O© 0 1 O O & W N =

[T T
=W NN = O

15

16
17
18
19

20

21
22
23
24

25

26
27

28

29

Appendix A

In this appendix, GTB algorithm is briefly reviewed according to Chen and
Guestrin [16]. Let x € R™ be m dimensional input variables, y € R be an
output variable, and D = {(x;,y;)7~,|x; € R™,y; € R} be n number of data. A
regression tree f(x) having T leaves and leaf weight vector w € RT is defined as
fx) = Waq(x)»
q:R™ > {1,.., T}, weRT,

where g is a function that maps input variables x € R™ to leaf index i €
{1,...,T}. The function g specifies the tree structure of a regression tree. w € R
specifies the leaf weights of the regression tree. Let F be the whole set of the
regression trees having T leaves.

In ensemble learning such as Bagging and Boosting, outcome y is predicted

using an ensemble ¢(x) of K number of weak-learners {f, (x)} :

9 =@ =) fix), fi€F
k=1

For each regression tree fi (x), we need to learn tree structure q and leaf weights
w € RT from training data. Tree structure g and leaf weights w € RT are

learned by minimizing the following regularized objective function:
L(P) = Xiea 1 .3) + Zk=1 2 (fi),
Q(f) =T +3Alwli2,

Here [is a differentiable convex function that measures difference between
predicted values §; and the true value y, (fitting loss). Q(f) is a
regularization term introduced in order to prevent over-fitting. The penalty term

yT is added so that leaf number T is small and resulting regression tree f,(x) is
simple. The penalty term §/1||w||2 is added so that [2-norm of the leaf weights w

is small. y, A are hyperparameters of the XGBoost.

In the Gradient Boosting, a weak-learner f;, is trained in additive manner. Let

yi“) be the predicted value for the i-th data at iteration step t. Using a new

function f;, objective function L(¢) is rewritten as follows:

10

11

12

13

17

14
15
16

18

19
20

21

22
23
24
25

LO) =2y L (v 970 + £x)) + 2.

Given yi“‘“, regression tree f; is greedily optimized to minimize the objective

function L®O(f,). XGBoost exploits the second order approximation of L (f,)

using Taylor expansion, i.e.,
LOU) = 3y [y 987 + 9ufe () + S huf2 ()| +).

~(t=1)

Here g, = ay\i(t—l)l(yi Y,) and h; = a;i(t—l) l(yi ,?i(t_l)) are gradient and

hessian statistics computed from first and second order derivatives of the loss
function [, respectively.

Objective function L (f,) as a function of f, is simplified as

IO =30, [g:fi (o) + 2hifZ ()| + 3T + 2 2llwll2.
For each leaf j € {1,...,T} of a regression tree f, with a tree structure g, we
define an index set I; = {i|q(x;) = j}. We define G; = Yier; 9ir Hy = Yier i

Objective function L® is rewritten as
T
=516 Lty + ow| 4yt
j=1

Note that the summation is only taken through leaves j € {1,..,T} and not
through data. Since the objective function L® is quadratic with respect to leaf

weight vector w, the optimal leaf weights can be solved as

* Gj .
W] - _H]+l] E {1, ...,T}.

By substituting the optimal weight vector w* into the objective function L®), we

obtain

T
- 1 G?
LO@)= _EZH- YT
=1

Note that once a tree structure q of a regression tree f; is given, the optimal
weight vector w* and L(®(q) are computed. Objective function L®(q) is used
as a score of the tree structure q.

[t is computationally severe to enumerate all candidates of tree structures q. To

O© 0 N O O & W N =~

—_
)

obtain an efficient and approximate algorithm, a greedily optimal splitting of a leaf
node is explored using the score function L®)(q). Let gz be a tree structure before
splitting of a leaf node and g, be a tree structure after splitting of the leaf node.
Then the gain of the splitting is measured by a score:
Lspiic = L® (qp) — L® (qa).

A greedily optimal splitting is determined by that maximizing the gain. A greedily
optimal tree structure q* is explored by repeating the above procedure. XGBoost
is elaborated on speeding up the above algorithm and increasing the scalability,
with taking into account sparsity-aware algorithm, out-of-core computing, and

parallel computing. See Chen and Guestrin [16] for technical details.

