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S1. CONSORT checklist

Table 1 shows the CONSORT (Schulz et al., 2010) checklist items that apply to Methods sections of randomized

clinical trial (RCT) papers.

Topic Checklist item

Trial design
Description of trial design (such as parallel, factorial) including allocation ratio
Important changes to methods after trial commencement (such as eligibility
criteria), with reasons

Participants
Eligibility criteria for participants
Settings and locations where the data were collected

Interventions The interventions for each group with sufficient details to allow replication,
including how and when they were actually administered

Outcomes
Completely defined pre-specified primary and secondary outcome measures,
including how and when they were assessed
Any changes to trial outcomes after the trial commenced, with reasons

Sample size
How sample size was determined
When applicable, explanation of any interim analyses and stopping guidelines

Randomisation: Sequence Method used to generate the random allocation sequence
generation Type of randomisation; details of any restriction (such as blocking and block

size)
Randomisation: Allocation con-
cealment mechanism

Mechanism used to implement the random allocation sequence (such as se-
quentially numbered containers), describing any steps taken to conceal the
sequence until interventions were assigned

Randomisation: Implementation Who generated the random allocation sequence, who enrolled participants,
and who assigned participants to interventions

Blinding
If done, who was blinded after assignment to interventions (for example, par-
ticipants, care providers, those assessing outcomes) and how
If relevant, description of the similarity of interventions

Statistical methods Statistical methods used to compare groups for primary and secondary out-
comes
Methods for additional analyses, such as subgroup analyses and adjusted anal-
yses

Table 1: CONSORT (Schulz et al., 2010) checklist items that apply to Methods sections of clinical trials papers
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S2. Illustration of conceptual, relational, and contextual semantic

levels

(1) The EP2 receptor for prostaglandin E2 (PGE2) is a membrane receptor that mediates at least part of the
action of PGE2. It has been shown that EP2 plays a critical roler1 in tumorigenesis inr2 mouse
mammary gland and colon. However, the possibility that the EP2 receptor is involvedr3 in the
development of skin tumors was unknown. The purpose of this study was to investigate the roler4 of the
EP2 receptor in mouse skin carcinogenesis. . . .
Tumors from WT mice produced more blood vessels and fewer apoptotic cells than those of EP2 knockout
mice as determined by immunohistochemical staining. Our data suggest that the EP2 receptor
plays a significant roler5 in the protumorigenic action of PGE2 in skin tumor development.

(2)

EP2 receptor NCBI Gene:19217:Ptger2:Gene

EP2 NCBI Gene:19217:Ptger2:Gene

prostaglandin E2 MESH:D015232:Dinoprostone:Chemical

PGE2 MESH:D015232:Dinoprostone:Chemical

tumorigenesis MEDIC:D002471:Cell Transformation, Neoplastic:Disease

mouse NCBI Taxonomy:10090:Mus musculus:Species

mouse mammary gland UMLS:C1512980:Mouse Mammary Gland:Tissue

colon UMLS:C1522281:Mouse Colon:Tissue

skin carcinogenesis UMLS:C1519346:Skin Carcinogenesis:Neoplastic Process

skin tumors MEDIC:D012878:Skin Neoplasms:Disease

(3)

plays a critical role r1: 19217-AFFECTS-D002471 Fact, Prior

in r2: C1512980-LOCATION OF-D002471 Uncommitted, Current

involved r3: 19217-ASSOCIATED WITH-D012878 Fact, Current

role r4: 19217-ASSOCIATED WITH-C1519346 Uncommitted, Current

plays a significant role r5: 19217-AFFECTS-D012878 Probable, Current

Table 2: Abstract of a PubMed article (PMID 16230392), with examples of annotations corresponding various
levels of semantic information.

For illustration of conceptual, relational, and contextual semantic levels, consider the fragment of the abstract

of a PubMed article (PMID 16230392), shown in row (1) of Table 2. Some of the biomedical entities (the

conceptual level) are shown in row (2) and are underlined in text. In row (2), textual mentions of these entities

are in the second column, and the corresponding concepts are shown as Nomenclature:Identifier:Official

Symbol:Semantic Type tuples in the third column. The mentions EP2 and EP2 receptor are normalized to

the same concept (with the unique identifier 19217 in the NCBI Gene database). Such concept normalization

accounts for acronyms (prostaglandin E2 vs. PGE2 ) as well as inflectional/derivational forms (e.g., skin tumors

vs. skin tumor) and synonymy.

The relational (or propositional) level is illustrated in row (3). In this case, relationships are represented

as subject-predicate-object triples in the third column. Predicate types (AFFECTS, ASSOCIATED WITH, etc.) are

defined in the UMLS Semantic Network and the subject and object arguments refer to normalized entities in

row (2). The phrases indicating the predicates are in bold (in row (1) and in row (3) second column) and have

the relation identifiers as subscripts in row (1). Here, we focus on relationships from second and third sentences

as well as the last sentence. The first relation shown (r1) corresponds to the proposition that EP2 affects

tumorigenesis, expressed in the second sentence. The main knowledge claim of the abstract under discussion

(sometimes referred to as claimed knowledge updates (Sándor and de Waard, 2012)) is expressed in the last

sentence and captured by the relation r5 in row (3). Other representational formalisms, such as simple binary

relations (no predicate) and nested event representations, are sometimes also used to represent this semantic

level.

The next level in semantic interpretation is the contextual level (or extra-propositional), illustrated in the

last column of row (3). Two dimensions are considered for illustration: factuality and source of evidence. The

first relation (r1: proposition that EP2 affects tumorigenesis) is represented as Fact and attributed to Prior

knowledge (inferred from the clause It has been shown that). The relation corresponding to the research question
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(r4: the proposition that EP2 has a role in skin carcinogenesis) is represented as Uncommitted (due to The

purpose of this study was to investigate). Interpretation at this level helps us represent the unfolding of the

argumentation within the abstract, culminating with the main knowledge claim represented with the relation r5

(the proposition that EP2 plays a role in skin tumors), assigned the factuality value Probable and attributed

to Current evidence (based on the clause Our data suggest that). For brevity, we have not shown the sentences

in the middle section of the abstract or their interpretation. Extracting entities/relations in this section and

resolving coreference indicated by the phrase Our data, it could be possible to link the relations expressing the

experimental results to the main knowledge claim (r5) as evidence (rather than the coarse-grained Current

shown in Table 2); in effect, creating a document-level argumentation graph.
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S3. Named entity recognition and normalization

Named entity recognition and normalization tasks focus on the conceptual level. Named entity recognition

(NER) is the task of identifying mentions of a specific semantic class in free text. Named entity normalization

(NEN) refers to mapping these mentions to specific entries (concepts) defined in an ontology or knowledge-base.

It is a foundational task that has seen much activity since the early days of bioNLP. One of the earliest and

best-known systems is MetaMap (Aronson and Lang, 2010), a knowledge-based, broad-coverage system that

maps free biomedical text to concepts in the UMLS Metathesaurus (Lindberg et al., 1993). MetaMap pre-

processing consists of tokenization of the input text, sentence segmentation, acronym/abbreviation detection,

and part-of-speech tagging with MedPost tagger (Smith et al., 2004). Then, a minimal commitment parser

breaks text into noun phrases and identifies their heads. The UMLS SPECIALIST Lexicon (McCray et al.,

1994) is used to generate lexical variants which are then mapped to candidate strings in Metathesaurus. The best

mapping is identified by combining four criteria: centrality, variation, coverage, and cohesiveness. MetaMap can

also perform word sense disambiguation, determining, for example, which UMLS concept the textual mention

cold refers to: Cold Temperature, Common Cold, or Cold Sensation. MetaMap is highly configurable, with

numerous data, processing, and output options.

While MetaMap aims to maps all types of biomedical text to UMLS concepts, many systems have aimed

to recognize specific semantic classes (e.g., diseases, chemicals/drugs, gene/proteins) and map them to more

focused vocabularies. Unlike MetaMap, such systems are often trained on corpora annotated for specific classes

using machine learning techniques. For example, DNorm (Leaman et al., 2013) was based on the NCBI disease

corpus (Doğan et al., 2014) and targeted the MEDIC disease vocabulary (Davis et al., 2012). They performed

NER using the BANNER system (Leaman and Gonzalez, 2008), based on Conditional Random Fields (CRF).

They retrained the system on the NCBI disease corpus and enhanced it with abbreviation detection. The

normalization step was based on the pairwise learning-to-rank method, which found the best match between a

mention and the disease names in MEDIC, by converting both into vectors and searching for the disease name

that maximizes a scoring function learned from the training data. Their method achieved an F1 score of 0.78,

compared to 0.57 of MetaMap. In a similar vein, tmChem (Leaman et al., 2015) focused on chemical/drug

name recognition. It was trained on the CHEMDNER corpus (Krallinger et al., 2015) using an ensemble

of CRF models and mapped recognized entities to MeSH (Coletti and Bleich, 2001) and ChEBI (de Matos

et al., 2010) vocabularies, reaching 0.87 F1 score in abstract-level evaluation. PubTator (Wei et al., 2013a) is

a biocuration tool that provides a common user interface and API for NER/NEN on PubMed abstracts. It

incorporates DNorm and tmChem as well as tools that consider other entity types (species (Wei et al., 2012),

gene/proteins (Wei et al., 2015), mutations (Wei et al., 2013b)). Unlike these systems, TaggerOne (Leaman and

Lu, 2016) is not limited to a specific entity type, although it requires an annotated corpus for training. It employs

a semi-Markov structured linear classifier, which combines a feature-based approach for NER and supervised

semantic indexing for normalization. They achieved results superior to DNorm and tmChem in disease and

chemical/drugs recognition (0.81 vs. DNorm’s 0.78 for diseases, 0.90 vs. tmChem’s 0.87 for chemical/drugs).
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S4. Relation extraction

Relation extraction is the task of extracting specific types of biomedical relationships from free text. It generally

builds on NER/NEN and can be viewed as the basis of identifying knowledge claims.

Representation formalisms

Different formalisms have been used to represent biomedical relations. In the simplest case, relationships are

represented as binary relations, where the type of the relationship is implicit or underspecified. This rep-

resentation has been used in extraction of protein-protein interactions (Tikk et al., 2010) and gene-disease

associations (Özgür et al., 2008), for example. More informative is the subject-predicate-object triple represen-

tation, where the predicate indicates a named relationship and the subject/object pair (arguments) indicates

the entities involved in the relationship. The relationship can be unidirectional (e.g., causal) or bidirectional

(e.g., interaction)1.

A more generalized representation is the predicate-argument structure representation, used particularly in

representing biological events expressed in biomedical literature. In this representation, an event, triggered by

a predicate, can have one or more arguments (participants), with specific roles (Theme, Cause, etc.) and it can

be nested (i.e., it can have other events as participants). The example below, taken from the GENIA event

corpus (Kim et al., 2008), shows that the sentence contains two events (triggered by stimulates and production),

and the theme of the simulation event (shown as e1) is the interleukin-10 production event (shown as e2), taking

place in human monocytes.

(1) (a) Our previous results show that recombinant gp41 . . . stimulatese1 interleukin-10 productione2 in

human monocytes.

(b) stimulates: Positive Regulation(e1, Cause:gp41 : Protein, Theme:e2)

production: Gene Expression(e2, Theme:interleukin-10 : Protein, Site:human monocytes:Cell)

Nanopublications (Mons and Velterop, 2009), a life sciences Semantic Web community effort, represent

relations using a richly annotated RDF triple format, incorporating relation context (e.g., under what conditions)

and provenance (e.g., which article it is attributed to). Nanopublications have been proposed as a general

solution for storing and exchanging scientific knowledge, so their applicability goes beyond relation extraction

tasks. An example nanopublication is shown in Figure 1. It represents the assertion that inhibition of mTOR

by rapamycin can slow or block AD progression in a transgenic mouse model of the disease.

Figure 1: An example nanopublication (Image source: Clark et al. (2014); use permitted under the Creative
Commons Attribution License CC BY 4.0).

There are other efforts concerned with relation representation, such as Biological Expression Language

(BEL) (Fluck et al., 2015), focusing on causal and correlative relationships in life sciences. There have been

1Subject-predicate-object representation is analogous to RDF triples used in Semantic Web technologies.
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attempts to bridge different representation formalisms, as well; for example, Fluck et al. (2013) derived BEL

statements from event representations. It is also worth noting that in recent years, Abstract Meaning Repre-

sentation (AMR) (Banarescu et al., 2013) has become increasingly popular as a deep semantic representation

formalism in open-domain NLP, partly due to the existence of corpora annotated with it, and it is likely to

inform relation representation formalisms in biomedical NLP, as well.

Systems

Let us now look more closely at systems that aim to extract relationships that can be expressed with such

representations. Most relation extraction systems focus on binary relationships (e.g., protein-protein interac-

tions (Tikk et al., 2010), drug-drug interactions (Ben Abacha et al., 2015), chemical-induced disease relation-

ships (Xu et al., 2016)). Such systems are trained on corpora annotated specifically for the relationship of

interest and use some form of supervised machine learning, often incorporating n-gram, entity, relation trigger

features, and syntactic information, generally in the form of dependency parses. Entities involved in relations

are sometimes normalized, but not always. Community challenges, such as BioCreative (Hirschman et al., 2005),

the BioNLP Shared Task on event extraction (Kim et al., 2009), and the DDIExtraction shared task (Segura-

Bedmar et al., 2011), have often provided the stimulus for development of such systems. Below, we describe

in more detail several relation extraction systems that have wider coverage. We refer the reader to a recent

survey (Luo et al., 2016) for an in-depth discussion of biomedical relation extraction systems.

SemRep (Rindflesch and Fiszman, 2003) incorporates MetaMap as the NER/NEN tool and has a similar

philosophy: it is knowledge-based, uses UMLS for domain knowledge, and attempts to extract a wide range of re-

lationships. It uses a subject-predicate-object triple representation. It focuses on various aspects of biomedicine,

from clinical medicine (e.g., TREATS, DIAGNOSES) to molecular interactions (e.g., STIMULATES, INHIBITS), phar-

macogenomics (e.g., AUGMENTS, DISRUPTS), and genetic basis of disease (e.g., CAUSES, PREDISPOSES), as well

as some types of static relations (e.g., ISA, PART OF). Hand-crafted indicator rules are used to map lexical and

syntactic triggers to these predicates. Triggers include lexical categories, such as verbs and nominalizations, and

syntactic constructions, such as appositives. Syntactic and semantic argument constraints are applied to deter-

mine the subject and object arguments of a predicate. Semantic constraints are based on the UMLS Semantic

Network, which defines allowable high-level relations between biomedical entity types (e.g., Pharmacologic

Substance-TREATS-Disease or Syndrome). Evaluations of SemRep have mainly considered precision, which

was found to be in 0.58-0.8 range. Recall, in the few cases it was computed, was found to be lower (0.5-0.64).

Another somewhat general system is the Turku Event Extraction System (TEES) (Björne and Salakoski,

2011), a supervised machine learning-based system which adopts the predicate-argument structure representa-

tion. First developed for the BioNLP event extraction shared task (Kim et al., 2009) to extract 8 biological event

types (e.g., Gene Expression, Phosphorylation, Regulation), it has since been generalized to other event

types (e.g., Acetylation, Catalysis), and some static relations (e.g., Subunit-Complex, Protein-Component).

Unlike SemRep, TEES uses full syntactic structure, in the form of dependency parses. Their core system consists

of several linear SVM classifiers for relation trigger and argument detection and uses a rich set of features, in-

cluding token and sentence features, trigger features, and features based on syntactic dependency chains between

the relation trigger and potential arguments. This core method has been retrained on several corpora, often

yielding state-of-the-art performance. Gene name normalization has been incorporated into TEES (Van Lan-

deghem et al., 2013). EventMine (Miwa et al., 2012) is another machine learning-based system first developed

for the BioNLP event extraction task, and then generalized by training over several different corpora, yielding

good performance.

Relation extraction targeting other representations is relatively rare, though gene-disease associations have

been converted to nanopublications (Queralt-Rosinach et al., 2016), and extraction of BEL statements from the

literature was studied in a recent BioCreative task (Rinaldi et al., 2016). The top-ranking system in this task

yielded an F1 score of 0.2 (Choi et al., 2016), indicating that systems addressing complex relation formalisms

need significant improvements for practical use.

7



Limitations

One common limitation of relation extraction systems is that they, predominantly, consider only sentence-bound

relationships and are, therefore, unable to extract cross-sentence relationships, expressed through coreference

and sometimes implicitly. Two examples from the CDR corpus of chemically-induced disease relationships (Wei

et al., 2016) are shown below.

(2) (a) The current best treatment for HCV infection is combination therapy with pegylated interferon and

ribavirin. Although this regimen produces sustained virologic responses (SVRs) in approximately 50%

of patients, it can be associated with a potentially dose-limiting hemolytic anemia.

(b) We investigated the efficacy and toxicity of a 3-hour paclitaxel infusion in a phase II trial in patients

with inoperable stage IIIB or IV NSCLC. . . . Grade 1 or 2 polyneuropathy affected 56% of patients

. . .

Example (2a) shows a cross-sentence causal relationship between the drug combination pegylated interferon-

ribavirin and hemolytic anemia. Recognizing that anaphoric expressions it and this regimen (double-underlined)

co-refer with the drug combination may help in extracting this causal relationship, since the pronoun it is a

syntactic argument of the causal trigger associated with. In Example (2b), the causal relationship between

paclitaxel and polyneuropathy is implicit and can be inferred from the temporal ordering of two events discussed:

the administration of paclitaxel and the appearance of the adverse effect polyneuropathy. Coreference resolution

has been explored to aid event extraction (Yoshikawa et al., 2011; Miwa et al., 2012; Kilicoglu and Bergler,

2012; Lavergne et al., 2015; Choi et al., 2016) and its effect has been largely positive, though generally not

very significant. Kilicoglu et al. (2016) incorporated sortal anaphora resolution (a specific type of anaphora

signaled by noun phrases, such as this regimen in the example above) into SemRep, enhancing the precision and

specificity of its relations. Coreference resolution in PubMed abstracts has also been explored, independently

of relation extraction, as one of the subtasks in the BioNLP 2011 Shared Task on event extraction (Kim et al.,

2012). Kilicoglu and Demner-Fushman (2016) reported the best performance on the corpus used in this task (F1

score of 0.68). With regards to implicit relations, Kilicoglu (2016) reported a system that focused exclusively

on cross-sentence relationships in the CDR corpus. With a set of lexical, semantic, discourse, and external

knowledge features, Kilicoglu achieved an F1 score of 0.74.
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S5. A micropublication example

An example micropublication is shown in Figure 2 below. The micropublication (MP2) represents the claim that

Figure 2: An example micropublication (Image source: Clark et al. (2014); use permitted under the Creative
Commons Attribution License CC BY 4.0).

Rapamycin-fed transgenic PDAPP mice showed improved learning and memory (C3) (MP2-argues-C3). The

provenance of the micropublication is the PMC article with the identifier PMC2848616 (represents). The

claim is supported by the two figures (D1-supports-C3). The figures are the result of learning and memory

testing using the Morris water maze, indicated in Methods (M1-supports-D1). M2 indicates a normalized form

for the transgenic mouse strain that was used. The claim is attributed to Patricia Spilman, the author of the

paper (A C3-supports-C3).
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