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Supplementary Methods 

Pre-calibration of the z-distance range 

In our device, the scanning head is slightly tilted due to its own weight and the unbalanced design, i.e., the 

image sensors that are farther away from the linear motion shafts are slightly lower. Although we have 

incorporated this information into the design of the capillary tube holder, there are still slight differences 

(~0.2-0.3 mm) in the z2 distances among the three parallel imaging channels. The pre-calibration step was 

designed to further mitigate this problem and reduce the number of digital z-scans necessary, when there 

are not enough particles at the bottom of the capillary tube for autofocusing. To pre-calibrate the z-

distance range for each of the three channels of our device, we placed one capillary tube whose bottom 

outer surface was purposely made dirty. We then captured three holograms when the scanning head is at 

the two ends of its scanning range as well as in the middle, and autofocused to the dirty surface using the 

three holograms respectively
1,2

. The expected zb in this case was calculated from the averaged 

autofocusing distance by adding the wall thickness of the glass capillary tube. The calibration step needs 

to be done only once. Alternatively, the pre-calibration step can also be avoided at the cost of increasing 

the range of digital z-scanning, which will lead to an increase in the computation time. As another 

alternative, if the linear system is designed in a more balanced way to eliminate tilting (e.g., using linear 

motion shafts/rails on both sides of the scanning head), the pre-calibration step may also be avoided.   

High-pass filtered computational back-propagation 

We back-propagated the diffraction patterns to the given z-distances using the angular spectrum method
3
, 

involving a 2D fast Fourier transform (FFT), a matrix multiplication in the spatial frequency domain with 

the free-space transfer function, and an inverse FFT. However, because the approximate size of the 

trypanosomes is known, we added a high-pass filter into the transfer function in the spatial frequency 

domain to suppress other noises and artifacts.  

The coherent transfer function of free-space propagation is given by 

   (S1) 

where z is the propagation distance, λ is the optical wavelength, fx and fy are spatial frequencies in x and y, 

respectively.  

On top of H, we added two high-pass filters, H1 and H2, which are used to suppress unwanted interference 

patterns. H1 is a 2D Gaussian high-pass filter, which is used to suppress the low-frequency interference 

patterns owing to the reflection from the various surfaces in the light path, including the protective glass 

of the image sensor and the various interfaces of the capillary tube loaded with fluids. H1 is given by 
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where σ1 = 25.05 µm. H2 is used to suppress the interference patterns caused by the unwanted grooves of 

the manufactured glass capillary tubes. Because the grooves are oriented along the axial direction of the 

capillary tubes, corresponding to the y-direction in the captured images, their energy is mostly 

concentrated close to the fx axis in the spatial frequency domain. Therefore, H2 performs high-pass 

filtering to fy, which is given by 
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where σ2 = 116.9 µm.  
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The final coherent transfer function, which combines H, H1 and H2, is given by 

   (S4) 

where min{H1, H2} chooses the smaller filter value from H1 or H2.  

Optimization of the subtraction frame interval δF and total analyzed frames NF in the computational 

motion analysis (CMA) algorithm with object function normalization (OFN) 

The subtraction frame interval δF and total analyzed frames NF are parameters that should be optimized 

for the parasite (or microorganism) to be detected. δF and NF are related to the subtraction time interval ∆t 

and the total analyzed time T through 

  (S5) 

   (S6) 

where R is the frame rate of the recorded sequence (i.e., 26.6 fps in our system). By optimally choosing δF 

(or ∆t), the signal from the characteristic locomotion of the microorganism of interest can be amplified 

with respect to the noise, which includes image sensor noise in addition to unwanted random motion of 

the background objects/particles in the sample. NF (or T), on the other hand, determines the window of 

time-averaging. A larger NF, in general, will result in reduction of the random background noise through 

averaging
4,5

; but at the same time, it can potentially also weaken the useful signal if the microorganism 

swims away from its original location during T due to directional motion.   

We optimized δF and NF for trypanosome detection by evaluating the average signal-to-noise ratio (SNR) 

of the processed images by CMA with OFN (corresponding to Fig. 3h), for blood and cerebrospinal fluid 

(CSF). Signal is defined as the maximum value of the segmented hotspot, whereas noise is defined as the 

average value of the background, excluding signal regions. SNR is calculated as 20·log10(Signal/Noise) 

(dB). 20 hotspots were randomly chosen from one imaged field of view (FOV) of a 10
4
/mL trypanosome-

spiked blood experiment, and 40 hotspots were randomly chosen from a 10
4
/mL trypanosome-spiked 

artificial CSF experiment. The SNRs were averaged for blood and CSF, respectively. We varied δF and 

NF to observe their effects on average SNR (Fig. S4). The same set of hotspots were used consistently for 

average SNR calculations as we varied δF and NF for either blood and CSF, respectively.  

As shown in Fig. S4a-b, for lysed blood, δF = 4 (∆t = 0.15 s) and NF = 61 frames (T = 2.29 s) leads to the 

highest SNR of 35.29 dB. Fig. S4b implies that the average SNR could still increase if a larger NF (T) is 

used. However, due to practical time constraints of this platform as a diagnostic tool as well as heating of 

the sample over time, we only recorded 61 frames per image sequence.  

For CSF (Fig. S4c-d), a similar effect is observed about δF, which maximizes the SNR at δF = 4. However, 

Fig. S4d shows that the SNR drops as a function of NF when NF > 41, and therefore, the optimal NF is 

chosen as NF = 41. In addition, the optimal SNR for CSF (δF = 4, NF = 41) is 45.00 dB, which is ~10 dB 

higher than the optimal SNR in blood. Based on these observations, we conclude that because CSF is a 

clear medium (as compared to the lysed blood), less averaging (i.e., a smaller NF) is needed to achieve a 

low noise and high SNR. Therefore, for NF beyond 41, the benefit in SNR from more averaging is 

diminished, whereas other factors that decrease SNR start to become dominant, mainly due to the gradual 

displacement of microorganisms from their original locations.  

Object function normalization (OFN) to remove potential false positives 

OFN is essential to reduce potential false positives owing to strongly scattering particles/objects within 

the sample (see Figs. S6 and S7 for a comparison of results with and without OFN). Under slightly time-

varying illumination and drifting of the fluid, strongly scattering particles/objects such as cells that are not 

lysed, clumps of cell debris, spiked white blood cells (WBCs) in the CSF samples or even air bubbles can 
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create strong contrast (hotspots) when processed by CMA. These hotspots can resemble those created by 

trypanosomes, leading to false positive detections. Therefore, in order to distinguish parasites of interest 

(especially trypanosomes) that have weak scattering and strong locomotion from other unwanted objects 

that have strong scattering and weak locomotion, we use the object function itself to normalize the frame 

subtraction corresponding to Eq. 2 in the main text. An exponential function with a properly selected γ 

further selectively suppresses strongly scattering objects. For trypanosome detection in lysed blood, we 

chose γ = 2 based on visual judgement of the resulting distinction between “true positive” signals versus 

potential “false positive” signals; for trypanosome detection in CSF, γ = 3.  

Construction and training of the convolutional neural network (CNN) for the identification of 

trypanosomes 

Generation of positive images for training/validation 

Positive images are manually identified from experimental data with a relatively high concentration of 

spiked trypanosomes. For blood, one test (i.e., one scanning experiment with three capillary tubes) with a 

spiked trypanosome concentration of ~10
4
/mL was used (no overlap with the data reported in Fig. 5). For 

CSF, one test with a spiked trypanosome concentration of ~10
4
/mL in artificial CSF was used, and the 

sample was not spiked with WBCs as was done for testing. For each bodily fluid type, the images were 

processed using CMA with OFN followed by post image filtering and segmentation (see Methods for 

details), and movies were generated for the first 4000 detected candidate spots. Two human annotators 

jointly viewed these movies and judged the existence of a motile trypanosome in each movie 

characterized by a slender body and rapid beating. The resulting label for each movie was either “positive” 

(with a high confidence that there existed a moving trypanosome), “negative”, or “uncertain”. Multiple 

trypanosomes that co-exist in a single video are labeled as “negative” to avoid confusing the network 

during training. It was much easier to annotate the movies related to CSF due to the high quality of the 

holographic reconstruction in the clear medium; whereas for blood, the resulting labels were mostly either 

“positive” or “uncertain”, because it was difficult to affirm that the movie did not contain a trypanosome. 

After manual annotation, only those that were labeled as “positive” were kept in training/validation. The 

“uncertain” and “negative” were discarded. This resulted in 3697 positive images for blood and 3890 

positive images for CSF. Note that the movies are solely for the purpose of labeling, and the 2D 

maximum intensity projection (MIP) image patches resulting from CMA are used to construct the 

training/validation library. The images were then randomly split into training and validation sets using a 

four-to-one ratio. Finally, data augmentation was performed to increase the number of training images by 

mirroring the images horizontally, vertically, and both horizontally and vertically, resulting in 4× larger 

positive training libraries for blood and CSF, respectively.  

Generation of negative images for training/validation 

Negative training/validation images entirely came from negative control experiments (no overlap with the 

data reported in Fig. 5). One negative control test was used to populate the training/validation library for 

blood; two negative control tests were used for CSF because of fewer “false positives” per test. When 

segmenting the negative images, a lower intensity threshold was used (0.008 for blood and 0.015 for CSF) 

to generate more images, resulting in 5834 negative images for blood and 2586 images for CSF 

experiments. The images were randomly split into training and validation sets using a four-to-one ratio for 

blood and CSF, respectively. Data augmentation was performed to the negative training libraries similarly 

to the positive set by mirroring the images in three different ways, resulting in a 4× enlargement of the 

negative training library size. In addition, to improve the robustness of the trained classifier to unseen data, 

we also performed augmentation by replicating the negative images and multiplying by a factor of 1.5. 

Thus, the total enlargement factor for the negative training libraries is 8×.  

Network architecture 
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In this work, we constructed a CNN with three convolutional blocks and two fully connected (FC) layers 

(see Fig. S8). Each convolutional block consists of a convolutional layer (filter size = 5×5, stride = 1, 16 

channels) followed by a rectified linear unit (ReLU) layer and a max-pooling layer (filter size = 3×3, 

stride = 2). The first FC layer has 128 output nodes, and the second FC layer has 2 output nodes, 

representing the two classes (trypanosome and non-trypanosome). The outputs are then passed through a 

softmax layer to generate the class probabilities. Dropout (p = 0.5) is added to the first FC layer during 

training. The same network architecture is separately trained to identify trypanosome signals within blood 

and CSF.  

Network training 

The CNN was implemented in TensorFlow (version 1.7.0) and Python (version 3.6.2). The convolutional 

kernels were initialized using a truncated normal distribution (mean = 0, standard deviation = 5.5×10
-3

). 

The weights of the FC layers were initialized using the Xavier initializer
6
. All network biases were 

initialized as zero. The learnable parameters were optimized using the adaptive moment estimation 

(Adam) optimizer
7
 with a learning rate of 10

-3
. A batch size of 64 was used, and the network was trained 

for ten thousand iterations until converged.  

CUDA acceleration of the CMA algorithm 

The CMA algorithm was accelerated using CUDA C++ and was run on a laptop computer with dual 

Nvidia GTX 1080 graphics processing units (GPUs). The most computationally intensive mathematical 

operations in the CMA algorithm were fast Fourier transforms (FFTs) and inverse FFTs (IFFTs). The 

Nvidia CUDA Fast Fourier Transform library (cuFFT) library was used to perform these operations. 

Thrust library was used to perform reduction (i.e., summation of all elements) of an image, which was 

further used to calculate the mean value of the image for normalization. Other various basic mathematical 

operations on real or complex-valued images were implemented using custom-written CUDA kernel 

functions. The CUDA code was carefully optimized to parallelize computation, maximize efficiency and 

minimize GPU memory usage. For instance, when performing back-propagation of the diffraction 

patterns to each z-distance, the high-pass-filtered coherent transfer function (Equations S1-S4) was only 

calculated once per z-distance, which was reused for all the frames in the time sequence. When 

performing time-averaged differential analysis with OFN (Eq. 2 in the main text), only (δF + 1) back-

propagated images (i.e., Bi) needed to be stored in the GPU memory at each given time without 

sacrificing performance, which reduced the GPU memory usage and made it possible to process even 

larger-scale problems (e.g., image sequences with more frames, or performing CMA at more z-distances) 

or to use lower-end GPUs with less memory.  

Before performing FFTs, the raw images (vertical: 1374 pixels, horizontal: 3840 pixels) were padded to a 

size of 1536 × 4096 pixels. The padded pixels were assigned the mean value of the unpadded image to 

reduce artifacts from discontinuities. Because the new dimensions are powers of 2 and 3 (1536 = 2
9
 × 3 

and 4096 = 2
12

), the FFT operation was accelerated by a factor of ~2.4× compared to without padding. 

After IFFT was complete, the images were cropped back to the original size for other image processing 

steps.  

COMSOL simulation of sample heating due to the image sensor 

The image sensor’s temperature rises when it is turned on, creating a temperature gradient above it. 

Therefore, the fluid within the glass tube will gradually start to flow, also causing the particles within the 

glass tube to move directionally
8
. As a result, the signal of motile microorganisms generated by the CMA 

algorithm will weaken due to a “smearing” effect; and in the meantime, the movement of the other 

unwanted particles will increase the background noise and false positive detections, which is undesirable. 

The fluid velocity due to convection is related to the height of the fluid channel. Due to the drag force 

near the channel wall, a thinner channel will lead to a reduced fluid velocity at a given time after the onset 

of heating. However, as a tradeoff, a thinner channel also results in a reduced screening throughput.  
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We used COMSOL simulation to estimate the flow speed inside the channel. As shown in Fig. S5a, we 

created a channel (1 mm inner height, 10 mm inner width, surrounded by a silica wall with a uniform 

thickness of 0.67 mm) filled with water. A 6 cm section of the channel was selected as the region of 

interest for simulation. At the center of the channel, a CMOS image sensor (modeled as a constant heat 

source with a surface temperature of 313 K) was placed 1 mm below the channel’s bottom surface. ~313 

K was the highest temperature of the image sensor during image acquisition (see Methods), 

experimentally measured by an infrared camera (FLIR C2). The reference temperature (room temperature) 

was set to be 293 K. Non-isothermal flow was used to model the water inside the channel and the air 

outside the channel. 

Fig. S5b-c show the result of this simulation. The maximum fluid velocity magnitude inside the channel 

is shown, representing a worst-case scenario. As expected, the fluid velocity increases as a function of the 

time after onset of heating and the channel height (see Fig. S5b). We further plotted the relation between 

the maximum fluid velocity and the channel height in Fig. S5c, at t = 7 s after the onset of heating, which 

approximately corresponds to the duration of image acquisition (there is a time gap when switching from 

the upper half to the lower half of the image sensor’s FOV). Again, the fluid velocity at t = 7 s represents 

a worst-case scenario, where the fluid velocity is largest. As shown in Fig. S5c, at a channel height of 1 

mm, the fluid velocity is ~2.9 µm/s. Over the duration of a single image sequence of 61 frames (~2.3 s), 

the displacement due to fluid flow is upper-bounded by ~6.7 µm, which is acceptable when compared 

with the length of the trypanosome. On the contrary, if the channel height is 2 mm, the displacement will 

be upper-bounded by ~28 µm, which will lead to strong smearing and reduction of the signal. As a result, 

the channel height in this work was chosen as 1 mm.  
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Supplementary Figures 

 

  

Figure S1. Imaging result of trypanosomes within artificial CSF spiked with WBCs. a One of the 

raw holograms in the image sequence. b Image that is processed by the CMA algorithm with OFN. The 

in-focus amplitude and phase movies of the five signal spots in this imaging FOV are shown in 

Supplementary Movie 3.  
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Figure S2. Imaging result of Trichomonas vaginalis (T. vaginalis) within phosphate buffered saline 

(PBS). a One of the raw holograms in the image sequence. b Image that is processed by the CMA 

algorithm. Because trichomonas has a strong optical phase (see Supplementary Movie 4), OFN is not 

applied here. The in-focus amplitude and phase movies of the three signal spots corresponding to the 

insets are shown in Supplementary Movie 4.  
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Figure S3. Imaging result of T. vaginalis within culture medium. a One of the raw holograms in the 

image sequence. b Image that is processed by the CMA algorithm without OFN. The in-focus amplitude 

and phase movies of the three signal spots corresponding to the insets are shown in Supplementary Movie 

5.  
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Figure S4. Optimization of the subtraction frame interval δF and total analyzed frames NF for 

differential analysis. The SNR is used as the criterion for optimization. a, b Optimization for 

trypanosome detection in lysed blood. δF = 4 and NF = 61 leads to the optimal SNR of 35.29 dB. c, d 

Optimization for trypanosome detection in CSF. δF = 4 and NF = 41 leads to the optimal SNR of 45.00 dB.  
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Figure S5. Simulation of the velocity field inside the glass tube due to convection after being heated 

by the image sensor. a Velocity magnitude distribution after the 1 mm-height glass tube is heated for 7 s 

(side view). The middle cross section of the glass tube is shown. b Maximum fluid velocity magnitude 

within the glass tube, as a function of time being heated. Different curves correspond to different inner 

height of the glass tube. c Maximum fluid velocity magnitude as a function of the channel height, after 

being heated for 7 s.  
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Figure S6. OFN suppresses potential “false positives” due to strongly scattering particles, 

demonstrated in lysed blood. TP: true positive spots corresponding to trypanosomes; FP: false positives. 

The false positives in the negative control sample (c) are suppressed after applying OFN (d), whereas the 

true positive signal is preserved (“TP” in a and b). In the positive sample, a strong false positive is created 

due to an air bubble (“FP” in the bottom left of a), whose hologram and back-propagated amplitude image 

are shown in e and f, respectively. It is, however, effectively eliminated by OFN, as shown in b.  
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Figure S7. OFN suppresses potential “false positives” due to strongly scattering particles, 

demonstrated in artificial CSF. TP: true positive spots corresponding to trypanosomes; FP: false 

positives. The false positives due to spiked WBCs that are evident in the negative control sample (c) are 

suppressed after applying OFN (d), whereas the true positives are preserved in the positive sample (a, b).  
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Figure S8. Structure of the CNN to automatically detect the signals created by trypanosomes. C: 

number of channels; K: convolutional filter size; S: stride; P: probability of dropout.  
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Supplementary Movies 

 

Supplementary Movie 1: Our high-throughput bodily fluid scanning device in operation. Playback is at 

16× speed. 

Supplementary Movie 2: Amplitude and phase movies of three motile trypanosomes in lysed blood, 

corresponding to the three hotspots in Fig. 4e of the main article. Each movie is played three times.  

Supplementary Movie 3: Amplitude and phase movies of five motile trypanosomes in CSF, 

corresponding to the five hotspots in Fig. S1. Each movie is played three times.  

Supplementary Movie 4: Amplitude and phase movies of three motile T. vaginalis parasites in PBS, 

corresponding to the insets of Fig. S2. Each movie is played three times.  

Supplementary Movie 5: Amplitude and phase movies of three motile T. vaginalis parasites in culture 

medium, corresponding to the insets of Fig. S3. Each movie is played three times.  
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