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S1 Derivation of Algorithm 1

We assume that a hypothesis test is performed for each i, summarized by a p-value Pi. Our approach is based on

thresholding the p-values at a given λ ∈ (0, 1), resulting in binary indicators Yi = 1(Pi > λ). These are then treated as

outcomes in a regression model.

Since Yi is a dichotomous random variable that is 1 when the null hypothesisH0i is not rejected at a significance level

of λ and 0 when it is rejected, m−R =
∑m

i=1 Yi for a fixed, given λ. The null p-values will come from a Uniform(0,1)

distribution, while the p-values for the features from the alternative distributions Gxi , defined as:

Gxi(λ) = Pr(Pi ≤ λ|θi = 1,Xi = xi). (1)

The major assumption we make moving forward is that conditional on the null, the p-values do not depend on the

covariates.

Theorem S1 Suppose thatm hypotheses tests are performed and that conditional on the null, the p-values do not depend

on the covariates. Furthermore, the null p-values have a Uniform(0,1) distribution, whereas the alternative p-values have

a distribution with cdf Gxi , as defined above. Then:

E(Yi|Xi = xi) = (1− λ)π0(xi) + {1−Gxi(λ)}{1− π0(xi)}.

We first review the algorithm which yields an estimator of π0 for the no-covariate case, which is used by Storey

(2002), then develop a procedure based on Theorem S1 to obtain an estimator of π0(xi). Both of them are based on
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assuming reasonably powered tests and a large enough λ, so that

Gxi(λ) ≈ 1.

Theorem S1 can then be applied assuming no covariates, leading to:

π0 ≈ E(Yi)

1− λ
,

resulting in:

π0 ≈

∑m
i=1 E(Yi)
m

1− λ
.

Using a method-of-moments approach, one may consider the estimator:

π̂0 =

∑m
i=1 Yi
m

1− λ
=

m−R
(1− λ)m

, (2)

which is used by Storey (2002).

For the GWAS meta-analysis dataset, using this approach with λ = 0.8 leads to an π̂0 = 0.951 and λ = 0.9 to

π̂0 = 0.949. Note that in practice one may smooth over a series of thresholds, as described below; otherwise, fixed

thresholds between 0.8 and 0.95 are often used. This means that Gxi(λ) will be very close to 1, but λ will not be large

enough to lead to numerical instability issues when dividing by 1− λ.

For the covariate case, applying the same steps with Theorem S1, we get:

π0(xi) ≈
E(Yi|Xi = xi)

1− λ
.

We can use a regression framework to estimate E(Yi|Xi = xi), then estimate π0(x) by:

π̂0(xi) =
Ê(Yi|Xi = xi)

1− λ
, (3)

obtaining Step (c) in the algorithm.

Note that thus far we have considered the estimate of π0(xi) at a single threshold λ, so that π̂0(xi) is in fact π̂λ0 (xi).

We generally prefer to smooth over a series of thresholds to obtain the final estimate, as done by Storey and Tibshirani
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(2003). The estimates should generally be thresholded at 1, as Eq. (3) may otherwise lead to values greater than 1. It is

also possible but less likely that the smoothed estimate would be below 0, hence we also threshold it at 0. If we assume

that the p-values are independent, we can also use bootstrap samples of them to obtain a confidence interval for π̂0(xi) -

Steps (e) and (f) in Algorithm 1.

In order to obtain Step (g) in the algorithm and estimate FDR(xi), we multiply the BH adjusted p-values by π̂0(xi),

thus leading to a simple plug-in estimator, denoted F̂DR(xi). This is done in the spirit of Storey (2002), whose approach

uses an estimate which is not conditional on covariates.

S2 Special cases

S2.1 No covariates

If we do not consider any covariates, the usual estimator π̂0 from Eq. (2) can be deduced from applying Algorithm 1 by

fitting a linear regression with just an intercept.

S2.2 Partioning the features

Now assume that the set of m features is partitioned into S sets, namely that a collection of sets S = {As : 1 ≤ s ≤ S}

is considered such that all sets are non-empty, pairwise disjoint, and have the set of all the features as their union. This

idea has been proposed before, for example in Hu et al. (2010), but we propose it here as a natural subcase of our

approach. We consider the sets ordered for the sake of convenience, for example, the first set in S is A1 et cetera, but

note that this ordering does not necessarily have scientific relevance. In the GWAS meta-analysis dataset, the SNPs

are partitioned according to their MAFs. Other examples of such partionings include all possible atoms resulting from

gene-set annotations or brain regions of interest in a functional imaging analysis, when considering only the genes or

voxels that are annotated (Boca et al., 2013). We then consider vectors xi of length S, 1 ≤ i ≤ m, such that element s

of xi is defined, using the indicator notation, as:

xis =


1 if i ∈ As,

0 if i /∈ As.

(4)

For example, if S = 3 and feature 1 was in set A1, then x1 = (1, 0, 0)′. Since all features i in a set As have the same

vector xi, we denote it by eAs to emphasize this. Taking into account the partition, a natural way of estimating π0(eAs)
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is to just apply the estimator π̂0 from Eq. (2) to each of the S sets:

π̂0(eAs) =

∑
i∈As

Yi
|As|

1− λ
for 1 ≤ s ≤ S − 1,

where the numerator
∑

i∈As
Yi

|As| represents the fraction of features in As that are not discoveries at the λ threshold.

A related idea has been proposed for partitioning hypotheses into sets to improve power (Efron, 2008). These results

would be obtained directly from our approach if we considered linear instead of logistic regression and fit a linear

regression with no intercept and the covariates xi in Algorithm 1, or instead, set one of the sets as the baseline and also

considered an intercept. As we are considering a logistic regression approach, our results will be slightly different.

S3 Theoretical results

We now proceed to explore some theoretical properties of the estimator π̂λ0 (xi). Applying Theorem S1 to Eq. (3), we

get that:

π̂λ0 (xi) = π0(xi) +
1−Gxi(λ)

1− λ
{1− π0(xi)}+

b(xi)

1− λ
, (5)

where b(xi) = Ê(Yi|Xi = xi) − E(Yi|Xi = xi), so that E{b(xi)} is the bias of Ê(Yi|Xi = xi) when estimating

E(Yi|Xi = xi). Note that 1−Gxi (λ)

1−λ {1− π0(xi)} ≥ 0, since λ ≤ 1, Gxi(λ) ≤ 1, and π0(xi) ≤ 1. Thus, if the bias when

estimating E(Yi|Xi = xi) is positive or negative and small in absolute value, then π̂λ0 (xi) is a conservative estimator of

π0(xi). For example, if we had considered a correctly specified linear regression model, this would always hold; indeed

the case where π0 is shared by all the features, i.e. in the case of no dependence on covariates, this is shown in Storey

(2002). Given that here we are taking Ê(Yi|Xi = xi) to be the MLE from the logistic regression model, we know that

it represents a consistent estimator of E(Yi|Xi = xi) if the model is correctly specified for m → ∞, given certain

technical conditions, for instance those specified in Gourieroux and Monfort (1981). Thus, we can show that π̂λ0 (xi) is a

consistent estimator of π0(xi) +
1−Gxi (λ)

1−λ {1− π0(xi)} under these same conditions:

Theorem S2 Under a correctly specified model and technical regularity conditions,

π̂λ0 (xi)→p π0(xi) +
1−Gxi(λ)

1− λ
{1− π0(xi)} ≥ π0(xi).

as m→∞.
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Eq. (5) also leads to Var{π̂λ0 (xi)} = V ar{b(xi)}
(1−λ)2 . Once again, using the properties of the MLE, under appropriate

conditions:

√
mb(xi)→D N(0, σ2)

for some σ2, leading to V ar{π̂λ0 (xi)} being approximately inversely proportional to m for large values of m.

We note that our approach to estimating π0(xi) does not place any restrictions on its range. In practice, the values

will also be thresholded to be between 0 and 1, as detailed in Algorithm 1. In Result S3, we show that implementing this

thresholding decreases the mean squared error of the estimator. The approach is similar to that taken in Theorem 2 in the

work of Storey (2002).

Result S3 Let

π̂C0 (xi) =



0 π̂0(xi) < 0

π̂0(xi) 0 ≤ π̂0(xi) ≤ 1

1 1 < π̂0(xi)

Then:

E[{π̂0(xi)− π0(xi)}2] ≥ E[{π̂C0 (xi)− π0(xi)}2].

S4 Proofs of analytical results

Proof of Theorem S1

E(Yi|Xi = xi) = Pr(Pi > λ|Xi = xi)

= Pr(Pi > λ|θi = 0,Xi = xi)P (θi = 0|Xi = xi)

+ Pr(Pi > λ|θi = 1,Xi = xi)P (θi = 1|Xi = xi).
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Then, using the assumption that conditional on the null, the p-values do not depend on the covariates:

E(Yi|Xi = xi) = Pr(Pi > λ|θi = 0)P (θi = 0|Xi = xi)

+ Pr(Pi > λ|θi = 1,Xi = xi)P (θi = 1|Xi = xi)

= (1− λ)π0(xi) + {1−Gxi(λ)}{1− π0(xi)}.

Proof of Result S3

We prove this result by showing that:

E[{π̂0(xi)− π0(xi)}2|π̂0(xi) > 1] > E[{π̂0(xi)C − π0(xi)}2|π̂0(xi) > 1] (6)

and:

E[{π̂0(xi)− π0(xi)}2|π̂0(xi) < 0] > E[{π̂C0 (xi)− π0(xi)}2|π̂0(xi) < 0]. (7)

Then, we can combine them as follows:

E[{π̂0(xi)− π0(xi)}2]− E[{π̂C0 (xi)− π0(xi)}2] =

= E[{π̂0(xi)− π0(xi)}2|π̂0(xi) > 1]− E[{π̂0(xi)C − π0(xi)}2|π̂0(xi) > 1]P{π̂0(xi) > 1}

+ E[{π̂0(xi)− π0(xi)}2|π̂0(xi) < 0]− E[{π̂C0 (xi)− π0(xi)}2|π̂0(xi) < 0]P{π̂0(xi) < 0}

≥ 0.

In Eq. (6):

E[{π̂0(xi)− π0(xi)}2|π̂0(xi) > 1]− E[{π̂C0 (xi)− π0(xi)}2|π̂0(xi) > 1] =

= E[{π̂0(xi)− 1}{π̂0(xi) + 1− 2π0(xi)}|π̂0(xi) > 1] > 0,

because in this region π̂0(xi) + 1 > 2 ≥ 2π0(xi).
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In Eq. (7):

E[{π̂0(xi)− π0(xi)}2|π̂0(xi) < 0]− E[{π̂C0 (xi)− π0(xi)}2|π̂0(xi) < 0] =

= E[{a− π̂0(xi)}{2π0(xi)− π̂0(xi)− 0}|π̂0(xi) < 0] > 0,

because in this region 2π0(xi) ≥ 0 > π̂0(xi).

S5 Functions π0(xi) used in simulation scenarios

Below, we refer to scenarios I-IV, as in Figure 3:

In scenarios I-IV, the values of x1 are equally spaced between 0 and 1, with the number of points being equal to m, the

number of features considered.

• Scenario I: π0(x1) = 0.9

• Scenario II: π0(x1) = π01(x1) + π02(x1) + 0.12π03(x1), where:

π01(x1) =



1 if 0 ≤ x1 ≤ 0.5

−4/1.96(x1 + 0.2)(x1 − 1.2) if 0.5 < x1 < 0.7

4/1.96× 0.45 if 0.7 ≤ x1 ≤ 1,

π02(x1) =


0 if 0 ≤ x1 < 0.7

−2.5(x− 0.7)2 if 0.7 ≤ x1 ≤ 1

π03(x1) =



0 if 0 ≤ x1 ≤ 0.1

−(x− 0.1)2 if 0.1 < x1 < 0.7

−0.36 if 0.7 ≤ x1 ≤ 1.

• Scenario III:

π0(x1, x2) =



π01(x1) + π02(x1) + 0.12π03(x1) if x2 = 1

π01(x1) + 0.5π02(x1) + 0.06π03(x1) if x2 = 2

π01(x1) + 0.3π02(x1) if x2 = 3,
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where x2 is defined by first randomly generating m points from Unif(0, 0.5), then creating discrete categories by

using the thresholds 0.127 and 0.302 and π01, π02, π03 are defined as in Scenario II.

• Scenario IV: π0(x1, x2) is the same function as in scenario III multiplied by 0.6.

• Scenario V: π0(x1) = x1

8



References

Boca, S. M., Corrada Bravo, H., Caffo, B., Leek, J. T., and Parmigiani, G. (2013). A decision-theory approach to

interpretable set analysis for high-dimensional data. Biometrics doi: 10.1111/biom.12060.

Efron, B. (2008). Simultaneous inference: When should hypothesis testing problems be combined? The Annals of

Applied Statistics pages 197–223.

Gourieroux, C. and Monfort, A. (1981). Asymptotic properties of the maximum likelihood estimator in dichotomous

logit models. Journal of Econometrics 17, 83–97.

Hu, J. X., Zhao, H., and Zhou, H. H. (2010). False discovery rate control with groups. Journal of the American Statistical

Association 105, 1215–1227.

Storey, J. D. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical Society: Series B

(Statistical Methodology) 64, 479–498.

Storey, J. D. and Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National

Academy of Sciences 100, 9440–9445.

9



S6 Supplementary tables

Table S1: Results for BMI GWAS meta-analysis giving the number of SNPs with an estimated FDR ≤ 5% for various
approaches. BL = Boca-Leek, Scott T = Scott theoretical null, Scott E = Scott empirical null, BH = Benjamini-Hochberg.

BL Scott T Scott E Storey BH
Number
with
F̂DR ≤
5%

13384 16697 7636 12771 12500

Table S2: Simulation results for m = 1, 000 features, 200 runs for each scenario, independent test statistics. “Reg.
model” = specific logistic regression model considered, BL = Boca-Leek, Scott T = Scott theoretical null, Scott E = Scott
empirical null, BH = Benjamini-Hochberg. A nominal FDR = 5% was considered. Results for the Scott approaches are
only presented for scenarios which generate z-statistics or t-statistics.

FDR % TPR %

π0(x) Dist. under H1
Reg.
model

BL
Scott
T

Scott
E

Storey BH BL
Scott
T

Scott
E

Storey BH

I Beta(1,20) Spline 5.0 5.2 3.9 0.2 0.2 0.1
V Beta(1,20) Spline 3.5 4.9 3.1 66.6 20.6 0.4
I Norm Spline 5.1 5.5 6.7 4.9 4.4 51.2 51.1 50.0 50.8 49.7
V Norm Spline 4.7 4.9 24.9 4.7 2.4 80.5 83.4 74.1 74.1 67.1
I T Spline 6.0 22.8 24.3 5.5 4.8 16.1 48.7 50.0 15.2 13.6
V T Spline 4.5 7.6 9.4 4.7 2.5 68.3 80.5 50.7 57.1 43.3
I Chisq 1 df Spline 5.0 4.8 4.4 51.2 50.9 49.7
V Chisq 1 df Spline 4.4 4.8 2.5 78.9 73.9 66.8
I Chisq 4 df Spline 5.3 5.4 4.8 30.8 30.6 29.6
V Chisq 4 df Spline 4.0 4.6 2.4 62.8 55.3 46.2
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Table S3: Simulation results for m = 1, 000 features, 200 runs per scenario, dependent test statistics from a multivariate
normal distribution with a block-diagonal variance-covariance matrix. B = block size, ρ = within-block correlation.
“Reg. model” = specific logistic regression model considered, BL = Boca-Leek, Scott T = Scott theoretical null, Scott E
= Scott empirical null, BH = Benjamini-Hochberg. Nominal FDR = 5%.

FDR % TPR %

π0(x) Dist. under H1
Reg.
model

BL
Scott
T

Scott
E

Storey BH BL
Scott
T

Scott
E

Storey BH

I N, B=20, ρ=0.2 Linear 5.3 6.2 6.8 5.0 4.4 51.5 51.4 48.4 51.3 50.1
II N, B=20, ρ=0.2 Linear 5.2 6.9 8.0 5.1 4.6 48.6 63.4 59.3 47.6 46.5
II N, B=20, ρ=0.2 Spline 5.7 8.3 9.2 5.1 4.6 49.2 63.3 59.6 47.6 46.5
III N, B=20, ρ=0.2 Linear 5.5 7.6 9.3 5.2 4.8 45.1 60.0 56.0 44.0 43.2
III N, B=20, ρ=0.2 Spline 5.7 9.6 10.6 5.2 4.8 45.9 60.2 56.3 44.0 43.2
IV N, B=20, ρ=0.2 Linear 5.3 5.3 2.5 4.9 2.9 71.8 71.9 61.0 71.4 65.6
IV N, B=20, ρ=0.2 Spline 5.6 5.5 2.5 4.9 2.9 72.0 71.9 61.1 71.4 65.6
V N, B=20, ρ=0.2 Linear 4.5 5.2 23.2 4.8 2.5 79.0 83.0 74.6 74.1 66.9
I N, B=20, ρ=0.5 Linear 6.4 10.0 10.7 6.0 5.2 52.0 51.7 47.6 51.6 50.3
II N, B=20, ρ=0.5 Linear 6.1 12.4 13.5 5.7 5.1 48.4 62.8 57.6 47.3 46.2
II N, B=20, ρ=0.5 Spline 7.1 18.7 20.4 5.7 5.1 49.5 62.6 58.0 47.3 46.2
III N, B=20, ρ=0.5 Linear 5.6 11.5 15.9 5.2 4.6 45.4 59.6 56.6 44.0 43.2
III N, B=20, ρ=0.5 Spline 6.6 19.9 23.6 5.2 4.6 46.2 59.0 56.9 44.0 43.2
IV N, B=20, ρ=0.5 Linear 5.8 6.1 2.8 5.3 3.1 72.1 72.3 59.4 71.6 65.7
IV N, B=20, ρ=0.5 Spline 6.5 6.4 3.0 5.3 3.1 72.4 72.2 59.6 71.6 65.7
V N, B=20, ρ=0.5 Linear 4.6 6.0 22.4 4.9 2.4 79.2 83.2 72.1 74.3 66.9
I N, B=20, ρ=0.9 Linear 9.0 17.6 36.2 6.9 5.3 53.8 53.3 57.9 52.6 50.4
II N, B=20, ρ=0.9 Linear 7.8 20.0 47.5 6.4 4.9 49.6 63.8 68.0 48.0 46.2
II N, B=20, ρ=0.9 Spline 18.2 34.5 53.6 6.4 4.9 52.2 64.4 69.8 48.0 46.2
III N, B=20, ρ=0.9 Linear 6.4 23.1 48.8 5.1 4.0 47.3 60.5 67.9 46.1 44.0
III N, B=20, ρ=0.9 Spline 21.5 38.4 60.5 5.1 4.0 51.0 60.9 69.7 46.1 44.0
IV N, B=20, ρ=0.9 Linear 7.7 8.4 6.9 6.1 3.1 73.1 73.2 57.4 72.2 65.9
IV N, B=20, ρ=0.9 Spline 11.8 10.0 8.0 6.1 3.1 74.4 72.8 57.8 72.2 65.9
V N, B=20, ρ=0.9 Linear 5.5 7.9 22.1 5.3 2.2 79.1 83.7 69.9 74.5 66.8
I N, B=10, ρ=0.2 Linear 5.4 7.8 6.1 5.1 4.4 51.6 51.6 47.3 51.2 49.9
II N, B=10, ρ=0.2 Linear 5.0 9.3 8.8 4.8 4.3 48.2 63.0 59.8 47.2 46.1
II N, B=10, ρ=0.2 Spline 5.5 13.3 11.1 4.8 4.3 49.1 62.8 59.8 47.2 46.1
III N, B=10, ρ=0.2 Linear 5.2 8.6 9.8 5.0 4.5 44.6 59.5 56.4 43.4 42.7
III N, B=10, ρ=0.2 Spline 5.8 14.3 13.2 5.0 4.5 45.2 59.2 56.6 43.4 42.7
IV N, B=10, ρ=0.2 Linear 5.3 5.7 2.4 5.0 2.9 71.8 71.8 60.4 71.4 65.5
IV N, B=10, ρ=0.2 Spline 5.7 5.9 2.5 5.0 2.9 72.1 71.8 60.5 71.4 65.5
V N, B=10, ρ=0.2 Linear 4.4 5.3 21.6 4.8 2.5 78.5 82.8 73.0 73.8 66.7
I N, B=10, ρ=0.5 Linear 7.3 17.1 15.9 6.5 5.4 51.9 51.8 48.8 51.7 50.0
II N, B=10, ρ=0.5 Linear 5.9 20.3 19.9 5.3 4.5 48.3 62.6 61.0 46.8 45.6
II N, B=10, ρ=0.5 Spline 8.6 32.5 27.7 5.3 4.5 49.2 63.3 61.4 46.8 45.6
III N, B=10, ρ=0.5 Linear 5.8 17.4 17.7 4.9 4.2 44.2 58.1 54.3 43.0 42.0
III N, B=10, ρ=0.5 Spline 8.6 32.7 30.2 4.9 4.2 45.0 58.1 55.6 43.0 42.0
IV N, B=10, ρ=0.5 Linear 6.3 7.5 3.3 5.5 3.2 72.4 72.4 59.0 71.9 65.8
IV N, B=10, ρ=0.5 Spline 7.6 8.3 3.8 5.5 3.2 72.7 72.1 59.3 71.9 65.8
V N, B=10, ρ=0.5 Linear 4.7 6.5 20.4 4.9 2.3 78.6 83.2 69.2 73.8 66.5
I N, B=10, ρ=0.9 Linear 14.1 30.6 45.6 6.6 4.1 55.5 54.7 65.6 53.3 50.2
II N, B=10, ρ=0.9 Linear 13.3 35.5 55.9 5.9 3.3 51.1 66.5 75.8 49.0 46.1
II N, B=10, ρ=0.9 Spline 35.1 49.9 67.5 5.9 3.3 56.1 67.4 77.6 49.0 46.1
III N, B=10, ρ=0.9 Linear 13.3 33.7 66.4 5.4 3.3 45.6 58.1 75.7 43.4 40.7
III N, B=10, ρ=0.9 Spline 40.7 51.5 73.0 5.4 3.3 52.0 61.6 77.4 43.4 40.7
IV N, B=10, ρ=0.9 Linear 11.2 12.4 12.0 7.0 3.1 74.0 73.5 63.9 72.5 65.8
IV N, B=10, ρ=0.9 Spline 19.2 15.6 13.8 7.0 3.1 76.2 73.3 64.3 72.5 65.8
V N, B=10, ρ=0.9 Linear 7.1 10.3 21.9 6.0 2.1 79.6 84.2 67.5 74.7 66.3
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Table S4: Simulation results for m = 1, 000 features, 200 runs per scenario, dependent test statistics from a multivariate
t distribution with a block-diagonal variance-covariance matrix. B = block size, ρ = within-block correlation. “Reg.
model” = specific logistic regression model considered, BL = Boca-Leek, Scott T = Scott theoretical null, Scott E = Scott
empirical null, BH = Benjamini-Hochberg. Nominal FDR = 5%.

FDR % TPR %

π0(x) Dist. under H1
Reg.
model

BL
Scott
T

Scott
E

Storey BH BL
Scott
T

Scott
E

Storey BH

I T, B=20, ρ=0.2 Linear 1.7 9.1 7.4 1.5 0.9 8.0 51.6 57.8 7.6 5.7
II T, B=20, ρ=0.2 Linear 3.2 13.9 7.3 3.2 1.8 8.0 63.8 61.0 6.8 4.5
II T, B=20, ρ=0.2 Spline 3.7 14.7 8.5 3.2 1.8 9.2 63.9 61.3 6.8 4.5
III T, B=20, ρ=0.2 Linear 2.6 13.8 9.6 2.1 1.3 4.3 59.4 60.1 3.4 2.3
III T, B=20, ρ=0.2 Spline 3.6 15.1 11.0 2.1 1.3 5.2 59.7 60.3 3.4 2.3
IV T, B=20, ρ=0.2 Linear 2.7 5.4 2.9 2.4 1.0 55.4 71.8 65.1 54.4 44.3
IV T, B=20, ρ=0.2 Spline 3.0 5.4 2.8 2.4 1.0 56.0 71.9 65.1 54.4 44.3
V T, B=20, ρ=0.2 Linear 2.9 5.6 23.9 3.1 1.2 70.3 82.8 71.3 60.8 48.1
I T, B=20, ρ=0.5 Linear 1.7 10.3 11.0 1.5 1.0 8.6 51.6 57.4 8.2 5.9
II T, B=20, ρ=0.5 Linear 3.5 16.3 11.9 3.3 2.1 7.7 64.2 61.7 6.6 4.5
II T, B=20, ρ=0.5 Spline 4.7 19.5 16.6 3.3 2.1 9.1 63.9 62.1 6.6 4.5
III T, B=20, ρ=0.5 Linear 3.2 17.6 13.0 2.3 1.5 5.0 59.3 59.0 3.6 2.6
III T, B=20, ρ=0.5 Spline 4.4 23.4 20.5 2.3 1.5 5.6 59.6 59.5 3.6 2.6
IV T, B=20, ρ=0.5 Linear 2.7 5.5 3.0 2.3 1.0 55.3 71.9 64.7 54.3 44.4
IV T, B=20, ρ=0.5 Spline 3.2 5.8 3.1 2.3 1.0 55.8 71.9 64.8 54.3 44.4
V T, B=20, ρ=0.5 Linear 3.1 6.2 23.0 3.1 1.2 69.4 82.6 69.4 59.9 47.2
I T, B=20, ρ=0.9 Linear 3.0 14.5 29.0 1.5 0.9 11.5 51.7 64.1 9.9 6.2
II T, B=20, ρ=0.9 Linear 3.8 20.9 45.7 2.3 1.9 10.2 64.9 70.6 7.7 5.0
II T, B=20, ρ=0.9 Spline 15.8 32.1 54.6 2.3 1.9 14.2 64.7 70.5 7.7 5.0
III T, B=20, ρ=0.9 Linear 5.2 23.9 49.7 3.2 1.4 7.3 60.7 63.5 5.6 3.1
III T, B=20, ρ=0.9 Spline 19.0 35.1 60.6 3.2 1.4 10.6 61.7 65.5 5.6 3.1
IV T, B=20, ρ=0.9 Linear 3.6 6.6 7.5 2.4 1.0 56.1 72.2 67.5 54.6 44.3
IV T, B=20, ρ=0.9 Spline 8.6 7.5 8.0 2.4 1.0 58.4 72.0 67.2 54.6 44.3
V T, B=20, ρ=0.9 Linear 3.7 7.9 22.0 3.5 1.1 68.7 82.7 65.5 59.6 46.3
I T, B=10, ρ=0.2 Linear 1.8 9.9 7.8 1.6 0.8 8.3 51.3 57.2 8.0 5.9
II T, B=10, ρ=0.2 Linear 3.4 15.0 8.1 3.4 1.5 7.3 63.1 61.3 6.4 4.3
II T, B=10, ρ=0.2 Spline 4.0 16.7 9.9 3.4 1.5 8.6 63.2 61.5 6.4 4.3
III T, B=10, ρ=0.2 Linear 2.2 15.2 9.5 1.6 1.2 3.7 58.7 59.4 3.0 1.9
III T, B=10, ρ=0.2 Spline 2.7 18.0 12.7 1.6 1.2 4.2 58.5 59.7 3.0 1.9
IV T, B=10, ρ=0.2 Linear 2.6 5.5 2.8 2.4 1.0 54.8 71.5 64.6 53.9 43.9
IV T, B=10, ρ=0.2 Spline 3.0 5.6 2.8 2.4 1.0 55.4 71.5 64.7 53.9 43.9
V T, B=10, ρ=0.2 Linear 2.7 5.9 22.7 3.0 1.2 69.7 82.8 68.8 60.3 48.0
I T, B=10, ρ=0.5 Linear 2.2 13.5 14.2 1.6 0.9 9.3 50.8 57.4 8.5 6.1
II T, B=10, ρ=0.5 Linear 3.3 19.2 13.6 3.4 1.7 7.9 63.1 61.2 7.0 4.4
II T, B=10, ρ=0.5 Spline 6.2 27.6 21.3 3.4 1.7 9.9 63.5 61.3 7.0 4.4
III T, B=10, ρ=0.5 Linear 2.3 23.4 21.5 1.3 0.7 4.4 58.0 59.5 3.0 2.1
III T, B=10, ρ=0.5 Spline 3.8 35.9 31.4 1.3 0.7 5.6 58.1 60.1 3.0 2.1
IV T, B=10, ρ=0.5 Linear 3.1 6.1 3.4 2.5 1.0 54.4 71.4 63.5 53.4 43.2
IV T, B=10, ρ=0.5 Spline 4.3 6.6 3.8 2.5 1.0 55.3 71.2 64.0 53.4 43.2
V T, B=10, ρ=0.5 Linear 3.2 6.9 24.6 3.2 1.3 69.5 82.4 69.0 60.0 47.5
I T, B=10, ρ=0.9 Linear 7.7 23.0 38.0 1.6 1.0 14.9 51.5 70.9 11.4 6.7
II T, B=10, ρ=0.9 Linear 10.1 31.5 50.0 4.1 1.7 12.4 65.4 76.2 11.1 6.0
II T, B=10, ρ=0.9 Spline 41.7 43.6 60.7 4.1 1.7 22.4 68.2 78.9 11.1 6.0
III T, B=10, ρ=0.9 Linear 12.7 36.2 62.9 2.2 1.3 11.0 60.5 77.2 5.8 2.6
III T, B=10, ρ=0.9 Spline 43.0 48.4 71.0 2.2 1.3 19.3 62.9 78.7 5.8 2.6
IV T, B=10, ρ=0.9 Linear 6.2 9.2 11.1 3.2 1.0 56.3 72.1 68.3 54.2 42.4
IV T, B=10, ρ=0.9 Spline 15.1 10.8 11.8 3.2 1.0 59.3 71.8 68.3 54.2 42.4
V T, B=10, ρ=0.9 Linear 6.6 10.3 22.5 4.6 1.2 69.6 83.0 67.2 60.3 45.9
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Figure S1: Simulation results for m=1,000 features and t-distributed independent test statistics showing the true function
π0(xi) in black and the empirical means of π̂0(xi), assuming different modelling approaches in orange (for our approach,
Boca-Leek = BL), blue (for the Scott approach with the theoretical null = Scott T), and brown (for the Storey approach.)
The scenarios considered are those in Figure 3.

(a)

(b) (c)

(d) (e)

(f) (g)

(h)
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Figure S2: Simulation results for m=10,000 features and t-distributed independent test statistics showing the true function
π0(xi) in black and the empirical means of π̂0(xi), assuming different modelling approaches in orange (for our approach,
Boca-Leek = BL), blue (for the Scott approach with the theoretical null = Scott T), and brown (for the Storey approach.)
The scenarios considered are those in Figure 3.
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Figure S3: Diagnostic plots for assessing whether, in the BMI GWAS meta-analysis, the p-values and the covariates are
conditionally independent under the null. Panel a) stratifies according to N, splitting up the dataset into 8 approximately
equal datasets, panel b) uses the MAF stratification.
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(b) Stratification by MAF
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