¹ Appendix A

2

3 In this appendix, GTB algorithm is briefly reviewed according to Chen and 4 Guestrin [16]. Let $x \in \mathbb{R}^m$ be *m* dimensional input variables, $y \in \mathbb{R}$ be an 5 output variable, and $D = \{(x_i, y_i)\}_{i=1}^n | x_i \in \mathbb{R}^m, y_i \in \mathbb{R}\}$ be *n* number of data. A 6 regression tree $f(x)$ having T leaves and leaf weight vector $w \in \mathbb{R}^T$ is defined as 7 $f(x) = w_{q(x)},$

$$
q: \mathbb{R}^m \to \{1, \ldots, T\}, w \in \mathbb{R}^T,
$$

9 where q is a function that maps input variables $x \in \mathbb{R}^m$ to leaf index $i \in$ 10 {1, …, T}. The function q specifies the tree structure of a regression tree. $w \in \mathbb{R}^T$ 11 specifies the leaf weights of the regression tree. Let $\mathcal F$ be the whole set of the 12 regression trees having T leaves.

13 In ensemble learning such as Bagging and Boosting, outcome y is predicted 14 using an ensemble $\phi(x)$ of K number of weak-learners $\{f_k(x)\}$:

15
$$
\hat{y}_i = \phi(x_i) = \sum_{k=1}^K f_k(x_i), f_k \in \mathcal{F}
$$

16 For each regression tree $f_k(x)$, we need to learn tree structure q and leaf weights 17 $w \in \mathbb{R}^T$ from training data. Tree structure q and leaf weights $w \in \mathbb{R}^T$ are 18 learned by minimizing the following regularized objective function:

19
$$
L(\phi) = \sum_{i=1}^{n} l(y_i, \hat{y}_i) + \sum_{k=1}^{K} \Omega(f_k),
$$

20 $\Omega(f) = \gamma T + \frac{1}{2}\lambda ||w||^2$,

21 Here l is a differentiable convex function that measures difference between 22 predicted values \hat{y}_i and the true value y_i (fitting loss). $\Omega(f)$ is a 23 regularization term introduced in order to prevent over-fitting. The penalty term 24 γT is added so that leaf number T is small and resulting regression tree $f_k(x)$ is 25 simple. The penalty term $\frac{1}{2}\lambda ||w||^2$ is added so that 12-norm of the leaf weights w 26 is small. γ , λ are hyperparameters of the XGBoost. 27 In the Gradient Boosting, a weak-learner f_k is trained in additive manner. Let 28 $\hat{y}_i^{(t)}$ be the predicted value for the *i*-th data at iteration step *t*. Using a new

29 function f_t , objective function $L(\phi)$ is rewritten as follows:

1
$$
L^{(t)}(f_t) = \sum_{i=1}^n l\left(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)\right) + \Omega(f_t).
$$

2 Given $\hat{y}_i^{(t-1)}$, regression tree f_t is greedily optimized to minimize the objective 3 function $L^{(t)}(f_t)$. XGBoost exploits the second order approximation of $L^{(t)}(f_t)$ 4 using Taylor expansion, i.e.,

$$
L^{(t)}(f_t) \approx \sum_{i=1}^n \left[l\left(y_i, \hat{y}_i^{(t-1)}\right) + g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + \Omega(f_t).
$$

6 Here $g_i = \partial_{\hat{y}_i^{(t-1)}} l(x_i, \hat{y}_i^{(t-1)})$ and $h_i = \partial_{\hat{y}_i^{(t-1)}}^2 l(x_i, \hat{y}_i^{(t-1)})$ are gradient and

7 hessian statistics computed from first and second order derivatives of the loss

8 function *l*, respectively.

9 Objective function $L^{(t)}(f_t)$ as a function of f_t is simplified as

10
$$
\tilde{L}^{(t)} = \sum_{i=1}^{n} \left[g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + \gamma T + \frac{1}{2} \lambda ||w||^2.
$$

11 For each leaf $j \in \{1, ..., T\}$ of a regression tree f_t with a tree structure q, we

12 define an index set $I_j = \{i | q(x_i) = j\}$. We define $G_j = \sum_{i \in I_j} g_i$, $H_j = \sum_{i \in I_j} h_i$.

13 Objective function $\tilde{L}^{(t)}$ is rewritten as

17
$$
\tilde{L}^{(t)} = \sum_{j=1}^{T} \left[G_j w_j + \frac{1}{2} (H_j + \lambda) w_j^2 \right] + \gamma T.
$$

14 Note that the summation is only taken through leaves $j \in \{1, ..., T\}$ and not 15 through data. Since the objective function $\tilde{L}^{(t)}$ is quadratic with respect to leaf 16 weight vector w , the optimal leaf weights can be solved as

18
$$
w_j^* = -\frac{G_j}{H_j + \lambda} \ j \in \{1, ..., T\}.
$$

By substituting the optimal weight vector w^* into the objective function $\tilde{L}^{(t)}$, we 20 obtain

21
$$
\tilde{L}^{(t)}(q) = -\frac{1}{2} \sum_{j=1}^{T} \frac{G_j^2}{H_j + \lambda} + \gamma T
$$

22 Note that once a tree structure q of a regression tree f_t is given, the optimal 23 weight vector w^* and $\tilde{L}^{(t)}(q)$ are computed. Objective function $\tilde{L}^{(t)}(q)$ is used 24 as a score of the tree structure q .

25 It is computationally severe to enumerate all candidates of tree structures q . To

- obtain an efficient and approximate algorithm, a greedily optimal splitting of a leaf
- 2 node is explored using the score function $\tilde{L}^{(t)}(q)$. Let q_B be a tree structure before
- 3 splitting of a leaf node and q_A be a tree structure after splitting of the leaf node.
- Then the gain of the splitting is measured by a score:
- 5 $L_{split} = \tilde{L}^{(t)}(q_B) \tilde{L}^{(t)}(q_A).$
- A greedily optimal splitting is determined by that maximizing the gain. A greedily
- 7 optimal tree structure q^* is explored by repeating the above procedure. XGBoost
- is elaborated on speeding up the above algorithm and increasing the scalability,
- with taking into account sparsity-aware algorithm, out-of-core computing, and
- parallel computing. See Chen and Guestrin [16] for technical details.