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Lattice-Boltzmann model for fluid

In the D2Q9 (short for 2 dimensions, 9 discrete velocities) model, the es-
sential variable is the distribution function. A distribution function f =
(f0, f1, ...f8)T is defined at a given time step tn = n∆t and on a two dimen-
sional regular mesh xij = (i∆x, j∆x), where i, j and n ∈ Z, ∆t and ∆x are
the temporal and spatial steps respectively, their ratio c = ∆x/∆t defines
the lattice speed. 9 micro-velocities are defined as

[c0, c1...c8] =

[
0, 1, 0,−1, 0, 1,−1,−1, 1
0, 0, 1, 0,−1, 1, 1,−1,−1

]
· c (S1)
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and macro quantities (density, and thus the pressure, and the velocity field)
can be obtained in terms of the micro-veolicties and the distribution function

[ρ, ρu] =
8∑

k=0

[fk, ckfk] (S2)

For the evolution of the distribution function fk the Bhatnagar-Gross-Krook
(BGK) assumption (single relaxation time towards local equilibrium) is adopted
and reads

fk(tn+1,xij + ck∆t) = fk +
1

τf
(f eqk (ρ,u)− fk) + ∆tFk (S3)

In which, τf = 3µ∆t/ρ∆x2+1/2 is the relaxation time, f eqk (ρ,u) is an equilib-
rium distribution function defined on the mesh based on macro restrictions,

f eqk = wkρ
[
1 + 3ck · u + 9/2(ck · u)2 − 3/2(u · u)c2

]
(S4)

Fk is the body force arising from the vesicle force on the fluid

Fk =

(
1− 1

2τf

)
wk(3(ck · u) + 9(ck · u)ci) · F (S5)

wk is the weight factor taking the values w0 = 4/9, w1∼4 = 1/9, w5∼8 =
1/36. It is proven by asymptotic analysis [4] that with condition ∆t/∆x2 ∼ 1,
Eqn. (S3) converges to Eqn. (3) in the main text with an error term
O(∆x2 + (u/c)2). From the error term we can infer that the velocity magni-
tude must be kept small compared to c, typically u/c is taken smaller than
0.005 in this study to ensure a good accuracy. A classic bounce-back treat-
ment [4] is employed to deal with non-slip condition, and we use periodic
boundary conditions along the flow direction.

The implementation of periodic and bounce-back boundary conditions is
straightforward. However, in the case of a shear flow and a bifurcation in a
vessel network, where a velocity has to be imposed at the bounding walls, a
special treatment is employed, as described in [5]. The discretization of the
vesicle membrane is made via a spring model proposed in [7], which is also
well validated in [6]. The vesicle model and fluid equations are coupled via
the immersed boundary method (IBM). The crux of the IBM is to replace
the 1D membrane as a 2D band having a finite extent (albeit small, typically
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of the order of one to two mesh sizes). This is done thanks to a smoothed
delta function form in the force term F(x) from the Navier-Stokes equation
Eqn. (3) and the shape evolution equation Eqn. (2) in the main text.

For simulations in shear flow and Poiseuille flow (long straight channel and
bifurcation), lattice sizes ∆x = 0.15µm and 0.2µm are adopted respectively,
corresponding to 245 and 183 vertices to represent the vesicle membrane.
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Lattice-Boltzmann model for advection-diffusion

of the solute

Similar to Navier-Stokes equation, advection-diffusion equations can also be
derived from a discrete Boltzmann equation with a proper equilibrium func-
tion. The simplest yet effective advection-diffusion lattice boltzmann model
is D2Q5 BGK model, which contains 5 discretized micro velocities. We will
also use the first five micro velocities defined in Navier-Stokes LBM, see Eqn.
(S1). Similar to Navier-Stokes LBM, we start by defining the distribution
function gk on the same mesh as fk, and the evolution equation of which is
given by

gk(tn+1,xij + ck∆t) = gk +
1

τg
(geqk (ρ,u)− gk) + w

(g)
k R (S6)

The equilibrium distribution function is defined as

geqk = w
(g)
k a (1 + 3ck · u) (S7)

The solute concentration can be calculated from gk from the relation

a =
4∑

k=0

gk, (S8)

where w
(g)
0 = 1/3, w

(g)
1−4 = 1/6, τg = 3D∆t/∆x2 + 1/2. Equation (S6)

converges to the advection-diffusion Eqn. (5) in the main text with second

order precision [4]. The last term on the right hand side w
(g)
k R represents the

reaction term. As stated before, chemical reactions will not be considered,
but we found it worthwhile to mention at this stage how it can easily be
implemented.

During time evolution the fictitious particle (whose distribution function
gk is solved outside the vesicle Ωex ) located initially at position x may collide
with a vesicle membrane point represented by X. The evolution, as seen
before, can also be as well represented geometrically by the evolution of the
vector x from x to x+ci∆t. At this intersection point we have to specify the
boundary condition in a way that mimics the ATP release condition we have
adopted. A boundary condition inspired from Bounce-Back in Navier-Stokes
LBM is developed to deal with this situation. Marking the right hand side
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of Eqn. (S6) as post-collision function g∗k, the general Neumann boundary
condition (Eqn. (6) in the main text) is implemented via replacing Eqn. (S6)
by

gk̄(tn+1) =
c+ 3(u · ck)
c− 3(u · ck)

g∗k +
1

c− 3(u · ck)
D · ψ (S9)

Recall that ψ is the ATP release condition that depends on local states
of the membrane. The subscript k̄ represents the direction that opposite to
direction of gk. This boundary condition provides second order precision if
the boundary is parallel to the mesh of the lattice, otherwise it has first order
precision (for a curved boundary or a straight boundary which is tilted with
respect to the lattice)[3]. It is worth mentioning that for a static boundary
and zero-flux condition, where u and F are both zero, the boundary scheme
Eqn. (S9) will reduce to a pure bounce-back scheme.

The concentration a is defined only in Ωex. In situations when the vesicle
shape evolves, a lattice point located near X(s) may lie in Ωin at a given
time step but flip into Ωex in the new time step. A refilling process is needed.
The evolution equation of the distribution function gk is composed of a linear
advection term, represented by ck, and a non-linear BGK collision term. This
mixture of terms makes the numerical scheme a formidable task. A second
order extrapolation scheme is implemented here as a result of compromise
between accuracy and computational complexity.

As shown in Fig. S1, let us assume that a cell tumbling motion causes a
lattice to flip from Ωin into Ωex. A set of neighboring points is required for
a lattice refilling process. A collection of subscripts S = {k|k ∈ [1, 2...4],x +
ck ∈ Ωex,x + 2ck ∈ Ωex} is defined on the lattice x. The refill process can be
written as

gk =

∑
k′∈Srefill

wk′ [2gk(t,x + ck′)− gk(t,x + 2ck′)]∑
k′∈Srefill

wk′
(S10)

This refill process introduces an acceptable cumulative error in the sim-
ulations time scales of interest. Note that the maximum velocity for vesicle
must be significantly smaller than c, which is already satisfied in the IBM
coupled LBM solver.

In all simulations, the ATP concentration is solved on the same mesh as
that used for the fluid.
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Figure S1: Schematics for refill process of boundary lattices
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Figure S2: Shear stress vs viscosity contrast
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ATP release level under shear with different

µin and fixed µex = 1 mPa·s
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Figure S3: Under linear shear flow with an adequately large shear rate,
increasing µin (as well as λ = µin/µex) results in a drop of ATP release level
due to the reduction of curvature change in TT to TB transition.
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Mean shear stress and deformation level in a

long straight channel

0 0.2 0.4 0.6 0.8
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Cn

〈σ
m
e
m
〉
(P

a
)

 

 

Ca = 5

Ca = 10

Ca = 15

Ca = 50

Ca = 90

Figure S4: mean shear stress in long straight channel

0 0.2 0.4 0.6 0.8
10

−2

10
−1

10
0

10
1

10
2

10
3

Cn

〈ċ
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Figure S5: mean curvature change in long straight channel

Since the gray dashed line in Fig. S5 represents the critical curvature
change ċc = 200µm−1s−1, it is clearly seen that the ATP release levels in
long straight channel are not affected by shape deformation, but only by
shear stress.

8



Estimation of the phenomenological ATP flux

coefficient kσ

From the experimental configuration in [1] we know that the RBC solution
has a Hematocrit ht = 1%. The suspension is subjected to a linear shear
flow for a period of time T = 30 s. Comparing to typical plasma ATP con-
centration a0 = 1000 nmol/L (value from [2]), the experiments [1] reported
that the relative amount (compared to static conditions) of ATP release is
three-fold, f = 3, in the plateau regime of Fig. 2 (upper) in the main text.
The total amount of ATP release from a RBC during this 30 s can then be
estimated as

Φtot = fa0 · (
4

3
πR3

0τ/ht) (S11)

Since our ATP release criterion is based on the surface stress of the cell, kσ
has a dimension of a flux per unit area and unit time, and taking 4πR2

0 for
the area of a RBC, we obtain the following estimate for kσ

kσ ≈
Φtot

4πR2
0 · T

≈ 7× 103(nmol/L) · µm/s

(S12)

Recall that the characteristic radius R0 = 3µm and the reduced volume
(or reduced area in 2D) τ = 0.7.
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Lateral migration of a RBC after bifurcation

We have investigate different angles (defined in Fig. S6) between feeding
channel and down-stream branching channels. The angles are varied in the
range of 0◦ < θ1, θ2 < 90◦ with an indentation of 30◦. Moreover, we have
initially set the vesicle at different positions, such are: center-line (lateral
position 0), faster zone (lateral position 0.25) and slower zone (lateral position
-0.25); see Fig. S6. The capillary numbers are taken as Ca = 5 and 50 (as
defined in the main article, Ca is proportional to velocity). The confinement
Cn = 0.3 is chosen to be the same value as used in the main text.

We find for most cases that when a vesicle is initially located at the center-
line it will be ”scattered” to an off-centered lateral position (the middle panel
in Fig. S6 (b)). Consider a vesicle in a vessel network, which has been off-
centered. After some time it has some probability to go back to the center-
line if it enters the faster zone of a daughter branch (the upper panel in Fig.
S6 (b)). However, even if it goes back to the centerline by this scenario,
this vesicle will be again scattered towards off-centered position after the
next bifurcation. When a vesicle enter the slower zone, its probability to get
off-centered becomes high (see the lower panel in Fig. S6).

This gives a hint to the idea that within a complex vessel network (with
many bifurcations), an RBC will often go to off-center position due to the
presence of bifurcations.
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Figure S6: (a) Schematic for definition of θ1, θ2, normalized lateral position
and faster (upper) / slower (lower) zone. The dashed line represents the
border (or separation line) for streamlines entering faster or slower branch.
Streamlines are solid lines with colors representing their relative velocity
(yellow for fast, green for median and blue for slow). The dashed-dotted lines
represent the centerlines of feeding and branching channels. A normalized
lateral distance of two parallel walls in a given channel is defined as −0.5 and
0.5, counted from the centerline (the latter is defined to be the zero line).
(b) Simulation results with different bifurcation angles, initial position and
speeds. Curves on the right panel rendered in red indicate that the RBCs
enter the faster branch, while colors close to blue refer to RBCs entering the
slower branch.
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