Biophysical Journal, Volume 115

Supplemental Information

The Second Messenger c-di-GMP Adjusts Motility and Promotes Surface Aggregation of Bacteria

Renjie Wang, Fangbin Wang, Rui He, Rongjing Zhang, and Junhua Yuan

Supporting Material

Viscosity of different concentrations of Ficoll: The viscosity coefficients of different concentrations of Ficoll solution was measured by a viscosity meter (NDJ-5s; Shanghai Pingxuan Scientific) at room temperature of 23 °C. The viscosities of Ficoll at different concentrations (15, 12, 9, 7, 5, 3, 2 and 0%) are: 9.99 cp, 6.71 cp, 4.24 cp, 3.00 cp, 2.19 cp, 1.60 cp, 1.34 cp, 0.99 cp. The values are similar to that measured by Chen and Berg (ref. 16).

Strain	Relevant genotype	Plasmids	Assay
JY27	$\Delta fliC cheY$	pKAF131 (fliC st)	Torque-speed
RW1	$\Delta fliC cheY yhjH$	pKAF131	Torque-speed
RW3	$\Delta fliC cheY yhjH ycgR$	pKAF131	Torque-speed
JY27	$\Delta fliC cheY$	pKAF131 pWB5 (<i>cheY</i>)	CCW vs CW rotation
RW1	ΔfliC cheY yhjH	pKAF131 pWB5	CCW vs CW rotation
RW3	$\Delta fliC cheY yhjH ycgR$	pKAF131 pWB5	CCW vs CW rotation
JY26	ΔfliC	pKAF131	Rotational bias
RW2	$\Delta fliC$ yhjH	pKAF131	Rotational bias
RW4	$\Delta fliC$ yhjH ycgR	pKAF131	Rotational bias
JY26	ΔfliC	pBAD33fliC	Near surface
RW2	ΔfliC yhjH	pBAD33fliC	Near surface
RW1	ΔfliC cheY yhjH	pKAF131 pHS1 (Proteorhodopsin)	Resurrection experiment
RW3	$\Delta fliC cheY yhjH ycgR$	<i>efgp-ycgR</i> on pTrc99a	Dynamic fluorescent experiment
RW2	$\Delta fliC$ yhjH	pJY7 (<i>motAmotB</i>) pFD313 (<i>fliC</i> st)	Overproduction of MotA MotB

Table S1. Strains and plasmids used in this work.

Supporting figures

Fig.S1. Relative reduction in motor speed with elevated c-di-GMP level for motors labeled with 0.35-µm-diameter latex beads in different concentrations of Ficoll solution. The red dashed line is a spline fitting to guide the eye.

Fig.S2. Motor speed of different strains with 1.0 µm diameter latex bead. From left to right: JY27, RW1, RW3, and RW3 transformed with pTrc99a-eGFP-YcgR. The bars and errors are means and standard deviations. (The number of motors measured were 43, 37, 39 and 41, respectively.)

Fig.S3. Schematic diagram of the TIRF setup used for viewing eGFP-YcgR localization with TIRF and tether-cell rotation with phase-contrast simultaneously.

Fig. S4. Sample traces of motor resurrection at high load (1- μ m-diameter latex bead). 20 mM NaN₃ was flowed for 30 min to deplete PMF, and PMF was then restored at time zero.