.1 (d, 

J = 19.8 Hz), 27.7, 22.8 (d, J = 5.3 Hz); 
19F NMR (376 MHz, CDCl3): δ −217.9 (tt, J = 47.3, 25.5 Hz, 1F); 

HRMS (ESI): Calc’d for C13H17FNO2 [M+H]+: 238.1238, found: 238.1238. 

 

 
N-(6-Fluorohexyl)-N-formylbenzamide (2h): The title compound was prepared according to the 

representative procedure using 1h. Purification by preparative thin-layer chromatography (50% 

EtOAc/hexanes) provided the title compound (12.4 mg, 49%) as a colorless oil. 
1H NMR (700 MHz, CDCl3) δ 8.92 (s, 1H), 7.60 (t, J = 7.2 Hz, 1H), 7.53–7.48 (m, 4H), 4.47 (dt, J = 47.3, 6.0 

Hz, 2H), 3.87 (t, J = 7.4 Hz, 2H), 1.73–1.63 (m, 4H), 1.47–1.41 (m, 4H); 
13C NMR (176 MHz, CDCl3) δ 172.5, 164.4, 133.8, 132.3, 129.1, 128.9, 84.2 (d, J = 164.4 Hz), 40.6, 30.4 (d, 

J = 19.7 Hz), 28.0, 26.7, 25.0 (d, J = 5.2 Hz); 
19F NMR (376 MHz, CDCl3): δ −217.5 (tt, J = 48.9, 24.5 Hz, 1F); 

HRMS (ESI): Calc’d for C14H18FNO2Na [M+Na]+: 274.1214, found: 274.1216. 

 

 
N-(4-Fluoro-3-methylbutyl)-N-formylbenzamide (2i): The title compound was prepared according to the 

representative procedure using 1i. Purification by preparative thin-layer chromatography (50% 

EtOAc/hexanes) provided the title compound (14.0 mg, 59%) as a colorless oil. 
1H NMR (400 MHz, CDCl3): δ 8.92 (s, 1H), 7.60–7.47 (m, 5H), 4.32 (ddd, J = 47.5, 8.9, 5.7 Hz, 1H), 4.29 

(ddd, J = 47.5, 8.9, 5.9 Hz, 1H), 3.94 (t, J = 7.6 Hz, 2H), 1.98–1.77 (m, 2H), 1.58–1.47 (m, 1H), 1.05 (dd, J = 

6.7, 0.9 Hz, 3H); 
13C NMR (101 MHz, CDCl3): δ 172.4, 164.3, 133.7, 132.4, 129.1, 128.9, 88.0 (d, J = 169.7 Hz), 38.8, 32.4 (d, 

J = 18.5 Hz), 31.1 (d, J = 5.1 Hz), 15.8 (d, J = 6.8 Hz); 
19F NMR (376 MHz, CDCl3): δ −221.2 (td, J = 47.4, 19.4 Hz, 1F); 

HRMS (ESI): Calc’d for C12H16FNONa [M−CO+Na]+: 232.1108, found: 232.1107. 
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N-(5-Fluoropentan-2-yl)benzamide (2j): The title compound was prepared according to the representative 

procedure using 1j. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided the 

title compound (17.0 mg, 81%) as a colorless oil. 
1H NMR (400 MHz, CDCl3): δ 7.75 (d, J = 7.3 Hz, 2H), 7.49 (t, J = 7.3 Hz, 1H), 7.42 (d, J = 7.3 Hz, 2H), 

5.96 (br, 1H), 4.47 (dddd, J = 47.2, 9.0, 6.4, 3.7 Hz, 2H), 4.26 (hept, J = 6.6 Hz, 1H), 1.86–1.60 (m, 4H), 1.27 

(d, J = 6.6 Hz, 3H); 
13C NMR (101 MHz, CDCl3): δ 167.1, 134.9, 131.5, 128.7, 126.9, 83.9 (d, J = 164.8 Hz), 45.5, 33.0 (d, J = 

4.3 Hz), 27.3 (d, J = 19.9 Hz), 21.3; 
19F NMR (376 MHz, CDCl3): δ −217.6 – −218.0 (m, 1F); 

HRMS (ESI): Calc’d for C12H16FNONa [M+Na]+: 232.1108, found: 232.1111. 

 

 

N-(6-Fluorohexan-3-yl) benzamide (2k): The title compound was prepared according to the representative 

procedure using 1k. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided 

the title compound (19.0 mg, 85%) as a colorless oil. 
1H NMR (700 MHz, CDCl3): δ 7.75 (d, J = 7.4 Hz, 2H), 7.49 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.4 Hz, 2H), 

5.92 (br, 1H), 4.53–4.41 (m, 2H), 4.11 (ddq, J = 13.6, 8.9, 4.9 Hz, 1H), 1.85–1.72 (m, 3H), 1.70–1.64 (m, 1H), 

1.60–1.49 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H); 
13C NMR (151 MHz, CDCl3): δ 167.6, 134.9, 131.5, 128.7, 126.9, 84.0 (d, J = 164.7 Hz), 50.8, 30.9 (d, J = 

4.4 Hz), 28.4, 27.2 (d, J = 19.8 Hz), 10.5; 
19F NMR (376 MHz, CDCl3): δ −217.8 – −218.2 (m, 1F); 

HRMS (ESI): Calc’d for C13H19FNO [M+H]+: 224.1445, found: 224.1450. 

 

 
N-(4-Fluoro-2-methylpentyl)-N-formylbenzamide (2l): The title compound was prepared according to the 

representative procedure using 1l. Purification by preparative thin-layer chromatography (50% 

EtOAc/hexanes) provided the title compound (12.6 mg, 50%) as a colorless oil as a 1:1 mixture of 
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diastereomers. 
1H NMR (400 MHz, CDCl3): (400 MHz, 1H), 8.95 (s, 1H), 7.59–7.47 (m, 10H), 4.91–4.68 (m, 2H), 3.88–

3.74 (m, 4H), 2.25– 2.10 (m, 2H), 1.80–1.49 (m, 3H), 1.42–1.26 (m, 1H), 1.34 (dd, J = 23.7, 6.1 Hz, 3H), 1.33 

(dd, J = 23.7, 6.1 Hz, 3H), 1.00 (d, J = 6.6 Hz, 3H), 0.99 (d, J = 6.6 Hz, 3H); 
13C NMR (101 MHz, CDCl3): δ 172.7 (2C), 164.7, 164.6, 133.84, 133.79, 132.4, 132.3, 129.14, 129.13, 

128.94, 128.92, 89.6 (d, J = 164.6 Hz), 88.7 (d, J = 165.0 Hz), 46.0, 45.8, 41.90 (d, J = 20.7 Hz), 41.86 (d, J = 

20.6 Hz), 29.7 (d, J = 4.0 Hz), 29.1 (d, J = 2.9 Hz), 21.8 (d, J = 22.6 Hz), 21.4 (d, J = 22.8 Hz), 18.3, 17.6; 
19F NMR (376 MHz, CDCl3): δ −169.8 – −170.3 (m, 1F), −172.6 – −173.1 (m, 1F); 

HRMS (ESI): Calc’d for C14H18FNO2Na [M+Na]+: 274.1214, found: 274.1212. 

  

 

trans-N-(2-(2-Fluoroethyl)cyclohexyl)benzamide (2m): The title compound was prepared according to the 

representative procedure using 1m. Purification by preparative thin-layer chromatography (50% 

EtOAc/hexanes) provided the title compound (10.7 mg, 43%) as a colorless oil. 
1H NMR (400 MHz, CDCl3): δ 7.76 (d, J = 7.3 Hz, 2H), 7.50 (t, J = 7.3 Hz, 1H), 7.44 (t, J = 7.3 Hz, 2H), 

5.92 (br, 1H), 4.52 (ddd, J = 47.4, 7.2, 3.7 Hz, 2H), 3.83 (dq, J = 10.6, 3.9 Hz, 1H), 2.16–2.05 (m, 2H), 2.00–

1.96 (m, 1H), 1.81–1.74 (m, 2H), 1.63–1.09 (m, 6H); 
13C NMR (151 MHz, CDCl3): δ 167.2, 135.0, 131.5, 128.7, 127.0, 82.4 (d, J = 163.6 Hz), 53.0, 40.1 (d, J = 

3.3 Hz), 34.2, 33.8 (d, J = 19.5 Hz), 31.6, 25.7, 25.4; 
19F NMR (400 MHz, CDCl3): δ −217.5 – −217.9 (m, 1F); 

HRMS (ESI): Calc’d for C15H21FNO [M+H] +: 250.1602, found: 250.1595. 

 

 
Methyl (S)-2-Benzamido-5-fluoropentanoate (2n): The title compound was prepared according to the 

representative procedure using 1n. Purification by preparative thin-layer chromatography (25% 

EtOAc/hexanes) provided the title compound (17.2 mg, 68%) as a white solid. 

Melting Point: 63–65 °C; 

Optical Rotation: [α]22
D = +17 (c 0.67, CHCl3); 

1H NMR (600 MHz, CDCl3): δ 7.80 (d, J = 7.4 Hz, 2H), 7.52 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.4 Hz, 2H), 

6.78 (d, J = 7.4 Hz, 1H), 4.87 (dt, J = 7.4, 5.3 Hz, 1H), 4.54–4.41 (m, 2H), 3.79 (s, 3H), 2.16–2.10 (m, 1H), 
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1.95–1.89 (m, 1H), 1.88–1.72 (m, 2H); 
13C NMR (151 MHz, CDCl3): δ 172.9, 167.2, 133.9, 132.0, 128.8, 127.2, 83.4 (d, J = 165.5 Hz), 52.7, 52.2, 

28.9 (d, J = 4.7 Hz), 26.6 (d, J = 20.2 Hz); 
19F NMR (376 MHz, CDCl3): δ −218.4 (tt, J = 47.3, 25.7 Hz, 1F); 

HRMS (ESI): Calc’d for C13H17FNO3 [M+H]+: 254.1187, found: 254.1185. 

 

 

Methyl (S)-1-Benzoyl-5-oxopyrrolidine-2-carboxylate (1o): The title compound was prepared according to 

the representative procedure using 1o. Purification by preparative thin-layer chromatography (50% 

EtOAc/hexanes) provided the title compound (11.4 mg, 46% yield). Spectroscopic data is fully consistent 

with previously reported data (60).  

 

 

1-Methylpyrrolidine-2,5-dione (1p): The title compound was prepared according to the representative 

procedure using 1p. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided 

the title compound (9.2 mg, 81% yield). Spectroscopic data is fully consistent with previously reported data 

(10).  

 

 
1-Methylpiperidine-2,6-dione (1q): The title compound was prepared according to the representative 

procedure using 1p. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided 

the title compound (7.1 mg, 56% yield). Spectroscopic data is fully consistent with previously reported data 

(10).  

 

 
4-Fluoro-N-pivaloylbutanamidebenzamide (2r): The title compound was prepared according to the 

representative procedure using 1r. Purification by preparative thin-layer chromatography (30% 
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EtOAc/hexanes) provided the title compound (8.1 mg, 43% yield) as a white solid. 

Melting Point: 63–65 °C; 
1H NMR (600 MHz, CDCl3): δ 8.07 (br, 1H), 4.51 (dt, J = 47.2, 5.9 Hz, 2H), 3.01 (t, J = 7.2 Hz, 2H), 2.05 

(ddd, J = 25.8, 7.2, 5.9 Hz, 2H), 1.25 (s, 9H); 
13C NMR (151 MHz, CDCl3): δ 177.2, 175.3, 83.2 (d, J = 165.1 Hz), 40.2, 33.4 (d, J = 5.2 Hz), 27.2, 25.0 (d, 

J = 20.3 Hz); 
19F NMR (376 MHz, CDCl3): δ −219.1 (tt, J = 47.2, 25.8 Hz, 1F); 

HRMS (ESI): Calc’d for C9H17FNO2 [M+H]+: 190.1238, found: 190.1245. 

 

 
N-(2,4-Difluorobutyl)benzamide (2s): The title compound was prepared according to the representative 

procedure using 1s. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided the 

title compound (6.0 mg, 28% yield) as a waxy white solid. 
1H NMR (400 MHz, CDCl3): δ 7.79 (d, J = 7.3 Hz, 2H), 7.52 (t, J = 7.3 Hz, 1H), 7.45 (t, J = 7.3 Hz, 2H), 

6.52 (br, 1H), 4.90 (dtt, J = 48.4, 7.2, 3.6 Hz, 1H), 4.62 (dt, J = 47.3, 5.9 Hz, 2H), 3.89 (dddd, J = 28.2, 14.7, 

6.6, 3.0 Hz, 1H), 3.66–3.54 (m, 1H), 2.20–1.93 (m, 2H); 
13C NMR (101 MHz, CDCl3): δ167.8, 134.1, 131.9, 128.8, 127.1, 89.8 (dd, J = 169.6, 3.6 Hz), 79.7 (dd, J = 

165.6, 5.1 Hz), 43.6 (d, J = 20.1 Hz), 33.5 (t, J = 20.1 Hz); 
19F NMR (376 MHz, CDCl3): δ −188.7 – −189.1 (m, 1F), −220.3 – −220.7 (m, 1F); 

HRMS (ESI): Calc’d for C11H14F2NO [M+H]+: 214.1038, found: 214.1038. 

 

 
N-(3,4-Difluorobutyl)benzamide (2t): The title compound was prepared according to the representative 

procedure using 1t. Purification by preparative thin-layer chromatography (50% EtOAc/hexanes) provided the 

title compound (4.7 mg, 22% yield) as a waxy white solid. 
1H NMR (700 MHz, CDCl3) 7.78 (d, J = 7.4 Hz, 2H), 7.52 (t, J = 7.4 Hz, 1H), 7.46–7.41 (m, 2H), 6.45 (br, 

1H), 4.98–4.74 (m, 1H), 4.69–4.41 (m, 2H), 3.73–3.62 (m, 2H), 2.14–1.98 (m, 2H); 
13C NMR (176 MHz, CDCl3) δ 167.9, 134.4, 131.8, 128.8, 127.0, 90.8 (dd, J = 172.6, 19.7 Hz), 84.0 (dd, J = 

174.5, 22.4 Hz), 36.5 (d, J = 4.3 Hz), 36.5 (dd, J = 20.2, 6.0 Hz); 
19F NMR (376 MHz, CDCl3): δ −189.5 – −190.0 (m, 1F), −229.4 – −229.8 (m, 1F); 

HRMS (ESI): Calc’d for C11H14F2NO [M+H] +: 214.1038, found: 214.1038. 
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Methyl ((S)-2-Benzamido-5-fluoropentanoyl)-L-valinate (4a): The title compound was prepared according 

to the representative procedure using 3a with the following modifications: reaction time of 15 h at room 

temperature. Purification by preparative thin-layer chromatography (20% to 50% EtOAc/hexanes) provided 

the title compound (17.5 mg, 50% yield) as a white amorphous solid along with recovered 3a (8.7 mg, 25%). 

Optical Rotation: [α]22
D = −13 (c 0.47, CHCl3); 

1H NMR (600 MHz, CDCl3): δ 7.80 (d, J = 7.4 Hz, 2H), 7.50 (t, J = 7.4 Hz, 1H), 7.80 (t, J = 7.4 Hz, 2H), 

7.04 (d, J = 8.3 Hz, 1H), 6.89 (d, J = 8.5 Hz, 1H), 4.84 (q, J = 8.5 Hz, 1H), 4.51 (dd, J = 8.3, 5.0 Hz, 1H), 4.50 

(dt, J = 47.4, 5.7 Hz, 2H), 3.75 (s, 3H), 2.21–2.14 (m, 1H), 2.09 (ddt, J = 13.4, 9.4, 6.1 Hz, 1H), 1.97–1.76 (m, 

3H), 0.90 (d, J = 6.9 Hz, 3H), 0.88 (d, J = 6.9 Hz, 3H); 
13C NMR (151 MHz, CDCl3): δ 172.1, 171.6, 167.5, 133.8, 132.0, 128.7, 127.2, 83.9 (d, J = 164.8 Hz), 57.6, 

53.0, 52.3, 31.1, 29.1 (d, J = 4.1 Hz), 26.6 (d, J = 20.0 Hz), 19.1, 17.8; 
19F NMR (376 MHz, CDCl3): δ −217.1 – −217.5 (m, 1F); 

HRMS (ESI): Calc’d for C18H25FN2O4Na [M+Na]+: 375.1691, found: 375.1692. 

 

 

Methyl (S)-2-((S)-2-Benzamidopropanamido)-5-fluoropentanoate (4b): The title compound was prepared 

according to the representative procedure using 3b with the following modifications: reaction time of 15 h at 

room temperature. Purification by preparative thin-layer chromatography (20% to 50% EtOAc/hexanes) 

provided the title compound (12.3 mg, 38% yield) as a white amorphous solid along with recovered 3b (12.7 

mg, 40%). 

Optical Rotation: [α]22
D = +7.1 (c 0.63, CHCl3); 

1H NMR (600 MHz, CDCl3, ca. 1:1 mixture of rotamers): δ 7.81–7.79 (m, 2H), 7.52–7.49 (m, 1H), 7.45–7.40 

(m, 2H), 7.33 (d, J = 7.9 Hz, 0.5H), 7.23 (d, J = 7.9 Hz, 0.5H), 7.09 (d, J = 7.3 Hz, 1H), 4.83 (dq, J = 14.3, 7.3 

Hz, 1H), 4.63–4.59 (m, 1H), 4.49–4.47 (m, 0.5H), 4.42–4.39 (m, 1H), 4.34–4.32 (m, 0.5H), 3.75 (s, 1.5H), 

3.68 (s, 1.5H), 2.03–1.98 (m, 1H), 1.86–1.66 (m, 3H), 1.495 (d, J = 7.0 Hz, 1.5H), 1.491 (d, J = 7.0 Hz, 1.5H); 
13C NMR (151 MHz, CDCl3, mixture of rotamers): δ 172.6, 172.5, 172.4, 172.3, 167.5, 167.4, 133.9 (2C), 

131.9 (2C), 128.7 (2C), 127.23, 127.20, 82.23 (d, J = 165.7 Hz), 82.20 (d, J = 165.7 Hz), 52.61, 52.58, 52.1, 

HN
Bz

H
N

O
Me Me

OMe

O
F

HN
O

O
Me

NHBz

OMe

F



 S21 

52.0, 49.29, 49.26, 28.33 (d, J = 4.7 Hz), 28.30 (d, J = 4.7 Hz), 26.61 (d, J = 20.2 Hz), 26.55 (d, J = 20.2 Hz), 

18.7, 18.6; 
19F NMR (376 MHz, CDCl3): δ −218.4 – −218.9 (m, 1F); 

HRMS (ESI): Calc’d for C16H21FN2O4Na [M+Na]+: 347.1378, found: 347.1379. 

 

 

Methyl ((S)-2-Benzamido-5-fluoropentanoyl)-L-valyl-L-alaninate (4c): The title compound was prepared 

according to the representative procedure using 3c with the following modifications: reaction time of 15 h at 

room temperature. Purification by preparative thin-layer chromatography (5% MeOH/CH2Cl2) provided the 

title compound (16.5 mg, 39% yield) as a white amorphous solid along with recovered 3c (10.4 mg, 25%). 

Optical Rotation: [α]22
D = −41 (c 0.39, MeOH); 

1H NMR (700 MHz, CD3OD): δ 7.85–7.84 (m, 2H), 7.55–7.53 (m, 1H), 7.47–7.45 (m, 2H), 4.64 (dt, J = 8.8, 

4.7 Hz, 1H), 4.47 (d, J = 47.6 Hz, 2H), 4.39 (dt, J = 13.5, 6.7 Hz, 1H), 4.24 (dd, J = 6.6, 4.2 Hz, 1H), 3.69 (s, 

3H), 2.08 (dt, J = 12.1, 5.5 Hz, 1H), 2.01 (tt, J = 10.4, 5.3 Hz, 1H), 1.90–1.77 (m, 3H), 1.39 (br s, 3H), 0.99 

(br s, 9H); 
13C NMR (176 MHz, CD3OD): δ 174.4, 174.2, 173.3, 170.5, 135.2, 132.9, 129.6, 128.5, 84.4 (d, J = 164.3 

Hz), 59.8, 55.0, 52.6, 49.4, 32.3, 28.9 (d, J = 5.3 Hz), 28.3 (d, J = 20.0 Hz), 19.6, 18.6, 17.3; 
19F NMR (376 MHz, CD3OD): δ −219.7 (tt, J = 47.7, 24.8 Hz, 1F); 

HRMS (ESI): Calc’d for C21H30FN3O5Na [M+Na]+: 446.2062, found: 446.2060. 

 

 
Methyl ((S)-1-Benzoyl-5-oxopyrrolidine-2-carbonyl)-L-valinate (4d): The title compound was prepared 

according to the representative procedure using 3d with the following modifications: 0.2 mmol scale with a 

reaction time of 15 h at room temperature. Purification by preparative thin-layer chromatography (20% to 

50% EtOAc/hexanes) provided the title compound (52.6 mg, 76% yield) as a white solid. 

Melting Point: 155–158 °C; 

Optical Rotation: [α]22
D = −256 (c 0.46, CHCl3); 

1H NMR (600 MHz, CDCl3): δ 7.62–7.61 (m, 2H), 7.52–7.48 (m, 1H), 7.40 (t, J = 7.8 Hz, 2H), 4.83 (dd, J = 

8.3, 3.6 Hz, 1H), 4.57 (dd, J = 8.9, 4.8 Hz, 1H), 3.75 (s, 3H), 2.89–2.83 (m, 1H), 2.53 (ddd, J = 17.8, 9.1, 4.3 

Hz, 1H), 2.36–2.25 (m, 2H), 2.23–2.17 (m, 1H), 0.95 (d, J = 6.9 Hz, 3H), 0.93 (d, J = 6.9 Hz, 3H); 
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13C NMR (151 MHz, CDCl3): δ 174.1, 172.4, 170.9, 170.4, 134.0, 132.2, 129.0, 128.0, 60.0, 57.5, 52.4, 32.1, 

31.4, 22.2, 19.0, 17.8; 

HRMS (ESI): Calc’d for C18H23N2O5 [M+H]+: 347.1601, found: 347.1599. 

 

3.2. Representative Procedure for the Silver-Mediated Difluorination of Enamides 

 

To a 1-dram vial containing a solution of 10a (18.7 mg, 0.100 mmol) in 1:1 acetone: H2O (0.5 mL) was added 

Selectfluor® (142 mg, 0.400 mmol) followed by AgBF4 (4.9 mg, 0.025 mmol). The resulting mixture was 

stirred at room temperature. After 15 h, the reaction mixture was partitioned with EtOAc (0.5 mL) and H2O 

(0.5 mL) and the phases were separated. The aqueous phase was extracted with EtOAc (1.5 mL × 3) and the 

combined organic layers were concentrated under reduced pressure. The crude residue was purified by 

preparative thin-layer chromatography (25% EtOAc/hexanes) to provide 

N-(4,4-difluorobutyl)-N-formylbenzamide (12a) (18.7 mg, 78%) as a colorless oil. 

1H NMR (600 MHz, CDCl3): δ 8.93 (s, 1H), 7.59 (d, J = 7.1 Hz, 1H), 7.54–7.49 (m, 4H), 5.87 (tt, J = 56.5, 

4.2 Hz, 1H), 3.93 (t, J = 7.2 Hz, 2H), 1.96–1.82 (m, 4H); 
13C NMR (151 MHz, CDCl3): δ 178.6, 83.9 (d, J = 164.6 Hz), 39.1, 38.8, 27.9 (d, J = 19.9 Hz), 27.7, 25.9 (d, 

J = 4.4 Hz) 13C NMR (151 MHz, CDCl3) δ 172.4, 164.3, 133.5, 132.5, 129.2, 128.9, 116.8 (t, J = 239.2 Hz), 

39.9, 31.8 (t, J = 21.5 Hz), 20.9 (t, J = 5.5 Hz); 
19F NMR (376 MHz, CDCl3): δ −115.3 (dt, J = 56.5, 16.9 Hz, 2F); 

HRMS (ESI): Calc’d for C11H14F2NO [M−CO+H]+: 214.1038, found: 214.1038. 

 

 
N-(4,4-Difluoro-3-methylbutyl)-N-formylbenzamide (12b): The title compound was prepared according to 

the representative procedure using 10b. Purification by preparative thin-layer chromatography (20% 

EtOAc/hexanes) provided the title compound (13.9 mg, 54%) as a colorless oil. 
1H NMR (500 MHz, CDCl3): δ 8.93 (s, 1H), 7.58 (t, J = 6.9 Hz, 1H), 7.54–7.48 (m, 4H), 5.68 (td, J = 56.7, 

3.5 Hz, 1H), 3.94 (t, J = 7.5 Hz, 2H), 2.01–1.90 (m, 2H), 1.59–1.53 (m, 1H), 1.11(d, J = 6.9 Hz, 3H); 
13C NMR (126 MHz, CDCl3): δ 172.4, 164.3, 133.5, 132.5, 129.2, 128.9, 118.8 (t, J = 242.5 Hz), 38.4, 35.7 (t, 

J = 19.9 Hz), 28.3 (t, J = 4.4 Hz), 12.6 (t, J = 5.2 Hz); 
19F NMR (376 MHz, CDCl3): δ −122.4 (ddd, J = 56.6, 29.6, 14.7 Hz, 2F); 
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HRMS (ESI): Calc’d for C13H16F2NO [M−CO+H]+: 256.1144, found: 256.1143. 

 

 

N-(5,5-Difluoropentyl)-N-formylbenzamide (12c): The title compound was prepared according to the 

representative procedure using 10c. Purification by preparative thin-layer chromatography (20% 

EtOAc/hexanes) provided the title compound (15.6 mg, 61%) as a colorless oil. 
1H NMR (500 MHz, CDCl3): δ 8.92 (s, 1H), 7.59–7.56 (m, 1H), 7.53–7.48 (m, 4H), 5.82 (tt, J = 56.8, 4.4 Hz, 

1H), 3.88 (t, J = 7.4 Hz, 2H), 1.95–1.83 (m, 2H), 1.72 (quint, J = 7.4 Hz, 2H), 1.53 (quint, J = 7.4 Hz, 2H); 
13C NMR (126 MHz, CDCl3): δ 172.5, 164.4, 133.6, 132.4, 129.1, 128.9, 117.1 (t, J = 238.8 Hz), 40.2, 33.7 (t, 

J = 21.0 Hz), 27.5, 19.6 (t, J = 5.6 Hz); 
19F NMR (376 MHz, CDCl3): δ −115.3 (dt, J = 56.7, 17.5 Hz, 2F); 

HRMS (EI): Calc’d for C13H15F2NO2 [M]+: 255.1065, found: 255.1070. 

 

4. Mechanistic Studies 

 

 

According to the representative procedure, aldehyde D (61) was used as a starting material. Triphenylmethane 

was used as an internal standard and 1H NMR analysis showed the formation of 2a in 55% yield.  

 

 

To a 1-dram vial containing 1a (94.5 mg, 0.5 mmol), AgBF4 (390 mg, 2.00 mmol) and Selectfluor® (710 mg, 

2.00 mmol) was added 1:9 acetone: H2O (2.5 mL), and the resulting mixture was stirred at room temperature. 

After 16 h, the reaction mixture was partitioned with EtOAc (2.5 mL) and H2O (0.5 mL) and the phases were 

separated. The aqueous phase was extracted with EtOAc (5.0 mL × 3) and the combined organic layers were 

concentrated under reduced pressure. The crude residue was purified by preparative thin-layer 

chromatography (50% EtOAc/hexanes) to provide N-(4-fluorobutyl)benzamide (6) (52.7 mg, 54%) as a waxy 

white solid. 
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1H NMR (700 MHz, CDCl3): δ 7.76 (d, J = 7.5 Hz, 2H), 7.49 (t, J = 7.5 Hz, 1H), 7.42 (t, J = 7.5 Hz, 2H), 

6.31 (br, 1H), 4.50 (dt, J = 46.9, 5.6 Hz, 2H), 3.51 (q, J = 6.5 Hz, 2H), 1.86–1.72 (m, 4H); 
13C NMR (176 MHz, CDCl3): δ 167.6, 134.6, 131.4, 128.5, 126.8, 83.7 (d, J = 164.7 Hz), 39.5, 27.8 (d, J = 

19.9 Hz), 25.7 (d, J = 4.4 Hz); 
19F NMR (376 MHz, CDCl3): δ −217.4 (tt, J = 47.5, 26.2 Hz, 1F); 

HRMS (ESI): Calc’d for C11H14FNONa [M+Na]+: 218.0952, found: 218.0952. 

 

 
According to the representative procedure, aldehyde 7 (62) was used as a starting material. Triphenylmethane 

was used as an internal standard and 1H NMR analysis showed theformation of 8 (63) in 70% yield.  

 

 

According to the representative procedure, carboxylic acid 9 (10) was used as a starting material. 

Triphenylmethane was used as an internal standard and 1H NMR analysis showed the formation of 6 in 23% 

yield. 
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5. Electrochemical Measurement 

Non-aqueous electrochemical experiments were conducted under an Ar atmosphere in 0.1 M NBu4PF6 

electrolyte in acetonitrile.  Cyclic voltammetry experiments were performed using an Epsilon potentiostat 

from Bioanalytical Systems, Inc. The working electrode was a 3.0 mm diameter glassy carbon disk (from 

Bioanalytical Systems, Inc.) and was polished between every scan with 0.05-micron alumina powder on a felt 

pad. The counter electrode was a platinum wire. A silver wire in porous Vycor tip glass tube filled with 0.1 M 

NBu4PF6 in acetonitrile was used as a pseudo-reference electrode. At the conclusion of the series of 

experiments, the pseudo-reference potentials were referenced against ferrocene/ferrocenium as an external 

standard. The scan rate for all cyclic voltammograms was 100 mV/sec unless otherwise noted. All scans were 

compensated for internal resistance. Data measured with respect to Fc/Fc+ and reported to SCE.  

 

 
Fig. S1, Cyclic voltammograms of 1a (1mM) and Ar background in 0.10 M NBu4PF6 in acetonitrile. Data was 

collected with a scan rate of 100mV/s. 

 

 

-5.00E-02 

-4.00E-02 

-3.00E-02 

-2.00E-02 

-1.00E-02 

0.00E+00 

1.00E-02 

2.00E-02 

-1 -0.5 0 0.5 1 1.5 2 

Cu
rr

en
t (

m
A)

 

Potential (V vs SCE) 

background 1a 



 S26 

6. NMR Studies  

6.1. Interaction of AgBF4 with Selectfluor® 

Procedure: To a 4 ml vial containing Selectfluor®  (35.4 mg, 0.100 mmol) and AgBF4 (19.4 mg, 0.100 

mmol) was added 1:9 (v/v) Acetone-d6/D2O (1.0 ml). The resulting solution was allowed to stir at 40 °C for 1 

h. The contents of the reaction vial were then transferred into a NMR tube and an NMR spectrum was taken 

directly afterwards to measure consumption of Selectfluor®. 

 

 

Fig. S2. 19F NMR monitoring of Selectfluor® consumption in the presence of AgBF4 

 

 

 

 

6.2. Interaction of AgBF4 with 1a. 

Procedure: To a 4 ml vial containing 1a (18.9 mg, 0.100 mmol) and AgBF4 (19.4 mg, 0.100 mmol) was 

added 1:9 (v/v) Acetone-d6/D2O (1.0 ml). The contents of the reaction vial were then transferred into a NMR 

tube and spectroscopic data was collected right after. The same procedure was followed with varying amounts 

of AgBF4. The residual signal of acetone was used as internal reference. 
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Fig. S3. 1H NMR monitoring of interaction of AgBF4 and 1a 
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7. NMR Spectra 
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