Supplementary Data

Light Intensity-Mediated Induction Of Trichome-Associated Allelochemicals Increases Resistance Against Thrips In Tomato

Rocío Escobar-Bravo¹, Jasmijn Ruijgrok¹, Hye Kyong Kim¹, Katharina Grosser^{2,3}, Nicole M. Van Dam^{2,3}, Peter G.L. Klinkhamer¹, Kirsten A. Leiss^{1*}

¹Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University. Sylviusweg 72, 2333BE Leiden (The Netherlands).

²Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Halle-Gena-Leipzig, Deutscher Platz 5e, 04103 Leipzig (Germany).

³Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger-Str. 159, 07743 Jena (Germany).

*Current address: Wageningen University & Research, Business Unit Horticulture, Violierenweg 1, 2665MV Bleiswijk (The Netherlands).

To whom correspondence should be addressed:

Rocio Escobar-Bravo, E-mail: r.bravo@biology.leidenuniv.nl

This file contains information on supplementary Figures S1-S3, Table S1-S2 with legends, Method S1, and Notes S1.

Fig. S1. Spectral quality in high (a) and low (b) PAR conditions were measured using a spectrometer UV-Vis equipped with a cosine corrector (Flame-S, Ocean Optics).

Fig. S2. Scanning electron micrographs of adaxial leaf surfaces of wild-type (a) and od-2 (b) plants grown under high PAR conditions. Note that type-VI glandular trichomes (pointed by white triangles) in od-2 leaves display smaller sizes and different shapes when compared to the wild-type.

Figure S3. Effect of low and high photosynthetically active radiation (PAR) treatments on type-VI leaf trichome-associated defenses in wild-type (wt) and *odorless-2* (*od-2*) plants. Total terpene content (mean + SEM, n = 4) in leaf exudates of leaflets taken from the third/fourth youngest leaf were measured at 35 days after the initial light treatment. Asterisks denote significant differences between low and high PAR-treated wild-type plants analyzed by *t-test*. n.d. = not detected.

Target	Gene	Forward Primer	Reverse Primer	
gene	identification	5' → 3'	5' → 3'	
WIPI-II	Solyc01g095200	GACAAGGTACTAGTAATCAATTATCC	GGGCATATCCCGAACCAAGA	
TD-2	Solyc09g008670	TGCCGTTAAAAATGTCACCA	ACTGGCGATGCCAAAATATC	
JIP-21	Solyc03g098790	ACTCGTCCTGTGCTTTGTCC	CCCAAGAGGATTTTCGTTGA	
Actin	Solyc03g078400	TTAGCACCTTCCAGCAGATGT	AACAGACAGGACACTCGCACT	

Table S1. Nucleotide sequence of primers used for qRT-PCR analysis.

Table S2. Transitions or specific pair of m/z values associated to the precursors and fragment ions of the analytes measured by LC/MS.

Analyte	$Q1 \; [m/z] \rightarrow Q3 \; [m/z]^a$	CE [V]	Standard
ABA	$(-)263.13 \rightarrow 153.00$	9	D6-ABA
JA	$(-)209.12 \rightarrow 59.00$	12	D6-JA
JA-Ile	$(-)322.20 \rightarrow 130.00$	19	D6-JA-Ile
SA	(-) 137.02 → 93.00	15	D6-SA
IAA	$(+) \ 176.07 \to 130.00$	-14	D5-IAA
D6-ABA	(-) 269.17 → 159.00	10	
D6-JA	$(-)215.15 \rightarrow 59.00$	10	
D6-JA-Ile	(-) 328.24 → 130.00	19	
D6-SA	$(-)141.05 \rightarrow 97.00$	15	
D5-IAA ^b	$(+)$ 181.10 \rightarrow 135.00	-14	
	$(+)$ 181.10 \rightarrow 134.00	-14	
	$(+) 181.10 \rightarrow 133.00$	-14	
OPDA	(-) 291,00 → 165.00	18	D6-JA-Ile

CE: collision energy

a Resolution: Q1: 0.7, Q3: 22 b Analyzed as the sum of all three transitions

Methods S1. Hormone extraction and analysis

Hormones extraction was performed in approximately 100 mg of frozen and homogenized leaf material aliquoted in 2 ml Eppendorf tubes. After adding 1 ml of ethyl acetate containing 40 ng of phytohormone standards D_6 -ABA (Olchemin), D_6 -JA (HPC), D_6 -JA-Ile (HPC), D_6 -SA (Olchemin) and D_5 -IAA (Olchemin), samples were vortexed for 10 min and centrifuged at 14.000 rpm for 10 min at 4°C. Supernatants were transferred to a new Eppendorf tube and evaporated to dryness on a vacuum concentrator at room temperature. The residue was dissolved in 0.2 ml of 70% methanol (v/v) for 5 min using an ultrasonic bath, and centrifugated at 14.000 rpm for 5 min at room temperature. Supernatants were transferred to glass vials and then analyzed by means of LC-MS/MS

Measurements were conducted on a liquid chromatography-triple quadrupole mass spectrometry system (LC–MS/MS, EVOQ, Bruker). We injected 20 μ L of each sample onto C18 Zorbax column (4.6 x 50 mm, 1,8 μ m, 600 bar). The mobile phase comprised of solvent A (0.05 % (v/v) formic acid in LCMS-grade water) and solvent B (0.05% (v/v) formic acid in LCMS-grade methanol). The program with a constant flow rate of 0.4 ml/min was set as follows: 0 - 0.5 min 95% solvent A; 0.5 - 2.5 min 50% solvent A and 50% solvent B; 2.5 - 3.5 100% solvent B; 3.5 - 4.5 min 95% solvent A. The column temperature was set at 42°C. The cone, probe and nebulizer gas were set at the following flow conditions (arbitrary units/temperature): 35/350°C, 60/475°C and 60, respectively. Phytohormones were measured by monitoring the transition m/z described in Supporting Information Table S2. Phytohormones were quantified using the signal of their corresponding internal standard, and expressed as ng per gram fresh mass leaf material.

Note S1. For the second analysis of terpene content in leaf exudates of low and high-PAR treated plants we used benzyl acetate as an internal standard following the same procedure described in Materials and Methods.