Supplementary Information China. # Multi-Inch Single-Crystalline Perovskite Membrane for High-Detectivity Flexible Photosensors Yucheng Liu¹#, Yunxia Zhang¹#, Zhou Yang¹, Haochen Ye¹, Jiangshan Feng¹, Zhuo Xu¹, Xu Zhang², Rahim Munir³, Jia Liu¹, Ping Zuo¹, Qingxian Li¹, Mingxin Hu¹, Lina Meng¹, Kang Wang¹, Detlef-M. Smilgies⁴, Guangtao Zhao¹, Hua Xu¹, Zupei Yang¹, Aram Amassian³, Jiawei Li⁵, Kui Zhao¹* & Shengzhong(Frank) Liu^{1,2}* ¹Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China. ²iChEM, Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China. ³Division of Physical Sciences and Engineering, Solar and Photovoltaics Engineering Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia. ⁴Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14850, USA. ⁵School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, P. R. Correspondence and request for materials should be addressed to S. L. ($\underline{szliu@dicp.ac.cn}$) or K. Z. ($\underline{zhaok@snnu.edu.cn}$) ## **Supplementary Figures** **Supplementary Figure 1.** (a) 3D AFM topographic of a (PEA)₂PbI₄ SCM and (b) height profile of the line scan. **Supplementary Figure 2.** Thickness distribution of the (PEA)₂PbI₄ SCMs obtained with the cooling rates of (a) 1 °C h⁻¹, (b) 0.5 °C h⁻¹, (c)3 °C h⁻¹ and (d) 5 °C h⁻¹. **Supplementary Figure 3.** (a) The photo and (b) SEM image of (PEA)₂PbI₄ SCMs. (c) Higher resolution SEM image of a (PEA)₂PbI₄ SCM. (d, e) SEM image and EDS spectrum of the three detected elements C, Pb, and I. (f-i) EDS mapping scanning measurement of the three detected elements C, Pb, and I. **Supplementary Figure 4.** (a) Optical image and AFM height image of a representative (PEA)₂PbI₄ SCM, showing some terraces on the edge. The inset of (b) shows the height profile of the image. **Supplementary Figure 5.** (a) Photo of the $(PEA)_2PbI_4$ SCMs used for flexing angle measurement. (b) Cross-sectional SEM images of a $(PEA)_2PbI_4$ SCM with thicknesses ~7.14 µm. (c) The photograph of a $(PEA)_2PbI_4$ SCM bent at flexing angles from 45° to 195°. Supplementary Figure 6. Schematic illustration of the (PEA)₂PbI₄ SCM (a) before and (a) after flexed. Supplementary Figure 7. A photo of a (PEA)₂PbI₄ SCM on flexible PET substrate. **Supplementary Figure 8.** High-resolution X-ray diffraction of a (PEA)₂PbI₄ SCM with the inset showing the rocking-curve corresponding to the (005) plane. Supplementary Figure 9. Integrated GIWAXS spectra of the $(PEA)_2PbI_4$ SCM and $(PEA)_2PbI_4$ MCTF. Supplementary Figure 10. GIWAXS image of the (PEA)₂PbI₄ MCTF. **Supplementary Figure 11.** The absorption spectra (a) and corresponding Tauc plot (b) of the (PEA)₂PbI₄ SCM and (PEA)₂PbI₄ MCTF. **Supplementary Figure 12.** (a) Schematic illustration of the energy diagram. (b, d) The Ultraviolet photoemission spectroscopy spectrum of the (PEA)₂PbI₄ SCM and (PEA)₂PbI₄ MCTF. The left panel shows the magnified view of the high binding energy region and the right panel shows the magnified view of the low binding energy region. (c, e) Energy band diagram for the (PEA)₂PbI₄ SCM and (PEA)₂PbI₄ MCTF drawn according to UPS results. **Supplementary Figure 13.** 3D excitation-emission plot for the (PEA)₂PbI₄ MCTF. Emission intensity rises with the color changing from blue to green and to red. **Supplementary Figure 14.** PL mapping of the (PEA)₂PbI₄ SCM (a) and (PEA)₂PbI₄ MCTF (b) excited at 375 nm. **Supplementary Figure 15.** (a) The capacitance and (b) dielectric constant dependent frequency curves of the $(PEA)_2PbI_4$ SCMs. Seven devices were fabricated by depositing ~100 nm thick Au on two opposite surfaces of the $(PEA)_2PbI_4$ SCMs and measured under same condition. The thickness of the SCMs are 0.22 mm, 0.22 mm, 0.25 mm, 0.30 mm, 0.32 mm, 0.23 mm and 0.24 mm, respectively. The area is 2.72×10^{-6} m². **Supplementary Figure 16.** Current-voltage curves of the **(a)** hole-only and **(b)** electron-only (PEA)₂PbI₄ SCM devices. **Supplementary Figure 17.** TGA curve and corresponding first derivative for the (PEA)₂PbI₄ SCM powder. **Supplementary Figure 18.** The XRD patterns periodically recorded for the (PEA)₂PbI₄ SCM and MCTF, stored in high humidity environment with ~65 % relative humidity (RH) at 25 °C without encapsulation. **Supplementary Figure 19.** Photograph of the (PEA)₂PbI₄ SCM (a) and (PEA)₂PbI₄ MCTF (b) used for water contact angle test. Photograph of water droplet on the (c) (PEA)₂PbI₄ SCM and (d) (PEA)₂PbI₄ MCTF. Supplementary Figure 20. Schematic illustration of the photosensor architecture. **Supplementary Figure 21.** Current-voltage (I-V) curves of the $(PEA)_2PbI_4$ SCM and $(PEA)_2PbI_4$ MCTF devices measured under 460 nm wavelength illumination with light intensity of 10 mW cm⁻². **Supplementary Figure 22.** (a) Responsivity (R) and (b) external quantum efficiency (EQE) spectrum of the (PEA)₂PbI₄ SCM photosensor measured at a 4 V bias. (c) Specific detectivity (D*) calculated from dark noise current of the (PEA)₂PbI₄ SCM photosensor. Supplementary Figure 23. (a) The time-dependent on/off cycles test of the photocurrent response at a series of bias voltages: 0.5 V, 1 V, 2 V, 3 V, and 4 V under illumination ($\lambda = 460$ nm). (b) The photocurrent response as a function of bias voltage of the (PEA)₂PbI₄ SCM photosensors. **Supplementary Figure 24.** (a-f) The time-dependent on/off cycles test of the photocurrent response of the flexible planar photosensor at various bending angles. (g) The photocurrent response of the flexible planar photosensor bent with various angles from 0° to 155° at a bias voltage of 10 V. ## **Supplementary Tables.** **Supplementary Table 1.** The PL peak position, intensity and FWHM values taken from 36 different locations of the large (PEA)₂PbI₄ SCM. | Locations | Peak position (nm) | Peak intensity (Counts) | FWHM (nm) | Locations | Peak position (nm) | Peak intensity (Counts) | FWHM (nm) | |-----------|--------------------|-------------------------|-----------|-----------|--------------------|-------------------------|-----------| | 1 | 525 | 38266 | 15.0 | 23 | 525 | 38697 | 14.9 | | 2 | 525 | 38508 | 15.0 | 24 | 525 | 38953 | 14.7 | | 3 | 525 | 38656 | 15.1 | 25 | 525 | 38769 | 14.8 | | 4 | 525 | 38508 | 15.2 | 26 | 525 | 38697 | 14.7 | | 5 | 525 | 38737 | 15.1 | 27 | 525 | 38597 | 14.7 | | 6 | 525 | 38656 | 15.1 | 28 | 525 | 38778 | 14.9 | | 7 | 525 | 38817 | 15.0 | 29 | 525 | 38795 | 14.7 | | 8 | 525 | 38736 | 14.9 | 30 | 525 | 39025 | 14.7 | | 9 | 525 | 38427 | 14.8 | 31 | 525 | 38497 | 14.8 | | 10 | 525 | 38656 | 14.8 | 32 | 525 | 38739 | 15.0 | | 11 | 525 | 39086 | 14.7 | 33 | 525 | 38768 | 14.8 | | 12 | 525 | 38575 | 14.8 | 34 | 525 | 38779 | 14.7 | | 13 | 525 | 38427 | 14.7 | 35 | 525 | 38794 | 14.8 | | 14 | 525 | 38366 | 14.7 | 36 | 525 | 38769 | 14.7 | | 15 | 525 | 38868 | 14.9 | 37 | 525 | 38769 | 14.7 | | 16 | 525 | 38804 | 14.7 | 38 | 525 | 38859 | 14.8 | | 17 | 525 | 38796 | 14.7 | 39 | 525 | 38859 | 14.7 | | 18 | 525 | 38954 | 14.8 | 40 | 525 | 38569 | 14.9 | | 19 | 525 | 38769 | 14.7 | 41 | 525 | 37998 | 14.9 | | 20 | 525 | 38789 | 14.7 | 42 | 525 | 38996 | 15.1 | | 21 | 525 | 38964 | 14.8 | 43 | 525 | 38697 | 14.8 | | 22 | 525 | 38796 | 14.7 | 44 | 525 | 38773 | 14.7 | | Mean | 525 | 38712 | 14.8 | | | | | | Standard | 525 | 206.5 | 0.14 | | | | | | deviation | | | | | | | | | Minimum | 525 | 37998 | 14.7 | | | | | | Median | 525 | 38769 | 14.8 | | | | | | Maximum | 525 | 39086 | 15.2 | | | | | **Supplementary Table 2.** Trap state density of eight devices calculated from *I-V* characteristics for the hole-only devices. | Sample ID | $n_{\rm trap}$ / cm ⁻³ | |--------------------|-----------------------------------| | 1 | 8×10^{10} | | 2 | 6.95×10^{10} | | 3 | 9.42×10^{10} | | 4 | 4.32×10^{10} | | 5 | 1.32×10^{11} | | 6 | 9.81×10^{10} | | 7 | 7.34×10^{10} | | 8 | 6.37×10^{10} | | Mean | 8.18×10^{10} | | Standard Deviation | 2.67×10^{10} | | Minimum | 4.32×10^{10} | | Maximum | 1.32×10^{11} | **Supplementary Table 3.** Trap state density of eight devices calculated from *I-V* characteristics for the electron-only devices. | Sample ID | $n_{\rm trap}$ / cm ⁻³ | |--------------------|-----------------------------------| | 1 | 1.14×10^{11} | | 2 | 1.32×10^{11} | | 3 | 1.45×10^{11} | | 4 | 9.89×10^{10} | | 5 | 2.45×10^{11} | | 6 | 3.42×10^{11} | | 7 | 7.48×10^{10} | | 8 | 1.77×10^{11} | | Mean | 1.66×10^{11} | | Standard Deviation | 0.88×10^{11} | | Minimum | 0.75×10^{11} | | Maximum | 3.42×10^{11} | # **Supplementary Table 4.** Dark current of photosensors based on different perovskite single crystals and architectures | Structure | $ m I_{dark}$ @ $ m V_{Bias}$ | Reference | |---|---|--------------| | Au/3D MAPbI ₃ (SC)/Au | $9.2 \times 10^{-3} \text{ mA cm}^{-2} \text{ at 4 V}$ | 1 | | Au/3D MAPbI ₃ (SC)/Au | $3.7 \times 10^{-2} \text{ mA cm}^{-2} \text{ at 2 V}$ | 2 | | Pt/MAPbCl ₃ (SC)/Ti/Au | $4.15 \times 10^{-4} \text{ mA at } 15 \text{ V}$ | 3 | | Au/(PEA) ₂ PbI ₄ (SCM)/Au | $3.57 \times 10^{-6} \text{ mA cm}^{-2} \text{ at 2 V}$ | Present work | **Supplementary Table 5.** Comparative performance parameters of previously reported planar-type perovskite photodetectors and the present (PEA)₂PbI₄ SCM device. | Device structure | Responsivity (A/W) @ V _{bias} / light intensity | Detectivity (Jonse) @V _{bias} | Response
speed
(rise/decay) | Dark
current
@ V _{bias} | Ref. | |---|--|--|-----------------------------------|--|-----------------| | Au/MAPbI ₃ NW/Au | 4.95 @ 1 V/2
nW cm ⁻² | 2×10^{13} | < 0.1 ms | 1×10 ⁻¹⁰ A
@1 V | 4 | | Au/MAPbI ₃ SC/Au | 2.55 @ 1 V/
1 mW cm ⁻² | _ | 74/58 μs | 1.1×10 ⁻⁸
nA @ 4
V | 1 | | Au/MAPbI ₃ MW/Au | 13.57 @ -5
V/500 uW cm ⁻² | 5.25×10^{12} | 80/240 μs | | 5 | | ITO/MAPbI ₃ NW/ITO | 3.49 @ 3 V
10 uW cm ⁻² | 5.25×10 ¹² | ~10 ⁵ μs | 4.5×10 ⁻⁷
A @ 8 V | 6 | | Pt/MAPbI ₃ NW/Pt | 5 ×10 ⁻³ | | <500 μs | | 7 | | Au/MAPbI ₃ NW/Au | 1.3 @30 V | 2.5×10^{12} | 200/300 μs | 2×10 ⁻⁹ A
@ 2 V | 8 | | Au/MAPbI ₃ NW/Au | 0.1 @10 V
100 uW cm ⁻² | 1.02×10^{12} | 300/400 μs | 7×10 ⁻¹¹ A
@ 10 V | 9 | | Au/MAPbI ₃ MW/Au | 1.2 @10 V/
0.1 mW cm ⁻² | 2.39×10^{12} | < 10 ms | 1.1×10 ⁻⁹
A @ 10
V | 10 | | Au/graphene/MAPbI _{3-x} Cl _x nanocrystals/graphene/Au | 5.6×10 ⁸ @3 V/ | 2.8×10^{16} | 20/445 μs | ~3×10 ⁻¹¹
A @ 3 V | 11 | | Ag/ZnO NWs/Ag | 7.5×10 ⁶ @1
V/0.5 nW cm ⁻² | 3.3×10^{17} | 0.56/0.32 s | 2×10 ⁻¹¹ A
@ 1 V | 12 | | Au/MAPbI ₃ SC/Au | 0.0195 @10 V | 1.0×10 ¹¹ @
4.6 V | | | 13 | | Au/MAPbI3 SC/Au | 2.6 @2 V | | | 1×10 ⁻⁶ A
@ 3 V | 2 | | Au/MAPbI ₃ SC/Au | 7.92 @4 V/
10 uW cm ⁻² | | < 0.2/0.2 s | | 14 | | Au/MAPbI ₃ SC/Au | 7.92 @4 V | | 39/1.9 μs | 10 ⁻⁷ A @
4 V | 15 | | Commercial Si | <1 A W ⁻¹ | 5.8×10 ¹³ | | | 16 | | Au/(PEA) ₂ PbI ₄ (SCM)/Au | 98.17 @4 V
/0.08 uW cm ⁻² | 1.62 ×10 ¹⁵
@ 4 V | 64/52 μs | 2.6×10 ⁻¹²
A @ 4 V | Present
work | #### Supplementary Notes. #### **Supplementary Note 1.** #### Elastic flexing deformation model. According to the elastic flexing deformation model¹⁷, the stretching length (L) along a'b' is determined as follow, $$L = a'b' - ab = \frac{\pi(r+d)\alpha}{180^{\circ}} - \frac{\pi r\alpha}{180^{\circ}} = \frac{\pi d\alpha}{180^{\circ}}$$ (S1) Then the flexing angle can be obtained as: $$\alpha = \frac{180^{\circ}L}{\pi d} \tag{S2}$$ Where d is half the thickness of the (PEA)₂PbI₄ SCM, r is the radius of curvature, α is the flexing angle (Supplementary Figure 6). #### **Supplementary Note 2.** #### **Ultraviolet Photoelectron Spectroscopy (UPS).** UPS is used to determine the Fermi level (E_F) and the valence band maximum (E_V) with respect to vacuum level (E_{VAC}) of the (PEA)₂PbI₄ SCM and (PEA)₂PbI₄ MCTF¹⁸. The basic principles and an example spectrum are shown in Supplementary Figure 12. For a photoelectron to escape the sample surface and to be collected, it has to have sufficient energy to overcome the sum of the binding energy (with respect to E_F) of its initial level and the work function Φ , $\Phi = E_{VAC} - E_F$. The work function Φ is determined by the difference between the incident photon energy (21.2 eV) and the binding energy of the secondary electron cut-off (high binding energy edge). In the example spectrum (**Supplementary Figure 12b**), the cut-off binding energy is 16.03 eV as determined by the intersection of the linear portion of the spectrum and the baseline. The work function of this sample is thus $\Phi = 21.2 - 16.03 = 5.17$ eV; that is, E_F is -5.17 eV with respect to E_{VAC} . The difference between E_F and E_V is determined by the intersection of the linear portion of the spectra near the Fermi edge (low binding energy region) with the baseline. The example spectrum (**Supplementary Figure 12b**) has a E_F - E_V = 0.73 eV. Therefore, its valence band maximum E_V = -5.17 -0.73 = -5.9 eV with respect to E_{VAC} . The conduction band minimum (E_C) is further calculated (Supplementary Figure 12c) by adding the optical bandgap, as determined by the position of the lowest exciton absorption peak, to E_V . #### **Supplementary Note 3** #### Characterization of the dielectric constant of (PEA)₂PbI₄ SCM. The relative dielectric constants (ε) of the (PEA)₂PbI₄ SCMs were estimated from the capacitance-frequency measurement (**Supplementary Figure 15a**). Capacitances (c) of the (PEA)₂PbI₄ SCMs were determined from the capacitance-frequency curves and the ε value of (PEA)₂PbI₄ SCMs was calculated using equation¹⁹: $$\varepsilon = \frac{cd}{\varepsilon_0 A} \tag{S3}$$ where d and A are the thickness and the area of the (PEA)₂PbI₄ SCMs, and ε_0 is the vacuum permittivity. The ε value of the (PEA)₂PbI₄ SCMs can be generally estimated to be 5.8 \pm 0.1 (Supplementary Figure 15b). #### **Supplementary Note 4** #### Characterization of the trap density of (PEA)₂PbI₄ SCM. The trap state density of the (PEA)₂PbI₄ SCM was evaluated using the space charge limited current (SCLC) method. Typically, a SCLC *I-V* curve shows two different regimes depending on applied voltages, including transition from ohmic regime ($I \sim V$) at low voltages to SCLC regime ($I \sim V^2$) at high voltages. From this I - V curve, the trap density n_{trap} was calculated using the following relation²⁰: $$n_{\text{trap}} = \frac{2V_{\text{TFL}}\varepsilon\varepsilon_0}{e^{L^2}} \tag{S4}$$ Where V_{TFL} is the trap-filled limit voltage, L is the thickness of the crystal, ε_0 is the vacuum permittivity, ε is the relative dielectric constant and e is the electron charge. #### **Supplementary Note 5** #### Calculation of figures of merit of (PEA)₂PbI₄ SCM photosensor. To evaluate photoresponse characteristics, several parameters need to be determined. Although certain applications require different features, the key figure-of-merit parameters in photodetectors are the responsivity (R), external quantum efficiency (EQE) and specific detectivity (D*). The R is the ratio of photocurrent to incident light intensity, a signature of how effectively the detector responds to an optical signal^{1,2}: $$R = \frac{I_p - I_d}{A \cdot L_{light}}$$ (S5) where I_p is the photocurrent, I_d the dark current, A the active area of the device, and L_{light} is the incident light intensity. The EQE indicates the photon-electron conversion effciency and is calculated as following²: $$EQE = R \frac{hc}{\lambda e}$$ (S6) where R is the responsivity, h the Planck constant, c the velocity of light, e the elementary charge $(1.6 \times 10^{-19} \text{ Coulomb})$, and λ the wavelength of incident light. The D*, which representing the minimum signal that can be detected of a photodetector. To obtain the D*, we first directly recorded the noise current by a dynamic signal analyzer, a method that has been well established by Tang et al. and Huang et al^{21,22}. Based on the measured dark current noise (i_n) and the R of the devices, the noise equivalent power (NEP) of the device can be calculated according to the equation: $$NEP = \frac{i_n}{R}$$ (S7) Thus, we can obtain the specific detectivity (D*) by the following equation: $$D^* = \frac{\sqrt{AB}}{\text{NEP}} = \frac{R\sqrt{AB}}{i_{\text{n}}}$$ (S8) where B the electrical bandwidth, NEP is the amount of light equivalent to the noise level of a device and i_n is the noise current under the same conditions. A noise is associated with current fluctuation and could be directly calculated from the dark current. If the shot noise from the dark current (J_d) is the major contribution of the overall photodetector noise, D* can be simplified as³: $$D^* = \frac{R\sqrt{A}}{\sqrt{2eI_d}} \tag{S9}$$ where e is the absolute value of electron charge (1.6×10⁻¹⁹ Coulomb), and I_d the dark current density. #### **Supplementary References:** - 1. Lian, Z. *et al.* High-Performance Planar-Type Photodetector on (100) Facet of MAPbI₃ Single Crystal. *Sci. Rep.* **5**, 16563 (2015). - Liu, Y. et al. Thinness- and Shape-Controlled Growth for Ultrathin Single-Crystalline Perovskite Wafers for Mass Production of Superior Photoelectronic Devices. Adv. Mater. 28, 9204-9209 (2016). - 3. Maculan, G. *et al.* CH₃NH₃PbCl₃ Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector. *J. Phys. Chem. Lett.* **6**, 3781-3786 (2015). - 4. Gao, L. *et al.* Passivated Single-Crystalline CH₃NH₃PbI₃ Nanowire Photodetector with High Detectivity and Polarization Sensitivity. *Nano Lett.* **16**, 7446-7454 (2016) - 5. Deng, W. *et al.* Aligned Single-Crystalline Perovskite Microwire Arrays for High-Performance Flexible Image Sensors with Long-Term Stability. *Adv. Mater.* **28**, 2201-2208 (2016). - 6. Hu, X. *et al.* High-Performance Flexible Broadband Photodetector Based on Organolead Halide Perovskite. *Adv. Funct. Mater.* **24**, 7373-7380 (2014). - 7. Horvath, E. *et al.* Nanowires of methylammonium lead iodide (CH₃NH₃PbI₃) prepared by low temperature solution-mediated crystallization. *Nano Lett.* **14**, 6761-6766 (2014). - 8. Deng, H. *et al.* Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices. *Nanoscale* **7**, 4163-4170 (2015). - 9. Deng, H. *et al.* Flexible and Semitransparent Organolead Triiodide Perovskite Network Photodetector Arrays with High Stability. *Nano Lett.* **15**, 7963-7969 (2015). - 10. Liu, Y. *et al.* Inkjet-Printed Photodetector Arrays Based on Hybrid Perovskite CH₃NH₃PbI₃ Microwires. *ACS Appl. Mater. Interfaces* **9**, 11662-11668 (2017). - 11. Lin, Y., Lin, G., Sun, B., Guo, X. Nanocrystalline Perovskite Hybrid Photodetectors with High Performance in Almost Every Figure of Merit. *Adv. Funct. Mater.* **28**, 1705589 (2018). - 12. Liu, X., Gu, L., Zhang, Q., Wu, J., Long, Y., Fan, Z. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. *Nat. Commun.* **5**, 4007 (2014). - 13. Ding, J. et al. Design Growth of MAPbI₃ Single Crystal with (220) Facets Exposed and Its Superior Optoelectronic Properties. J. Phys. Chem. Lett. 9, 216-221 (2018). - 14. Fang, H.J. *et al.* A self-powered organolead halide perovskite single crystal photodetector driven by a DVD-based triboelectric nanogenerator. *J. Mater. Chem. C* **4**, 630-636 (2016). - 15. Zhang, Y., Liu, Y., Yang, Z., Liu, S.Z. High-quality perovskite MAPbI₃ single crystals for broad-spectrum and rapid response integrate photodetector. *J. Energy Chem.* **27**, 722-727 (2018). - 16. Guo, X. *et al.* High-Responsivity Si Photodiodes at 1060 nm in Standard CMOS Technology. *IEEE Electron Device Letters* **39**, 228-231 (2018). - 17. Zhang, N.H., Xing, J.J. An alternative model for elastic bending deformation of multilayered beams. *J. Appl. Phys.* **100**, 103519 (2006). - 18. Chuang, C.H., Brown, P.R., Bulovic, V., Bawendi, M.G. Improved performance and stability in quantum dot solar cells through band alignment engineering. *Nat. Mater.* **13**, 796-801 (2014). - 19. Kambale, R.C., Adhate, N.R., Chougule, B.K., Kolekar, Y.D. Magnetic and dielectric properties of mixed spinel Ni-Zn ferrites synthesized by citrate–nitrate combustion method. *J. Alloy Compd.* **491**, 372-377 (2010). - 20. Bube, R.H. Trap Density Determination by Space-Charge-Limited Currents. *J. Appl. Phys.* **33**, 1733 (1962). - 21. Pan, W. *et al.* Cs₂AgBiBr₆ single-crystal X-ray detectors with a low detection limit. *Nat. Photon.* 11, 726-732 (2017). - 22. Fang, Y., Dong, Q., Shao, Y., Yuan, Y., Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. *Nat. Photon.* **9**, 679-686 (2015).