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Appendix A 1 

 2 
In this appendix, GTB algorithm is briefly reviewed according to Chen and 3 
Guestrin [16]. Let 	𝑥 ∈ ℝ%  be 𝑚  dimensional input variables, 	𝑦 ∈ ℝ  be an 4 
output variable, and 𝐷 = {(𝑥,, 𝑦,),/01 |𝑥, ∈ ℝ%, 𝑦, ∈ ℝ} be 𝑛  number of data. A 5 
regression tree 𝑓(𝑥) having 𝑇	leaves and leaf weight vector 𝑤 ∈ ℝ8 is defined as 6 

𝑓(𝑥) = 𝑤9(:), 7 
𝑞: ℝ% → {1,… , 𝑇}, 𝑤 ∈ ℝ8, 8 

where 𝑞  is a function that maps input variables 𝑥 ∈ ℝ%  to leaf index 		𝑖	 ∈9 
{1, … , 𝑇}. The function 𝑞 specifies the tree structure of a regression tree. 𝑤 ∈ ℝ8 10 
specifies the leaf weights of the regression tree. Let ℱ be the whole set of the 11 
regression trees having 𝑇 leaves. 12 
In ensemble learning such as Bagging and Boosting, outcome 𝑦  is predicted 13 
using an ensemble 𝜙(𝑥)	of 𝐾 number of weak-learners {𝑓E(𝑥)} : 14 

𝑦F, = 𝜙(𝑥,) = G𝑓E(𝑥,)
H

E/0

, 	𝑓E ∈ ℱ 15 

For each regression tree 𝑓E(𝑥), we need to learn tree structure 𝑞 and leaf weights 16 
𝑤 ∈ ℝ8  from training data. Tree structure 𝑞  and leaf weights 𝑤 ∈ ℝ8  are 17 
learned by minimizing the following regularized objective function: 18 

𝐿(𝜙) = ∑ 𝑙(𝑦, , 𝑦F, )1
,/0 + ∑ ΩH

E/0 (𝑓E), 19 

Ω(𝑓) = γ𝑇 + 0
O
𝜆‖𝑤‖O, 20 

Here 𝑙  is a differentiable convex function that measures difference between 21 
predicted values 𝑦F,  and the true value 𝑦,  (fitting loss). Ω(𝑓)  is a 22 
regularization term introduced in order to prevent over-fitting. The penalty term 23 
γ𝑇 is added so that leaf number 𝑇 is small and resulting regression tree 𝑓E(𝑥) is 24 

simple. The penalty term 0
O
𝜆‖𝑤‖O is added so that 𝑙2-norm of the leaf weights 𝑤 25 

is small. γ, 𝜆 are hyperparameters of the XGBoost. 26 
In the Gradient Boosting, a weak-learner 𝑓E is trained in additive manner. Let 27 

𝑦F,
(S)  be the predicted value for the 𝑖-th data at iteration step 𝑡 . Using a new 28 

function 𝑓S, objective function 𝐿(𝜙) is rewritten as follows: 29 
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𝐿(S)(𝑓S) = ∑ 𝑙 U𝑦, , 𝑦F,
(SV0) + 𝑓S(𝑥,)W1

,/0 + Ω(𝑓S). 1 

Given 𝑦F,
(SV0), regression tree 𝑓S is greedily optimized to minimize the objective 2 

function 𝐿(S)(𝑓S). XGBoost exploits the second order approximation of 𝐿(S)(𝑓S) 3 
using Taylor expansion, i.e., 4 

𝐿(S)(𝑓S) ≈ ∑ Y𝑙U𝑦, , 𝑦F,
(SV0)W + 𝑔,𝑓S(𝑥,) +

0
O
ℎ,𝑓SO(𝑥,)\1

,/0 + Ω(𝑓S). 5 

Here 𝑔, = 𝜕 F̂_(`ab)
𝑙U𝑦, , 𝑦F,

(SV0)W  and ℎ, = 𝜕
F̂_
(`ab)
O 	𝑙U𝑦, , 𝑦F,

(SV0)W  are gradient and 6 

hessian statistics computed from first and second order derivatives of the loss 7 
function 𝑙, respectively. 8 
Objective function 𝐿(S)(𝑓S) as a function of 𝑓S is simplified as  9 

𝐿c(S) = ∑ Y𝑔,𝑓S(𝑥,) +
0
O
ℎ,𝑓SO(𝑥,)\1

,/0 + γ𝑇 + 0
O
𝜆‖𝑤‖O. 10 

For each leaf 𝑗	 ∈ {1,… , 𝑇} of a regression tree 𝑓S  with a tree structure 𝑞, we 11 

define an index set 𝐼f = {𝑖|𝑞(𝑥,) = 𝑗}. We define 𝐺f = ∑ 𝑔,,∈hi , 𝐻f = ∑ ℎ,,∈hi . 12 

Objective function 𝐿c(S) is rewritten as 13 

𝐿c(S) =Gk𝐺f𝑤f +
1
2 (𝐻f + 𝜆)𝑤f

Ol
8

f/0

+ γ𝑇.	17 

Note that the summation is only taken through leaves 𝑗	 ∈ {1,… , 𝑇}  and not 14 
through data. Since the objective function 𝐿c(S) is quadratic with respect to leaf 15 
weight vector 𝑤, the optimal leaf weights can be solved as 16 

𝑤f∗ = − oi
piqr

 𝑗	 ∈ {1, … , 𝑇}. 18 

By substituting the optimal weight vector 𝑤∗  into the objective function 𝐿c(S), we 19 
obtain 20 

𝐿c(S)(𝑞) = −
1
2G

𝐺fO

𝐻f + 𝜆

8

f/0

+ γ𝑇 21 

Note that once a tree structure 𝑞 of a regression tree 𝑓S	is given, the optimal 22 
weight vector 𝑤∗  and 𝐿c(S)(𝑞)	are computed. Objective function 𝐿c(S)(𝑞) is used 23 
as a score of the tree structure 𝑞. 24 

It is computationally severe to enumerate all candidates of tree structures 𝑞. To 25 
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obtain an efficient and approximate algorithm, a greedily optimal splitting of a leaf 1 
node is explored using the score function 𝐿c(S)(𝑞). Let 𝑞s be a tree structure before 2 
splitting of a leaf node and 𝑞t be a tree structure after splitting of the leaf node. 3 
Then the gain of the splitting is measured by a score:  4 

𝐿uvw,S = 𝐿c(S)(𝑞s) − 𝐿c(S)(𝑞t). 5 
A greedily optimal splitting is determined by that maximizing the gain. A greedily 6 
optimal tree structure 𝑞∗  is explored by repeating the above procedure. XGBoost 7 
is elaborated on speeding up the above algorithm and increasing the scalability, 8 
with taking into account sparsity-aware algorithm, out-of-core computing, and 9 
parallel computing. See Chen and Guestrin [16] for technical details. 10 


