
S1 Appendix. Mathematical derivations

Transition probability. In this section, we show the derivation for the probability of
transitioning from Sk to state Sl in time step τ , which is given by:

P [Sk → Sl ∈ (t, t+ τ ]|nk, t] = νkl(n− skl, t) = nkcklτ + o(τ) (1)

The probability of a particular transition k → l (Rkl) in a small time step τ is
postulated to be linear in time: cklτ + o(τ). This postulate is conceptually a first-order
Taylor approximation to an instantaneous transition probability. The transition rate
constant, ckl, is interpreted as the derivative of the transition probability at time τ = 0.
We also restrict the number of allowable transitions in τ to one transition. If the
number of individuals in Sk at time t is equal to nk, then any of these nk, assumed to
be indistinguishable, individuals is at risk of transitioning. Since individuals are
indistinguishable, each individual transition can be considered as a Bernoulli trial with
a probability of success of cklτ + o(τ). The probability of only one individual
transitioning is equal to: (cklτ + o(τ))(1− cklτ + o(τ))nk−1. Since there are nk ways of
this transition to occur, we have:

P [Sk → Sl ∈ (t, t+ τ ]|nk, t] =
(
nk
1

)
(cklτ + o(τ))(1− (cklτ + o(τ)))nk−1 (2)

Equation nkckl(t)τ + o(τ) is then recovered as the τ terms of higher order are collected
as o(τ) after expanding the binomial term in Eq 2.

Master equation. In principle, the master equation is based on the idea of mass
conservation. First, the probability of observing a particular state-configuration at time
t+ τ is a function of the probabilities of the adjacent state-configurations at time t and
the transitions between the corresponding probabilities of the state-configurations
occurring in time step τ . The adjacent state configurations are defined as
state-configurations with differences of +1 and −1 in two of the state counts, compared
to the state-configuration of interest. The transitions between these corresponding
probabilities are governed by the propensity function (ν). Mathematically, the first step
translates to:

P (n, t+ τ) =

s∑
k=1

s∑
l=1,l 6=k

νkl(n− skl, t)P (n− skl, t) +
s∑

k=1

s∑
l=1,l 6=k

(1− νkl(n, t))P (n, t)

=

s∑
k=1

s∑
l=1,l 6=k

ckl(t)(nk + 1)τP (n− skl, t) +
s∑

k=1

s∑
l=1,l 6=k

(1− ckl(t)nkτ)P (n, t)

(3)

Rearranging Eq 3 and dividing it by τ yields:

P (n, t+ τ)− P (n, t)
τ

=

s∑
k=1

s∑
l=1,l 6=k

ckl(t)(nk + 1)P (n− skl, t)

−
s∑

k=1

s∑
l=1,l 6=k

ckl(t)nkP (n, t) (4)

The master equation is then established after taking the limit τ → 0.
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Generating function method. A probability generating function (PGF) for a
vector x = (x1 x2 . . . xs) is defined by:

G(x, t) =
∑
n

xn1
1 xn2

2 . . . xns
s P (n, t) (5)

where
∑

n =
∑
n1
. . .
∑
ns
. Differentiating G(x, t) with respect to t and assuming that

the series is uniformly convergent, we obtain:

∂

∂t
G(x, t) =

∑
n

xn1
1 xn2

2 . . . xns
s

∂

∂t
P (n, t)

or

∂

∂t
G(x, t) =

∑
n

xn1
1 xn2

2 . . . xns
s

s∑
k=1

s∑
l=1

(νkl(n− skl, t)P (n− skl, t)− νkl(n, t)P (n, t)

(6)

Eq 6 can be simplified by (1) recognizing the following identity (e.g., for x1):∑
n

n1x
n1−1
1 xn2

2 . . . xssP (n, t) = x1
∂

∂x1
G(n, t),

(2) using the definition of PGF (Eq 5), and (3) rearranging the summation index to
obtain the following first-order linear partial differential equation (PDE):

∂

∂t
G(x, t) =

s∑
k=1

s∑
l=1,,l 6=k

ckl(xl − xk)
∂

∂xk
G(x, t), (7)

with an initial condition: G(x, 0) =
∑

n x
n1
1 xn2

2 . . . xns
s P (n, 0) The PDE by solved by

using the method of characteristics. The characteristics equations are: dx(ξ)
dξ = v where

v = (v1v2 . . . vs) and vi =
s∑

l=1,l 6=i
cik(xl − xi). Putting β(s) = G(x(ξ), t− ξ), we have:

dβ(ξ)

dξ
= v · ∇G(x(ξ), t− ξ)− ∂

∂t
G(x(ξ), t− sξ) (8)

from which a general solution can be deduced: G(x(0), t) = G(x(t), 0) = g(x(t)). The
system of the characteristics equations can be written as:

dx

dξ
= Ax (9)

where A is an s x s, (ckl)k,l∈{1,2,...,s}, matrix with elements of the form:
Akl = ckl − γkδkl with γk =

∑s
l=1 ckl and δkl is the usual Kronecker delta. Therefore,

the solution of 9 takes the form:

x(t) = Bx(0) (10)

where B(t) = expAt =
∞∑
k=1

(At)k

k! , i.e. the matrix exponential. Given, G(x, 0),

G(x(0), t) = g(Bx(0)). The solution of the PGF is then:

G(x, t) =
∑
n

s∏
i=1

(
s∑

k=1

Bik(t)xk

)ni

P (n, 0) (11)
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If we assumed all n0 individuals start in state S1, i.e. x
n0
1 , the solution of the PGF is

then:

G(x, t) =

(
s∑

k=1

Bik(t)xk

)n0

(12)

The probability density function of the state-configuration can be recovered from Eq 12
by using the definition of the PGF. We introduce a vector: zi = [zi1 zi2 . . . zis] where
i ∈ {1, 2, . . . , s} and the norm ||zi|| = zi1 + zi2 + . . .+ zis. Using the multinomial
theorem:

(x1 + x2 + . . .+ xs)
ni =

∑
||zi||=ni

zi!

zi1!zi2! . . . zis!
xzi11 xzi22 . . . xziss ,

we write (
s∑

k=1

Bik(t)xk

)ni

=
∑
zi

||zi||=ni

ni!

s∏
k=1

Bik(t)

zik!
xzikk (13)

Therefore, we have:

G(x, t) =
∑
n

s∏
i=1

(
s∑

k=1

Bik(t)xk

)ni

P (n, 0)

=
∑
n

s∏
i=1

 ∑
zi

||zi||=ni

ni!

s∏
k=1

Bik(t)

zik!
xzikk

P (n, 0)

=
∑
n

∑
z1...zs

‖z1‖=n1
...

‖zs‖=ns

s∏
i=1

 ∑
zi

||zi||=ni

ni!

s∏
k=1

Bik(t)

zik!

 s∏
k=1

x

s∑
i=1

zik

k P (n1, n2, . . . , ns, 0)

=
∑
n

∑
z1...zs

‖z1‖=n1
...

‖zs‖=ns

s∏
i=1

 ∑
zi

||zi||=ni

‖zi‖!
s∏

k=1

Bik(t)

zik!

 s∏
k=1

x

s∑
i=1

zik

k P (‖z1‖ , ‖z2‖ , . . . , ‖zs‖ , 0)

=
∑
n

∑
z1...zs

z1+z2+...+zs=n

s∏
i=1

(
‖zi‖!

s∏
k=1

Bik(t)

zik!
xzikk

)
s∏

k=1

xnk

k P (‖z1‖ , ‖z2‖ , . . . , ‖zs‖ , 0)

If we rearrange the last line, we have:

G(x, t) =
∑
n

xn1
1 xn2

2 . . . xns
s ∑

z1...zs
z1+z2+...+zs=n

s∏
i=1

(
‖zi‖!

s∏
k=1

Bik(t)

zik!
xzikk

)
P (‖z1‖ , ‖z2‖ , . . . , ‖zs‖ , 0)

 (14)

Therefore the solution to the master equation is obtained after equating the coefficients
in Eq 5 with Eq 11:

P (n, t) =
∑

z1...zs
z1+z2+...+zs=n

s∏
i=1

(
‖zi‖!

s∏
k=1

Bik
zik!

xzikk

)
P (n, 0) (15)
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If we assumed all n0 individuals start in state S1, i.e. x
n0
1 , the solution takes the form of

a multinomial distribution:

P (n, t) = n0!

s∏
m=1

Bnm
1m

nm!
(16)

Mean and variance of the master equation. The first moment of the master
equation can be computed by differentiating Eq 12 and set all x equal to 1, e.g. the
mean of the number of individuals in state Si, given all n0 individuals start in state S1,
is equal to:

φ(t) = n0B1i(t) (17)

For an arbitrary initial distribution, the mean of the number of individuals in state Si is
given by:

φai (t) =
∑
n

s∑
k=1

nkBki(t)P (n, t) (18)

The variance of the master equation can be derived by using the following relationship:

Vi(t) =
∂2

∂xi2
G(x, t)

∣∣∣∣∣
x=1

+ φi(t)− φi(t)2 (19)

The variance of the number of individuals in state Si, given all n0 individuals start in
state S1, is equal to:

Vi(t) = n0B1i(t)(1−B1i(t)) (20)

The variance of the number of individuals in state Si for an arbitrary initial distribution
is given by:

V ai (t) =
∑
n

 s∑
k=1

nkBki(t)

(nk − 1)Bki(t) +

s∑
l=1,l 6=k

nlBli(t) + 1

P (n, t) + φai (t)
2

(21)
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