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Appendix A – Supplementary methods and results 

 

SNP Genotyping 

Larval tissue was homogenized and DNA was extracted as described in Fountain et al. (2018). 

Genotyping was performed on the KASP platform. In total 40 putatively neutral markers from 

noncoding regions of the genome were selected, and an additional five putatively functional markers 

were selected from candidate genes related to flight or dispersal traits including Pgi (Orsini et al. 2009; 

Kvist et al. 2013; Kvist et al. 2015; Wong et al. 2016; Duplouy et al. 2017; Appendix B). The neutral 

loci were obtained from SOLiD matepair-1 genome sequences (Ahola et al. 2014) using an in-house 

SNP calling method (Rastas et al. 2013). The neutral SNPs have minor allele frequencies >0.2, and 

span all 31 chromosomes from non-coding regions. Further details of SNP calling, validation, and 

quality control are described in Fountain et al. (2016). Previous work demonstrated that this neutral 

SNP panel was sufficient to capture both large (Nair et al. 2016) and small-scale (Fountain et al. 2018) 

patterns of genetic population structure. In a study conducted in a smaller region in Åland, Fountain et 

al. (2018) showed that the neutral 40-SNP panel and a larger panel of 272 SNPs resolved the same 

patterns of spatial genetic structure in each of the six years tested. We are thus confident that the panel 

used here will represent the genetic structure of the metapopulation well. 

Development of landscape connectivity hypotheses 

The landscape was classified from 20 m resolution CORINE 2012 Land Cover Inventory raster data 

from the Finnish Environmental Institute (http://www.syke.fi/en-

US/Open_information/Spatial_datasets). The original raster layer included 48 land cover categories, 42 

of which were found in our study region. We additionally overlaid polygons representing patches, and 

added a category representing edges between agriculture and forested areas as previous work found that 
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M. cinxia tend to move along edges (Ovaskainen et al. 2008). We simplified the final land 

classification by combining structurally similar landscape features, resulting in 11 distinct categories 

representing major land use in the study region: discontinuous urban, continuous urban, open water, 

closed forest, transitional woodland scrub, agriculture with no major natural elements, agricultural 

edges, pasture, bare rock, roads, and patches.  

BAPS and latent factor mixed modeling 

Latent factor mixed models (lfmm) require the number of genetically distinct populations, k, to be 

determined apriori. We used the Bayesian clustering program BAPS6 (Corander, Siren, and Arjas 

2008, Cheng et al. 2013) to estimate k for M. cinxia in Åland in the years 2011 and 2012 separately. 

This program has been successfully used to quantify the number of genetically distinct populations in 

Åland previously (Nair et al. 2016, Orsini et al. 2008). We used the spatial mixture model, which is 

suggested for populations that exhibit low amounts of genetic structure or when few markers are used. 

Twenty replicate runs with an upper bound of 30 clusters was used. BAPS identified 15 clusters with 

the highest marginal likelihood in 2011 and 12 clusters in 2012 (Fig. S1). Because latent factor mixed 

models were run only on new populations, the actual number of clusters represented in the data were 

fewer – e.g. individuals from new populations with Lemland excluded were found in 10 of the 15 

clusters in 2011 and 10 of the 12 clusters in 2012, but many of the clusters only included a single 

represented individual. To be sure, we explored a broad range of k values (7-15) for the latent factor 

mixed models. We ran the lfmms 10 times for each connectivity predictor, for 20,000 iterations 

following 10,000 iterations of burn-in. We calculated median z-scores across the 10 repetitions. The 

resulting p-values were calibrated to correct for type I errors by applying an inflation factor (Francois et 

al. 2016). We corrected for multiple testing by applying the Benjamini-Hochberg algorithm (Benjamini 

and Hochberg 1995) with a false discovery rate of 10%. After each run of the lfmm we calculated the 
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genomic inflation factor (GIF) as the median of the squared z-scores divided by the median of the chi-

squared distribution (Francois et al. 2016). The values of the GIF can be used to evaluate how well the 

test captured neutral genetic variation (Francois et al. 2016). A GIF of one indicates that neutral genetic 

structure is controlled for properly, while a low value indicates a conservative test and a high value 

indicates a liberal test (Francois et al. 2016). We used the GIFs to rescale the test statistic, which is 

recommended to limit inflation due to confounding factors and population structure (Francois et al. 

2016). Tests of Siwater, Siwater+forest, and Siwater+forest+agriculture in 2011 had GIFs very close to one (Table 

S6). Tests of Siforest and Siagriculture in 2011 and Siwater and Siroads in 2012 were below one, indicated a 

conservative test. We found that the tests of Siwater and Siroads were overly conservative even after 

calibrating p-values with the GIF, and thus applied slightly lower inflation factors to achieve a better 

distribution of the Q-Q plots (Fig S_lfmm). This did not change our result – no locus was identified as 

a significant outlier in 2012. 

 

Spatial autocorrelation analysis 

We tested the residuals of the top supported Pgi linear mixed effect models in 2011 and 2012 for 

spatial autocorrelation by plotting semivariance over distances up to 10 km at 1 km intervals. We found 

evidence for spatial autocorrelation up to 2-3 km in 2011 and 4-5 km in 2012. To test if this biased our 

results, we compared models with and without spatial random effects using Integrated Nested Laplace 

Approximation implemented in r-inla (Rue et al. 2009; Lindgren & Rue 2015).  For both years, SPDE 

models were implemented and a 2-dimensional mesh was constructed using a cut-off of 30 metres 

(minimum distance between sampled patches), maximum edges of 1.5 km (inner) and 3 km (outer), and 

an offset of 5 km to ensure no boundary effects. The resulting number of mesh vertices were n=2150 in 

2011 and n=2456 in 2012. Two models were constructed for each year; one including fixed effects 
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(age*Siforest + Siwater + Siagriculture in 2011; age*Siroads + age*Siwater in 2012) and a random effect of 

genetic cluster, and another that was identical to the first but with the addition of the spatial random 

effect. It was clear from the DIC values that the spatial model was preferred in both cases, however, 

there was very little difference in the fixed estimates generated by the spatial and non-spatial models 

and our conclusions did not change (Table S3). We thus chose to keep the main analysis in the text 

without the addition of spatial random effects.  
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