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Supplementary Methods392

Empirical Bayes stabilization of r̃393

Let p = (p1, . . . , pM ) denote the vector of frequencies of M elements C1, · · · , CM

(characters or strings) at a particular position i of a logo plot. Assume that p is to be

estimated from NP observed symbols at that position, and let x = (x1, x2, . . . , xM )

denote the observed counts of each symbol (so
∑M

m=1 xj = NP ). Assume a multi-

nomial distribution for x:

x ∼Mult(NP ,p). (9)

Similarly, let q = (q1, . . . , qM ) denote the vector of background frequencies of

the M elements, and assume q is to be estimated from NQ observed symbols. Let

y = (y1, y2, . . . , yM ) denote the observed counts of each symbol (so
∑M

m=1 yj = NQ)

and

y ∼Mult(NQ,q). (10)

Our aim is to estimate r̃j = log(pj/qj) from these data x,y. By assuming NP and

NQ are large, we can use a Poisson approximation to the Multinomial distributions

in Equations (9) and (10):

xj ∼ Poi (NP pj) yj ∼ Poi (NQqj) . (11)

Assuming x and y are independent, Equation (11) implies

xj |(xj + yj) ∼ Bin (xj + yj , ρj) where ρj :=
NP pj

NP pj +NQqj
(12)
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Note that

αj := log (ρj/(1− ρj)) = log (NP /NQ) + r̃j , (13)

so estimating r̃j boils down to estimating αj .394

The maximum likelihood estimate of αj , given x,y and using the likelihood im-

plied by (12), is simply log(xj/yj), which is infinite when xj or yj is 0. One way to

avoid this infinite estimate is to use Tukey’s modification [25]:

α̂j :=



log ((xj + 0.5)/(yj + 0.5))− 0.5 if xj = 0

log (xj/yj) if xj = 1, 2, · · · , Nj − 1

log ((xj + 0.5)/(yj + 0.5)) + 0.5 if xj = Nj

(14)

where Nj = xj + yj . However, this estimate still suffers from high variance when

xj , yj are 0. To stabilize these estimates we use the Empirical Bayes (EB) approach

from Xing and Stephens [26], which in turn is based on methods from [12]. In brief

the method combines the estimates (14) with their approximate standard errors [25],

given by

sj :=

√
V ?(α̂j)− 0.5 {V3(α̂j)}2

{
V3(α̂j)−

4

Nj

}
(15)

where

V3(α̂j) :=
Nj + 1

Nj

(
1

xj + 1
+

1

yj + 1

)
V ?(α̂j) := V3(α̂j)

{
1− 2

Nj
+
V3(α̂j)

2

}
.

(16)
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The EB approach from [12], implemented in the ashr package, takes as input any set395

of estimates and corresponding standard errors, and outputs shrunken (stabilized)396

estimates. We apply this approach to the estimates (14) and their standard errors397

(15) to obtain stabilized estimates, α?
j , for αj . (Note that while [12] focuses on the398

case where the prior distribution is unimodal about 0, the software has the option399

to estimate the location of the mode, and we use this option here.)400

Finally, using (13), we obtain

˜̂rj = α?
j − log (NP /NQ) . (17)

Median minimizes the sum of absolute deviations401

Say we have n points x1, x2, · · · , xn. We order them x(1) < x(2) < · · ·x(n). Suppose402

we want to find the a that minimizes403

argmin
a

n∑
i=1

|xi − a|

We show that when n is odd, say n = 2m + 1, then the a that minimizes the404

above quantity is a? = x(m+1), which is the median point. If n is even, say n = 2m,405

then the minimizing a? could be any value between x(m) and x(m+1), the interval406

between the two middle points.407

The subgradient of
∑n

i=1 |xi − a| with respect to a is given by

δ(a) =

n∑
i=1

sgn(xi − a) (18)

The minimizing value of a is the one for which δ(a) is equal to 0.408
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When n = 2m + 1, δ(a) equals 0 when a is equal to the middlemost xi value,409

namely x(m+1), as sgn(x(i) − x(m+1)) = −1 for the m values such that i ≤ m410

and sgn(x(i) − x(m+1)) = 1 for the m values from i = m + 2, · · · , 2m + 1, and411

sgn(x(m+1) − x(m+1)) = 0412

δ(a) =

m∑
i=1

sgn(x(i) − a) + sgn(x(m+1) − a)
2m+1∑
i=m+2

sgn(x(i) − a) = −m+ 0 +m = 0

When n = 2m, δ(a) equals to 0 when a is any value between x(m) and x(m+1).413

because when x(m) < a < x(m+1), for them values i ≤ m we have sgn(x(i)−a) = −1414

and for the remaining m values i = m+ 1, · · · , 2m we have sgn(x(i) − a) = +1, so415

δ(a) =

m∑
i=1

sgn(x(i) − a) +
2m∑

i=m+1

sgn(x(i) − a) = −m+m = 0

The above analysis only shows that the median is a local optima. That it is a416

minima is easily seen by choosing a to be outside the range of the xi’s for which the417

sum of absolute deviations will be greater than any a inside the range. The fact that418

this local minima is global follows from the convexity of the function
∑n

i=1 |a− xi|419

with respect to a (f(y) = |y| is convex and sum of convec functions is convex).420


