Supplementary information

Bioconjugation strategy for cell surface labelling with gold nanostructures designed for highly localized pH measurement

Leonardo Puppulin¹, Shigekuni Hosogi^{1,2}, Hongxin Sun³, Kazuhiko Matsuo⁴, Toshio Inui^{5,6}, Yasuaki Kumamoto⁷, Toshinobu Suzaki⁸, Hideo Tanaka⁷ and Yoshinori Marunaka^{1, 5,9}

¹Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kyoto 602-8566, Japan

⁴Department of Anatomy and Developmental Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kyoto 602-8566, Japan

⁵Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan

⁶Saisei Mirai Clinics, Moriguchi, 3-34-8 Okubocho, Moriguchi-shi, Osaka 570-0012, Japan

⁷Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kyoto 602-8566, Japan

⁸Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan

⁹Research Institute for Clinical Physiology, Kyoto Industrial Health Association, 67 Kitatsuboi-cho, Nishino-kyo, Nakagyo-ku, Kyoto 604-8472, Japan

²Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan

³College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan

Supplementary Figure 1: Confirmation of cell surface labelling by NHS-B.

CFM analysis was performed on MKN28 cells after treatment in isotonic buffer solution at pH 8 with NHS-B functionalized with Alexa-SA, as shown in the sketch of (a). The confocal fluorescence images collected from the cell cluster in (b) are shown at different positions of the focal plane: $z=3 \mu m$ (c), $6 \mu m$ (d), $10 \mu m$ (e), $13 \mu m$ (f) and 18 (g) μm (z=0 is the position of the glass bottom dish). In Supplementary Movie 2, we combined the collected images to create a movie of the *z*-stack sections through the cells. Scale bar: $10 \mu m$.

Supplementary Figure 2: Buffer solution pH effect on the yield of membrane protein biotinylation.

CFM analysis was carried out on cells treated with Alexa-SA/NHS-B in isotonic buffer solution at different pH. From each reported image, we calculated representative fluorescence intensity profiles from in-plane line scans, which are depicted with white arrows. In (a)-(c) are shown the intensity plots obtained from the fluorescence images on the left, which were collected on cells treated at pH = 8.0 at different *z*-position of the focal plane (z = 0 is the position of the glass bottom dish). The length of the arrows is 50 µm. Similarly, (d)-(f) report results from a cluster of cells treated at pH = 7.6 (fluorescence images on the right, length of the arrows: 40 µm).

Supplementary Figure 3: Comparison between spectral features of HPDP-B and 2-Py.

Typical SERS spectra of HPDP-B (a) and 2-Py thiolate (b) collected from AuNP colloidal solutions after conjugation. The assignments of the labelled bands are reported in *Supplementary Table 1*.

Band number	SERS band position $[cm^{-1}]$	Band assignment	Reference
1	436	β(CCC), δ(C–S) - 2Py	[1]
2	636	6a, γ(CCC) - 2Py	[1]
3	680	v(C–S) - BH	[4]
4	717	v(C–S) - 2Py	[1]
5	747	v(C–S) - BH	[4]
6	1001	1a, Ring breathing - 2Py	[1],[2]
7	1051	18a, β(C–H) - 2Py	[1], [2]
8	1081	18b, δ(C–H) - 2Py	[1]
9	1116	12a, Ring breathing/v(C–S) - 2Py	[1],[2]
10	1220	Ureido ring+ $\delta(CH_2)$ – BH	[3]
11	1229	$\gamma(NH)/\delta(NH)$ - 2Py	[1]
12	1367	$\delta_\omega(CH_2)-BH$	[5]
13	1414	19b, v(C=C)/v(C=N) - 2Py	[1]
14	1448	$\delta_s(CH_2) - BH$	[3]
15	1466	$\delta_s(CH_2) - BH$	[3]
16	1546	8b, v(C=C) - 2Py	[1],[2]
17	1579	8a, v(C=C) - 2Py	[1]
18	1609	$\delta_{s}(CH_{2})$ - BH	[3]

 γ =out-of-plane deformation; β = deformation; v=stretching; δ_{ω} =wagging; δ_s =scissoring; 2Py=2-pyridine thiolate; BH=biotin-hexyl spacer arm thiolate

Supplementary Table 1: Band assignments of the spectra in Supplementary Figure 3.

Supplementary Figure 4: Axial resolution of the laser probe estimated using fluorescence spectroscopy and SERS.

Fluorescence (a) and SERS (b) intensities profiles were obtained from *z*-axis line scans through one 50 nm fluorescent bead attached to the glass substrate and through the AuNP of *Fig.* 8 in the manuscript, respectively. The experimental trends were fitted using Lorentzian function describing the intensity axial profile of the laser probe. The FWHM estimated from the data in (a) was 3.1 μ m, while in (b) was 3.8 μ m.

Supplementary Figure 5: Typical SERS spectrum collected from microscopic aggregations.

Supplementary Figure 6: Effect of EIPA on the average cytosolic pH measured in MKN28 cells.

Cytosolic pH was measured by fluorescence spectroscopy after internalization of a pH-sensitive dye. Measurements were collected at different time before and after addition of EIPA (error bars show the standard deviation from the mean of n = 4 measurements). Source data are provided as a Source Data file.

Supplementary Figure 7: Further examples of hyperspectral maps of cell surface pH.

The results were obtained from MKN28 (a), HepG2 (b) and MKN28 treated with EIPA (c)-(d). Scale bars: 10 μ m.

Supplementary Figure 8: Typical SERS spectra collected from cell surface.

Example spectra obtained from the analyses of MKN28 cells treated with 4-MBA conjugated AuNP and representative of locations at different local surface pH. At pH = 6.9 (a) and 6.5 (b), the contribution of band B to the total intensity of COO⁻ symmetric stretching is still strong. Conversely, at pH 6.0 (c) and 5.4 (d), the weak intensity is mainly represented by band A. (a) and (d) are also reported in Fig. 9 (g) - (h) of the manuscript.

Supplementary Figure 9: Raman spectra for the calculation of the enhancement factor.

(a) Normal Raman spectrum (NRS) of 200 mM 4-MBA in ethanol solution compared to SERS spectrum from 1 μ M 4-MBA colloidal solution of AuNP. (b) NRS spectrum of 4-MBA in ethanol solution shown in (a) was obtained after subtraction of the ethanol spectrum.

References:

- [1]Baldwin, J. A., Vlčková, B., Andrews, M. P. & Butler, I. S. Surface-Enhanced Raman Scattering of Mercaptopyridines and Pyrazinamide Incorporated in Silver Colloid– Adsorbate Films. Langmuir 13, 3744-3751 (1997).
- [2]Nalbant Esenturk, E. & Hight Walker, A. Surface enhanced Raman scattering spectroscopy via gold nanostars. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering 40, 86-91 (2009).
- [3]Fraire, J. C., Pérez, L. A. & Coronado, E. A. Cluster size effects in the surface-enhanced Raman scattering response of Ag and Au nanoparticle aggregates: experimental and theoretical insight. The Journal of Physical Chemistry C 117, 23090-23107 (2013).
- [4]Podstawka, E., Ozaki, Y. & Proniewicz, L. M. Part III: Surface-enhanced Raman scattering of amino acids and their homodipeptide monolayers deposited onto colloidal gold surface. Applied spectroscopy 59, 1516-1526 (2005).
- [5]Smith, E. A. et al. Formation, spectroscopic characterization, and application of sulfhydrylterminated alkanethiol monolayers for the chemical attachment of DNA onto gold surfaces. Langmuir 17, 2502-2507 (2001).