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Web Appendix A: Further Evaluation of the Bayesian Type I Error Rate

In this appendix we provide a comparison of designs based on the Bayesian type I error rate using two
historical data sets with different levels of informativeness. We let the E1690 dataset used in the paper
serve as an example highly-informative historical dataset. To obtain a historical dataset with a lower
degree of informativeness, we artificially reduced the information in the E1690 dataset to 30% of the
actual dataset. This was done by exponentiating the likelihood. Figure 1 presents the historical trial
posterior distributions for the treatment effect using each dataset as well as the corresponding default
null sampling priors. Each density has been normalized to have a maximum value of one to faciliate
comparison.
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Figure 1: π (γ | D0) and default null sampling priors.

Note that the default null sampling prior for the reduced information dataset supports noticeably worse
treatment affects than the corresponding null sampling prior for the full information dataset. Thus, a
Bayesian type I error rate defined using the reduced information null sampling prior would allow more
liberal borrowing compared to a Bayesian type I error rate defined using the full information null sampling
prior. However, the reduced information dataset simply has less information to borrow and so it is not
clear from Figure 1 exactly how the overall sample size reduction would compare between the two cases.
Table 1 presents power analyses based on the two datasets using a point-mass (PM) alternative sampling
prior based on the full information dataset. Using the same alternative sampling prior ensures an apples-
to-apples comparison of the sample sizes required to achieve a specified level of power. We evaluated using
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Bayesian type I error rates based on the default null sampling prior (DN) as well as the partially-elicited
null sampling prior (EN) as described in the paper.

Table 1: Bayesian power estimates for select sample sizes
DN + PM EN + PM

Reduced Full Reduced Full
n Power a0 Power a0 Power a0 Power a0

600 0.80 1.00 0.81 0.33 0.78 0.70 0.77 0.20
610 0.81 1.00 0.82 0.34 0.78 0.71 0.78 0.21
620 0.81 1.00 0.82 0.34 0.79 0.72 0.79 0.21
630 0.82 1.00 0.83 0.34 0.80 0.73 0.80 0.22
640 0.82 1.00 0.84 0.34 0.80 0.73 0.80 0.22
650 0.83 1.00 0.84 0.35 0.81 0.74 0.81 0.22
660 0.83 1.00 0.85 0.35 0.81 0.75 0.82 0.23
670 0.84 1.00 0.85 0.35 0.82 0.76 0.82 0.23
680 0.84 1.00 0.86 0.36 0.83 0.77 0.83 0.23
690 0.85 1.00 0.86 0.36 0.83 0.77 0.83 0.23
700 0.85 1.00 0.87 0.37 0.84 0.78 0.84 0.24
710 0.86 1.00 0.87 0.37 0.84 0.79 0.84 0.24
720 0.86 1.00 0.88 0.37 0.85 0.79 0.85 0.24
730 0.86 1.00 0.88 0.38 0.85 0.80 0.85 0.24
740 0.87 1.00 0.88 0.38 0.86 0.81 0.86 0.24
750 0.87 1.00 0.89 0.38 0.86 0.81 0.86 0.24
760 0.88 1.00 0.89 0.39 0.87 0.82 0.86 0.25
770 0.88 1.00 0.90 0.39 0.87 0.83 0.87 0.25
780 0.88 1.00 0.90 0.39 0.87 0.83 0.87 0.25
790 0.89 1.00 0.90 0.40 0.88 0.84 0.88 0.25
800 0.89 1.00 0.91 0.40 0.88 0.84 0.88 0.25

It is quite clear from the table that the overall efficiency gain resulting from controlling the Bayesian
type I error rate based on the default null sampling prior is very similar for the two historical datasets.
Thus, one can conclude that the Bayesian type I error rate based on the default null sampling prior
naturally penalizes highly informative prior information more than weakly informative prior information.
In fact, we can see that for the reduced information dataset, all the information can be borrowed without
surpassing the Bayesian type I error rate threshold when using the DN sampling prior. Lastly, the
power analyses associated with using the EN sampling priors to define the Bayesian type I error rate are
essentially identical. This should not be surprising as this null sampling prior was specified independently
of the prior information for the treatment effect.
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Web Appendix B: Robustness to Null Sampling Prior Misspecification

In this appendix we describe a simulation study that illustrates the robustness of Bayesian type I error
control under null sampling prior misspecification in the scenario where both the historical and new
trial have approximately balanced sample size across the treatment groups. Such balance was present
in the E1690 trial and we note that most trial designs will use 1:1 randomization (when borrowing
information on all subjects from a balanced historical trial) and so the assumption of balanced sample
size is not artificial. When both studies have balanced sample size, the combined dataset will have
an approximately equal amount of information on both the treated and control subjects. As a result,
any systematic bias associated with null sampling prior misspecification for the nuisance parameters
will impact both treatment groups equally leading to minimal bias in the posterior distribution of the
treatment effect γ. The following simulation study illustrates this phenomenon.

We focused on a scenario where the DN sampling prior was used to identify a0 and considered estimating
the Bayesian type I error rate assuming the correct null sampling prior was a perturbed version of the LN
sampling prior discussed in Section 5 of the paper. As noted in Section 4.3 of the paper, conditioning on
the null essentially shifts the posterior distribution for the intercept parameter in the cure rate regression
model (β1) in the negative direction. We considered further shifting the mode value for the null sampling
prior for β1 in the negative direction an additional 1-3 standard deviations (SD). We then evaluated the
Bayesian Type I error rate over a range of sample sizes for the new trial (each sample size paired with
the a0 value noted in Table 3 of the paper). All other simulation settings matched those described in
Section 5 of the paper (e.g., distribution for enrollment times). Note from Figure 2 that the Bayesian
type I error rate is only modestly effected by the this misspecification. Greater misspecification of the
null sampling prior appears to result in a minimal decrease in the Bayesian type I error rate.
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Figure 2: Bayesian type I error rate under null sampling prior misspecification.

Next, we restricted our focus to the smallest and largest sample sizes considered for the design presented
in Section 5 of the paper (n = 560 and n = 860) and evaluated the type I error rate over a large discrete
set of values for ξ corresponding to different perturbations to the LN sampling prior means. Our goal
here is to illustrate that the type I error rate associated with any fixed value of ξ is largely robust to
any systematic bias resulting from borrowing information on nuisance parameters when the amount of
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information borrowed from the historical data is balanced across treatment groups. We considered both a
1.0 SD decrease and a 1.0 SD increase to the cure rate regression model parameters and the Weibull rate
parameters and evaluated the type I error rate at every possible value of ξ defined through combination of
those perturbations. Figure 3 presents a histogram of the estimated type I error rates at each perturbed
value of ξ. Note that, regardless of the perturbation, the estimated type I error rate is nearly identical
to the worst-case Bayesian type I error rate described in the paper (which was based on the assumption
that the LN sampling prior was correct).
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Figure 3: Estimated type I error rate based on perturbed values of ξ. The dashed line indicates the
Bayesian type I error rate associated with the LN sampling prior from Section 5 of the paper.
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Web Appendix C: Comparison of Posterior Probability Estimation: MCMC versus the
Laplace Approximation

For the simulation studies in this appendix we used the E1690 data set to serve as the historical data.
To demonstrate that the asymptotic approximation developed in the paper is accurate enough for many
design problems, we simulated a large number of datasets and fit the cure rate regression model to each
of them using the power prior. For each dataset, we computed the posterior probability of the alternative
hypothesis using MCMC as well as using the Laplace approximation. We considered sample sizes ranging
from n = 200 to n = 500 and borrowing parameters ranging from a0 = 0 to a0 = 1. Datasets were
simulated from the default null and default alternative prior predictive distributions for the data. For
posterior probabilities estimated using MCMC, we used 10,000 samples. Scatter plots of the posterior
probabilities are presented in Figure 4.
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(n=500)

Posterior Probabilities using Laplace Approximation (n=500)
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Figure 4: Comparison of posterior probabilities using MCMC versus Laplace approximation.
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It is clear from Figure 4 that the two methods of estimation provide very similar results regarding
posterior probabilities for the treatment effect. As noted in the paper, this is all that is needed from
the approximation since accurately characterizing the posterior distribution for the nuisance parameters
during design is not of interest. Of note, the minimum R2 value associated with regressing the MCMC-
estimated posterior probabilities onto those estimated using the Laplace approximation was > 0.997 for
every scenario we considered. Considering the fact that the MCMC-estimated probabilities are subject
to Monte Carlo error, these results strongly support use of the Laplace approximation; even for sample
sizes far less than what was considered in the paper.
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