

Supplementary Figure 1: Sensitivity of root growth of Col-0 and the *heb* mutants to oxidative stress

Oxidative stress was caused by methyl viologen. After 5 d incubation on normal media, plants were transferred to media containing indicated concentrations of methyl viologen. Then the elongated primary root length during additional 4 d incubation was measured. Values were represented as ratio relative to the value under 0 nM condition (n=13–16, average \pm s.e.m; **P*<0.05, compared with Col-0, Student's *t*-test).

Supplementary Figure 2: Mapping of heb3-1 and heb7-1 mutations

(**a**,**b**) Map position of the *heb3-1* (**a**) and *heb7-1* (**b**) mutations. The markers used and the number of chromosomes at each marker position over the number of total chromosomes analyzed is shown. Scale bars, 20 kb.

Supplementary Figure 3: GFP fused RPN8a and RPT5a expressions in RAM

Expression patterns of GFP fused RPN8a and RPT5a in RAM of transgenic plants used in Fig. 2c and 2d. Nine day-old seedlings grown on normal media were observed by confocal microscopy. Magnified images (lower panels) show subcellular localizations of each protein. Scale bars, 50 μ m (upper) and 5 μ m (lower).

Supplementary Figure 4: RPT2a and RPN2a are also required for the

tolerance to high-B stress in RAM

(a) Sensitivity of root growth of Col-0 and various mutants of RPs. Plants were grown on 0.03 and 3 mM B condition for 10 d. Then the primary root length was measured. Values were represented as ratio relative to the value under 0.03 mM B condition (n=10-20, average \pm s.e.m; **P*<0.05, compared with Col-0, Student's *t*-test). (b,c) Gene structure and T-DNA insertion sites in *RPT2a* (b) and *RPN2a* (c). Blue and green boxes indicate coding regions and untranslated

regions, respectively. (d,e) Short-root phenotypes of T-DNA inserted mutants of *RPT2a* (d) and *RPN2a* (e) grown under normal- (left) and high-B (right) conditions for 14 d. Scale bars, 1 cm. (f) Representative images of root morphology of the *rpt2a* and the *rpn2a* mutants under normal- and high-B conditions. Arrowheads indicate the border between meristem and elongating region. Scale bars, 50 μ m. (g) Effect of high-B stress on the number of cortex cells in the RAM of Col-0, the *rpt2a*, and the *rpn2a* mutants. Red circles represent the ratio relative to the value under 0.03 mM B condition (n=10–16, average ± s.e.m; **P*<0.05, compared with Col-0, Student's *t*-test).

Sensitivity of root growth in Col-0, *rpt5a-4* and *rpn8a-2* to high-B stress by the transplant method. Values are represented as ratios relative to the values at 0.03 mM B (n=14–16, average \pm s.e.m; **P*<0.05, compared with the wild type, Student's *t*-test).

Supplementary Figure 6: Hypersensitivity of the RP subunit mutants is not caused by over accumulation of B

Boron concentrations in roots of Col-0, *rpt5a-4* and *rpn8a-2* grown under normaland high-B conditions (n=4, average \pm s.e.m; *P*< 0.05, one-way ANOVA and Tukey HSD).

Supplementary Figure 7: RAM morphology of RPN8a-GFP expressing *heb3-1* and RPT5a-GFP expressing *heb6-1* and *heb7-1*

Representative images of root morphology of Col-0, *heb3-1*, *heb6-1*, *heb7-1*, RPN8a-GFP expressing *heb3-1*, and RPT5a-GFP expressing *heb6-1* and *heb7-1* transgenic plants grown under normal- and high-B conditions.

Supplementary Figure 8: Analysis of DSB repair in root tips of rpt5a

Time course of DSB levels in root tips of Col-0 and *rpt5a-4* after transient DSB induction by γ -irradiation (n=121, average ± s.e.m; *P*<0.05, one-way ANOVA and Tukey HSD). This data was used for the calculation of DSB repair kinetics shown in Fig. 4d.

Supplemental Figure 9: Identification of poly-Ub proteins responsible for the hypersensitivity of the *rpt5a* mutants to high-B stress

(a) Schematic representation of identification of accumulated poly-Ub proteins in roots. Immunoblot analysis indicates enrichment of poly-Ub proteins in roots. (b) Proteins separated onto SDS-PAGE gel were divided into six fractions. Extracted proteins from each fraction were subjected to LC-MS/MS analysis. (c) Number of identified poly-Ub proteins in each sample. Among four independent analyses, only proteins detected at least two times were used. The details of the proteins were listed in Supplementary Data 1. (d) Comparison of identified poly-Ub proteins which accumulate depending on high-B stress, loss of RPT5a function, and both factors. Twelve proteins specifically accumulated in high-B treated *rpt5a-6* are listed in Supplementary Table 1.

Supplementary Figure 10: Analysis of transgenic plants showing

enhanced expression of BRM

- (a) Expression levels of BRM mRNA in the roots of 7 d-old transgenic plants
- (n=4, average ± s.e.m; **P*<0.05, compared with Col-0, Student's *t*-test).

(b) Representative images of root morphology of two transgenic plants treated with normal- and high-B for 4 d. Arrowheads indicate the border between the meristem and elongating region. Below is the magnified image of stem cell niche. Scale bars, 50 μm.

(c) Effect of high-B stress on the number of cortex cells in the RAM of Col-0 and two transgenic plants. Red circles represent the ratio relative to the value under 0.03 mM B condition (n=19-20, average \pm s.e.m; **P*<0.05, compared with Col-0, Student's *t*-test).

(d) Levels of DSBs in root tips of two transgenic plants treated with normal- and high-B for 4 d (n=125 nuclei, average \pm s.e.m; **P*<0.05, compared with Col-0, Student's *t*-test).

(e) Sensitivity of root growth of two transgenic plants to DSBs-inducing factor, zeocin. Values for root elongation are represented as the ratio relative to the value of Col-0 under 0 μ M zeocin condition. Red circles represent the ratio relative to the value under 0 μ M zeocin condition (n=26, average ± s.e.m; **P*<0.05, compared with Col-0, Student's *t*-test).

12

Supplementary Figure 11: Effects of high-B stress on histone

modifications H3K9me1 and H3K4me3

Levels of histone H3 acetylation in roots of Col-0 and *the rpt5a* mutants grown under normal- and high-B conditions. Lower panel shows the relative level of indicated histone H3 modification normalized against total histone H3 (n=3, average \pm s.e.m; **P*<0.05, compared with Col-0 under 0.03 mM B condition, Student's *t*-test).

Supplementary Figure 12: High-B stress and TSA treatment reduces chromatin integrity

(a,b) Chromatin integrity was analyzed by MNase assay. After 5 d incubation on normal media, plants were transferred to media containing indicated concentration of TSA (a) or B (b). Representative images of MNase assay were shown. Values were represented as ratio of undigested chromatin intensity relative to that under 0 min MNase treatment. Average \pm s.e.m. (n=3) were shown. Asterisks indicate significant differences between Col-0 under the normal condition and treatment or mutation (*P*< 0.05, Student's *t*-test).

Supplementary Figure 13: DSBs in RAM is a major cause of root growth inhibition caused by high-B stress

Relationship between root growth and DSB levels in root tips under high-B conditions using data from Fig. 4b and Supplementary Fig. 5. A correlation between the extent of DSB levels and the extent of root growth inhibition was observed.

Supplementary Figure 14: A schematic model for the inhibitory mechanism of DSBs caused by high-B stress in *Arabidopsis*

High-B stress destabilizes chromatin *via* increased histone acetylation. 26SP degrades BRM, which preventing overfuncition of BRM on further chromatin destabilization and subsequent increased susceptibility to DNBs inducible factors. It is noted that the inhibitory effect of high-B stress on HDAC activities in *Arabidopsis* was not confirmed in this study.

Sensitivity of root growth of Col-0 and *rpt5a-4cap-g2-2* to high-B stress. After 5 d incubation on normal media, plants were transferred to media containing indicated concentrations of B. Then the elongated primary root length during additional 4 d incubation was measured. Values were represented as ratio relative to the value under 0.03 mM B condition. Average \pm s.e.m. (n=14–19) were shown. Asterisks indicate significant differences between Col-0 and each mutant (*P*<0.05, Student's *t*-test). There are no significant differences between *rpt5a-4* and *rpt5a-4cap-g2-2* (*P* \geq 0.05, Student's *t*-test).

Supplementary Figure 16: Uncut blots

The red sections mark blot results shown in the indicated figures.

Figure 9g

H3ac	
ferris from tring anna	

Η3

Supplementary Figure 17: Uncut blots

The red sections mark blot results shown in the indicated figures.

Supplementary Figure 11

Supplementary Figure 18: Uncut blots

The red sections mark blot results shown in the indicated figures.

Supplementary Tables

Supplemenatry Table 1. Poly-Ub proteins specifically accumulated in <i>rpt5a-4</i> treated with high

	Annotation	Number of motifs			
		PEST	KEN-box	D-box	
AT1G04940	TIC20 (Translocon at chroloplast membrane)	0	0	1	
AT1G49340	PI4K (Phosphatidylinositol 4-kinase alpha)	2	0	9	
AT1G59890	SNL5 (SIN3-like 5)	2	3	1	
AT1G74430	MYB95	1	0	0	
AT2G20805	DNA-binding storekeeper protein-related	0	0	0	
AT2G46020	BRM/CHR2 (Chromatin remodeling 2)	2	1	2	
AT3G06980	DEAD/DEAH box helicase	2	1	1	
AT3G07980	MAPKKK6	3	1	3	
AT3G58530	RNI-like superfamily	0	0	1	
AT4G23950	Galactose-binding protein	0	1	0	
AT5G10170	MIPS3 (Myo-inositol-3-phosphate synthase)	0	0	1	
AT5G27220	Frigida-like protein	1	0	2	

See also Supplementary Fig. 4 and Data 1 for the screening strategy and the list of detected proteins, respectively.

Supplementary Table 2. List of 1-DNA inserted indiants used in this study			
			williants
	RP11a	At1g53/50	
	RPI10	At1g53780	SALK_106176 (<i>rpt1b</i>)
	RP12a	At4g29040	SALK_130019 (<i>rpt2a-1</i>)
			SALK_005596 (<i>rpt2a-2</i>)
	RPT2b	At2g20140	SALK_043450 (<i>rpt2b-1</i>)
	RPT3	At5g58290	SALK019265 (<i>rpt3</i>)
RPTs	RPT4a	At5g43010	SALK_052732 (<i>rpt4a</i>)
14 10	RPT4b	At1g45000	SALK_101982 (<i>rpt4b</i>)
	RPT5a	At3g05530	SALK_046321 (<i>rpn5a-4</i>)
			heb6-1/rpt5a-5
			heb6-2/rpt5a-6
	RPT5b	At1g09100	SAIL_293_H08 (<i>rpt5b-</i> 3)
	RPT6a	At5g19990	SAIL_443_F04 (<i>rpt6a</i>)
	RPT6b	At5g20000	GABI_483G04 (<i>rpt6b</i>)
	RPN1a	At2g20580	
	RPN1b	At4g28470	
	RPN2a	At1g08140	SALK_088636 (<i>rpn2a-1</i>)
			SALK_135609 (rpn2a-2)
	RPN2b	At2g32730	SALK_024347 (<i>rpn2b</i>)
	RPN3a	At1g20200	
	RPN3b	At1g75990	SALK_117415 (<i>rpn3b-1</i>)
			SALK_088176 (<i>rpn3b-2</i>)
	RPN5a	At5g09900	
	RPN5b	At5g64760	SALK_134671 (<i>rpn5b-1</i>)
			SALK_133892 (<i>rpn5b-2</i>)
RPNs			SALK_127791 (<i>rpn5b-3</i>)
	RPN6	At1g29150	
	RPN7	At4g24820	
	RPN8a	At5g05780	SALK_151595 (<i>rpn8a-2)</i>
			heb3-1/rpn8a-3
	RPN8b	At3g11270	SALK_009871 (<i>rpn8b</i>)
	RPN9a	At5g45620	SALK_043310 (rpn9b)
	RPN9b	At4g19006	
	RPN10	At4g38630	SALK 009616 (rpn10-2)
	RPN11	At5g23540	/
	RPN12a	At1g64520	
	RPN12b	At5q42040	
	BRM	At2q46020	SALK 088462 (brm-3)
	HDA6	AT5a63110	axe1-4
	HDA19	AT4g38130	SALK 139445
			<u> </u>

Supplementary Table 2. List of T-DNA inserted mutants used in this study

Experiment	Primer Name	Primer sequence (5' to 3')	Remarks
T-DNA insertion	SALK (pROK2) LBb1	GATGGCCCACTACGTGAACCAT	
	SALK (pROK2) LBa1	TGGTTCACGTAGTGGGCCATCG	
	SALK (pROK2) LBb1.3	ATTTTGCCGATTTCGGAAC	
	SALK (088636 (rpn2a-1) F	TTCTCATTCCTTTGTCAACCG	
	SALK_088636 (rpn2a-1) R	AGCATGCATAATGGCATTAGC	with LBb1
	SALK 135609 (rpn2a-2) F	AATCGTGTTTGTTGTTCATACAC	
	SALK 135609 (rpn2a-2) R	AGCTCAAACAATCCAAATCCC	with LBb1
	SALK 024347 (rpn2b) F	TGAAGGTTGTCCAGGTTTCAG	
	SALK 024347 (rpn2b) R		with LBb1
	SALK 117415 (rpn3b-1) F	CTGCAAAAACATTGAAAAGGG	
	SALK 117415 (rpn3b-1) R		with LBb1
	$SALK_088176(rpn3b-2)$ F		
	SALK 088176 (rpn3b-2) R		with LBb1
	SALK_134671 (rpn5b-1) E		
	SALK_134671 (101100-1)_F		with LBb1
	SALK_134071 (10130-1)_K		
	SALK_133092 (10100-2)_F		with LBb1
	SALK_133092 (101100-2)_R		
	SALK_127791 (10150-3)_F		with LBb1
	SALK_127791 (<i>rpn5b-3</i>)_R		
	SALK_151595 (<i>rpn8a-3</i>)_F		with LBb1
	SALK_151595 (<i>rpn8a-3</i>)_R	GGCCTAAGCCTAACGAACTTG	
	SALK_009871 (<i>rpn8b</i>)_F		with LBb1
	SALK_009871 (<i>rpn8b</i>)_R		
	SALK_043310 (<i>rpn9b</i>)_F	TIGGATCTTCCAACTTTCGTG	with LBb1
	SALK_043310 (<i>rpn9b</i>)_R		
	SALK_009616 (<i>rpn10-2</i>)_F	GIIGCIAGAICAGGCAAIIGC	with LBb1
	SALK_009616 (<i>rpn10-2</i>)_R	AAAACTACAGCTCGCATGTGG	
	SALK_046321 (<i>rpn5a-4</i>)_F	TCCAACATAGTCCTCTGCAC	with LBb1.3
	SALK_046321 (<i>rpn5a-4</i>) _R	TGATCTTGACTCGCAACGGA	
	SALK_049790 (<i>cap-h2-2</i>)_F	GGTTGCAAATTCAAATGTTCG	with LBb1.3
	SALK_049790 (<i>cap-h2-2</i>)_R	TTCCAATGAGGTCACAAAAGG	
	brm-3_F	ACCTTCCTTGTCGATTCTCC	with I Ba1
	brm-3_R	GAAACTGTCCATGATGTACC	
Complementation	RPN8a/HEB3 genomic_F	CACCTTTCTAAGCCTCGCCGAGAC	
	<i>RPN8a/HEB3</i> genomic_R	GCTGGTGGCAGGTATGGCCACAGGCTTT	
	<i>RPT5a/HEB6</i> genomic_F	CACCCTCTAGAGGTTCCCAATTAG	
	RPT5a/HEB6 genomic_R	GGCGTAGTAGTTCAAGCTTG	
Overexpression	BRM3 CDS_F	CACCATGCAATCTGGAGGCAGTGG	
	BRM3 CDS_R	TAAATGGCTAGGCCGTCTTTTACC	
RT-PCR	<i>BRCA1</i> (At4g21070)_F	CCATGTATTTTGCAATGCGTG	
	<i>BRCA1</i> (At4g21070)_R	TGTGGAGCACCTCGAATCTCT	
	<i>RAD51</i> (At5g20850)_F	CGAGGAAGGATCTCTTGCAG	
	<i>RAD51</i> (At5g20850)_R	GCACTAGTGAACCCCAGAGG	
	GR1 (At3g52115)_F	GAAGGAGCAGACAAAGTGAG	
	<i>GR1</i> (At3g52115)_R	GGTGAGATGGAAGTGATAGG	
	<i>PARP1</i> (At4g02390)_F	GCTTTGGGAGACATGAATGAAC	
	<i>PARP1</i> (At4g02390)_R	AAGTGGAACAACAACACCGTCT	
	<i>Actin8</i> (At1g49240)_F	GCCAGATCTTCATCGTCGTG	
	Actin8 (At1g49240)_R	TCTCCAGCGAATCCAACCTT	

Supplementary Table 3. Primers used in this study

	Markannana	<u>, т</u>	Primer Sequence (5' to 3')	Product size	
LOCI	Marker name	Туре		Col-0	Ler
heb3 T32M21	T22M21	991 D	GAGAACCAGATGATCCAAGTCC	102	183
	1 321012 1	SSLF	ATCCACCAATGCTACGTTCC	195	
		991 P	AAAAACCCAAACTTTCTATTTATAC	124	113
		SOLP	ACTTCGCTTCAAGTAAAGAGG		
	F8I 15	15 <u>SSID</u>	AAAAATCAGCATTGTTGTGGTT	240	196
	10215	SSEP	GCTTGACTCCGGTGTTGACT		
	K18123	SSI P	TTGCTACAACTTGCGATTCC	213	223
			TTAAAGGTTTCCGGTGTACG		225
	MOP10	SSI P	CTTGCACTACATGTCCATAGAACC	248	250
		OOEI	ATCGTGAGCCTTATCAACTTGC	240	200
	M113a	SSI P	TGCCAAAAGACAGAAACGAA	145	112
		OOEI	ATTGATTTGCAAAATGAGTATCC	140	
	MLISh	IJ3b SSLP	GGATCCAGGGTCTGACTCAA	177	168
			GAACCAGCAGCAAGTGAACA		
	MJJ3c	SSI P	CCTCTCCCTTGGTTCTTTCTTC	222	234
		OOLI	CTGACTTCAGCTTTGGGTAAGG		
heb6	nga172	SSI P	CATCCGAATGCCATTGTTC	162	136
		OOEI	AGCTGCTTCCTTATAGCGTCC		
	T12H1	SSI P	AGGTTAGCGATTGAAGTTTCG	246	233
		- COEI	AAAAGCAGTGTTGGGGAAGA		
	F22F7a	SSI P	TTGTCACCACATTAATTCCAAG	242	177
		OOEI	GAACCCCTGAACTCTGCAAC		
	F22F7h	SSI P	CAATGCCAGCTGCAAAGTTA	220	203
		OOEI	CGCCGTTAGTTTACCCAAAA	220	
	F18C1a	SSI P	ACTGCTGCTCCTAACCAGTCTC	210	200
		OOEI	GCAGTTGAACAATACCCTCCTC		
	F18C1b	SSI P	CCGGTGGAGAAAAGAACAAA	165	161
		001	GGAAATCCGGCTAGTGAGAA	100	
	F18C1c	SSLP	TTTGTGCTGGGTTTCAATCA	157	149
			TGTGTGATGGAATCAATTTGG		

Supplementary Table 4. Primers for mapping of heb mutations