S6 Appendix Description of studies

Description of studies included in meta-analysis regarding treatment of proximal humerus fractures, and an evaluation of the risk of bias of individual studies. All data was collected for the purpose of an HTA analysis performed by the Swedish Agency for Health Technology Assessment and Assessment of Social Services, SBU.

Proximal humerus fractures

Surgery vs non-operative treatment

Treatment comparison	Studies (RCTs and cohort studies), Fracture type* Treatment	n	Age	Outcome measurements	Level of bias	Comments
Hemiprosthesis vs non- operative treatment	Boons, 2012 Neer 4-part prox humerus fracture Hemiarthroplasty vs non-operative	50	>65	Constant score Complications	Low	
	Olerud, 2011 Neer 4-part prox humerus fracture Hemiarthoplasty vs non- operative	55	>55	DASH Constant score EQ-5D Complications	Moderate	2 years follow-up
Different internal fixations vs non- operative treatment	Fjalestad, 2014 Neer 3- och 4-part prox humerus fracture Locking plate vs non- operative	50	>60	ASES Constant score 15-D	Low	2 years follow-up
	Handoll, 2015 Neer 2-,3- och 4-part prox humerus fracture Surgery (ORIF (any implant) or hemiarthroplasty) vs non-operative	250	>16 Mean age 66	Oxford Shoulder score EQ-5D SF-12 Complications	Low	2 years follow-up

Hauschild, 2013 Neer 2-part prox humerus fracture (AO- type A2 and A3) Surgery (locking plate or nail) vs non-operative	164	All ages. Mean age 64	Constant score	Moderate/Low	133 operative vs 31 non-operative
Innocenti, 2013 Neer 2-,3- and 4-part fractures Perkutaneous pinning vs non-operative	51	>65	Constant score VAS	Moderate/Low	
Olerud et al 2011 Neer 3-part prox humerus fractures Locking plate vs non- operative	59	>55	DASH Constant score EQ-5D Complications	Low	2 years follow-up
Schai, 1995 Neer 3-part prox humerus fractures Surgery (minimal intern fixation or plate or primary hemiprostesis or secondary hemiprosthesis) vs non- operative	93	Mean age 66 (range 28–87)	Constant score	Moderate/Low	4 years follow-up (range 1.5-14 years)
Zyto, 1997 Neer 3- och 4-part prox humerus fracture Cerclage (Tension Band Wires) vs non-operative	40	"Elderly patients" Mean age 74	Constant score ADL Complications	Low	50 months follow-up

*Neer CS 2nd. Displaced proximal humeral fractures. Part I. Classification and evaluation. J Bone Joint Surg Am 1970;52:1077-89.

Brorson S, Eckardt H, Audigé L, Rolauffs B, Bahrs C. Translation between the Neer- and the AO/OTA-classification for proximal humeral fractures: do we need to be bilingual to interpret the scientific literature? BMC Res Notes 2013;6:69.

ADL: Activities of Daily living; AO: Arbeitsgemeintschaft für Osteosynthesefragen; ASES: American Shoulder and Elbow Surgeons score; DASH: Disabilities of the Arm Shoulder and Hand;; EQ-5D: EuroQoL 5 Dimensions; ORIF: open reduction internal fixation; SF-12: 12-item Short-form health survey; VAS: Visual Analog Scale; 15-D: 15 dimensional HRQoL instrument

Proximal humerus fractures

Surgery vs surgery

Treatment comparison	Studies (RCTs and cohort studies), Fracture type* Treatment	n	Age	Outcome measurement	Level of bias	Comments
Different types of internal fixation	Buecking, 2014 Neer 2-,3- och 4-part prox humerus fractures Locking plate through Deltoid split vs deltopectoral incision	120	>18, mean age 68	Constant score ADL Complications	Low	
	Konrad, 2012 Neer 2-,3- och 4-part prox humerus fracture LPHP plate (locking plate) vs Philos plate (locking plate)	318	>18 Mean age 64	Constant score Complications	Moderate/Low	Prospective multicentre
	Ortmaier, 2015 Neer 3-and 4-part proximal humerus fractures Locking plate vs Humerus block (HB)	60	Mean age 61 (range 36– 80)	Constant score	Moderate/Low	Minimum of 24 months, 36-38 months follow-up
	Shi, 2011 Neer 2-,3- and 4-part prox humerus fractures Polyaxial vs monoaxial locking plates	76	Mean age 69 (range 60– 81)	Constant Complications	Moderate/Low	
	Voigt, 2011 Neer 3- and 4-part prox humerus fractures Polyaxial vs monoyaxial locking plates	56	>60	DASH Constant score Complications	Low	

	Yan, 2012 Neer 2-,3-part prox humerus fractures T-plate vs locking plate	91	All ages, mean age 68	ASES HSS	Moderate/Low	14-45 months follow-up
Different types of ORIF with or without medial support	Liu, 2011 Neer 2-,3- and 4-part prox humerus fractures Locking plate with or without calcium sulfate reinforcement	50	>60	Neer scoring system Complications	Moderate	All patients with BMD below 2.5 (osteoporosis)
	Peng, 2012 Neer 2-,3- and 4-part prox humerus fracture Non-locking plate with or without bone allograft	90	>65	Complications	Moderate/Low	
	Zhang, 2011 Neer 2-part, 3-part and 4-part fracture Locking plate with or without medial support screw	72	>18 years, mean age 63	Constant score Complications	Low	
Different types of ORIF vs prosthesis	Chen, 2016 Neer 4-part prox humerus fracture, Locking plate with fibula graft vs hemiarthroplasty	60	Mean age 66 (range 51-81)	DASH Constant score Complications	Low	All patients with BMD<-3,0 (osteoporosis)
	Ortmaier, 2015 Neer 3 and 4-part prox humerus fracture; Reverse shoulder arthroplasty (RSA) vs Humerus block	50	>65	Constant score	Moderate/Low	
	Spross, 2012 Neer group 6 prox humerus fractures Locking plate vs hemiarthroplasty	44	Mean age 75 (range 42–93)	Constant score SF-36 Complications	Moderate/Low	

Plate vs nail	Gracitelli, 2016 Neer 2-,3- part prox humerus fractures Locking plate vs intramedullary nail	72	50–85 years	DASH Complications	Low	
	Gradl, 2009 Neer 2-,3- and 4-part prox humerus fractures Locking plate vs intramedullary nail	152	All ages, mean age 63	Constant score Complications	Moderate/Low	Prospective multicenter study
	Konrad, 2012 Neer 3-part prox humerus fractures Locking plate vs intramedullary nail	211	>18 years, mean age 65	Constant score Neer score Complications	Moderate/Low	Prospective
	Urda, 2012 Neer 2-part prox humerus fractures Locking plate vs intramedullary nail	50	All ages, mean age 70	Constant score EQ-5D Complications	Moderate/Low	Comparison of percutaneous pinning not included in analysis due to too few individuals, n=9 Mean follow-up 40 months

*Neer CS 2nd. Displaced proximal humeral fractures. Part I. Classification and evaluation. J Bone Joint Surg Am 1970;52:1077-89.

Brorson S, Eckardt H, Audigé L, Rolauffs B, Bahrs C. Translation between the Neer- and the AO/OTA-classification for proximal humeral fractures: do we need to be bilingual to interpret the scientific literature? BMC Res Notes 2013;6:69.

ADL: Activities of daily living; ASES: American Shoulder and Elbow Surgeons score; BMD: Bone Mineral Density; DASH: Disabilities of the arm, shoulder and hand score;

EQ-5D: EuroQoL 5 Dimensions; LPHP; Locking Proximal Humerus Plate; HSS: Hospital for Special Surgery score; ORIF: open reduction internal fixation; PHILOS: Proximal humeral internal locking system; SF-36: 36 item Short Form Health survey; RSA; Reverse shoulder arthroplasty;

Treatment comparison	Studies (RCTs and cohort studies), Fracture type* Treatment	n	Age	Outcome measurement	Level of bias	Comments
Reverse shoulder arthroplasty (RSA) vs hemiarthroplasty	Boyle, 2013 Prox humerus fractures treated with prosthesis: Reverse shoulder arthroplasty (RSA) vs hemiarthroplasty	368	All ages, mean age 76	OSS Complications	Moderate/Low	5 years follow-up Registry study 313 HA, 55 RSA
	Cuff, 2013 Neer 3-part with involvement of major tubercle major, 4-part fractures or fractures with joint surface injury Reverse shoulder arthroplasty (RSA) vs hemiarthroplasty	53	"elderly". Mean age 74	ASES Simple shoulder test Complications	Moderate/Low	2 years follow-up
	Gallinet, 2009 Neer 3- and 4-part prox humerus fracture Reverse shoulder arthroplasty (RSA) vs hemiarthroplasty	40	Mean age 74 (range 49–95)	DASH Constant Complications	Moderate/Low	
	Sebastia-Forcada, 2014 Prox. humerus fractures Reverse shoulder arthroplasty (RSA) vs hemiarthroplasty	62	>70	QuickDASH Constant score Complications	Low	49 months follow-up
Variations of fixation of tubercles	Fialka 2008 Neer 4-part prox humerus fractures Hemiarthroplasty with 2 different types of tubercle fixation	40	>50	Constant score Complications	Moderate	Time point for outcome measurement not stated

	Loew, 2006 Neer 3- and 4-part prox humerus fractures and fractures with split humeral head Hemiarthroplasty with 2 different types of tubercle fixation	39	Mean age 72 (range 54–88)	Constant score	Moderate/Low	
	Dietz, 2012 Neer 4-part prox humerus fractures Suture vs wire fixation of major tubercle during hemiartroplasty	54	Mean age 73 (range 45–97)	Constant score	Moderate/Low	
	Wu, 2013 Neer 4-part prox humerus fractures Hemiarthroplasty with 2 different types of tubercle fixation	67	Median age 70 (range 62–88)	Neer scoring system	Moderate/Low	
Variations of intramedullary nails	Lopiz, 2014 Neer 2- and 3-part prox humerus fractures Curvilinear vs straight intramedullary nail	52	Mean age 70 (range 38–89)	Constant score Complications	Low	

*Neer CS 2nd. Displaced proximal humeral fractures. Part I. Classification and evaluation. J Bone Joint Surg Am 1970;52:1077–89. Brorson S, Eckardt H, Audigé L, Rolauffs B, Bahrs C. Translation between the Neer- and the AO/OTA-classification for proximal humeral fractures: do we need to be bilingual to interpret the scientific literature? BMC Res Notes 2013;6:69.

ASES: American Shoulder and Elbow Surgeons score; DASH: Disabilities of the Arm Shoulder and Hand; OSS: Oxford shoulder score; Quick-DASH: Quick Disabilities of the Arm Shoulder and Hand; Reverse shoulder arthroplasty

Distal humerus fractures

Treatment comparison	Studies (RCTs and cohort studies), Fracture type* Treatment	n	Age	Outcome measurement	Level of bias	Comments
Variations of plates vs prosthesis	McKee, 2009 Distal humerus fractures AO type C ORIF (plate and screws) vs total elbow replacement	40	>65	DASH MEPS Complications	Low	
Variations of total elbow replacements	Prasad, 2008 Total elbow joint replacement due to distal humerus fractures, AO type A3, B3, C3 Acute vs secondary joint replacement	32	Mean age 78 (range 61–89)	MEPS Complications	Moderate/Low	

*Müller ME, Nazarian S, Koch P, 1990, The Comprehensive Classification of Fractures of Long Bones, Berlin, Heidelberg, Springer Verlag.

AO: Arbeitsgemeintschaft für Osteosynthesefragen; DASH: Disabilities of the arm, shoulder and hand score; MEPS: Mayo Elbow Performance Score; ORIF: open reduction internal fixation

Diaphyseal humerus fractures

Treatment	Studies	n	Age	Outcome measurement	Level of bias	Comments
comparison	(RCTs and cohort studies),					
	Treatment					
Plate vs nail	Chen, F., 2013 Diafyseal humerus fractures ORIF vs Intramedullary nail	1385	All ages, mean age 74	Complications	Moderate/Low	Registry study

ORIF: open reduction internal fixation

Proximal humerus fractures

Rehabilitation after shoulder hemiarthroplasty

Treatment comparison	Studies (RCTs and cohort studies), Fracture type* Treatment	n	Age	Outcome measurement	Level of bias	Comments
Comparison of different rehab regimes	Agorastides, 2007 Neer 3- and 4-part prox humerus fractures Mobilization 2 vs 6 weeks after hemiarthroplasty	59	"Physiologi cally old" Mean age 70	Oxford score Constant score Complications	Low	

*Neer CS 2nd. Displaced proximal humeral fractures. Part I. Classification and evaluation. J Bone Joint Surg Am 1970;52:1077–89. Brorson S, Eckardt H, Audigé L, Rolauffs B, Bahrs C. Translation between the Neer- and the AO/OTA-classification for proximal humeral fractures: do we need to be bilingual to interpret the scientific literature? BMC Res Notes 2013;6:69.