Genome-wide mapping reveals conserved and diverged R-loop activities in the unusual genetic landscape of the African trypanosome genome

Emma Briggs, Graham Hamilton, Kathryn Crouch, Craig Lapsley and Richard McCulloch

Supplementary figure and table legends

Figure S1. *T. brucei* genome coverage by R-loops in wild type cells and in RNase H1 mutants. A) Graph showing the number of bp found to be occupied by at least one DRIP enriched region in WT and *Tbrh1-/-* cells. B) Plot showing the number of enriched regions (y-axis) of each length (x-axis) identified within WT and *Tbrh1-/-* DRIP data sets.

Figure S2. Genome-wide R-loop distribution in *T. brucei* and correlation with repetitive sequences. Screenshots of WT (pink) and *Tbrh1-/-* (green) DRIP signal over *T. brucei* megabase chromosomes 1-11; yaxis = 1-4 fold-change over input. Transcript annotations are shown above DRIP tracks, where sensetranscribed transcripts are in black and anti-sense in red. Known centromere regions are shown by peach circles over the transcript track. Lower track shows tandem repeats (navy blue).

Figure S3. DRIP-seq mapping to mapped centromeres in chromosomes 1 to 8 in *T. brucei***.** Screenshots of WT (pink) and *Tbrh1-/-* (green) DRIP signal over each annotated centromere in *T. brucei* Mb chromosomes 1-8. CIR are shown in red, CDS as thick black lines and UTRs as thin black lines.

Figure S4. DRIP-seq mapping to RNA Pol I transcribed procyclin and metacyclic VSG expression sites. A) Screenshots of WT (pink) and *Tbrh1-/-* (green) DRIP-seq signal mapped to each of the five metacyclic VSG expression sites annotated in *T. brucei* strain Lister 427. Annotations as in Fig.1C; mVSG coding regions shown in red. B) Screenshot of WT (pink) and *Tbrh1-/-* (green) DRIP-seq signal mapped to a procyclin gene locus.

Figure S5. DRIP-seq mapping to snoRNA genes in *T. brucei*. Graph showing the number of DRIP enriched regions found at snoRNA loci (left) in WT and *Tbrh1-/-* cells, and a representative screenshot of the mapping (right).

Figure S6. DRIP-seq mapping to retrotransposon hotspot genes in *T. brucei*. Graph of DRIP enriched regions identified at retrotransposon hotspots (RHS) (left) in WT and *Tbrh1-/-* cells, and a representative screenshot of the mapping shown with histone H3 mapping (right).

Figure S7. R-loop distribution in RNA Pol II transcribed region s of the *T. brucei* **genome.** Representative screenshot of WT (pink) and *Tbrh1-/-* (green) DRIP signal enrichment at UTRs and intergenic regions within Pol II PTUs in chromosomes 2 (upper) and 7 (lower). Sequences and DRIP-seq mapping are shown as in Fig.1C, and data are shown for two biological replicates (Rep1 and Rep2).

Figure S8. Limited gene expression changes are observed after TbRH1 deletion. A) RNA-seq analysis comparing normalised gene-specific RNA reads in *Tbrh1-/-* mutants relative to WT cells. VSG genes are shown in red and all other genes as black dot ('other'); values are shown as variance-stabilising transforms of reads per kilobase of transcript per million mapped reads. B) Relative RNA abundance for a selection of RNA Pol II transcribed genes is shown by RT-qPCR in *Tbrh1-/-* parasites compared with WT (where Ct value relative to a control gene is set at 1.0); error bars show SEM from three independent replicates.

Figure S9. Analysis of R-loops that accumulate within the CDS of RNA Pol II transcribed genes. A) Metaplot of WT DRIP signal over Pol II transcribed CDS (+/- 500 bp) for those genes identified as having a WT DRIP enriched region associated with the CDS (pink, R-loop), and those without (dashed pink, No R-loop). B) Metaplot of GC (red) and AT (blue) skew over CDS (+/- 500 bp) in genes of WT cells with at least one enriched DRIP region (solid lines, R-loop), and those without (dashed lines, No R-loop). C) Box plots of CDS length, mRNA half-life, and 5' and 3' UTR lengths, of Pol II transcripts with at least one DRIP enriched region associated with the CDS in WT and *Tbrh1-/-* data sets, and those without (No R loop).

Figure S10. R-loop association with polyadenylation sites within RNA Pol II transcribed regions of T.

brucei. A) Representative screenshot of WT (pink) and *Tbrh1-/-* (green) DRIP signal and proximity with mapped PAS (blue; predominantly used PAS in dark blue) within a Pol II PTU in chromosome 7; data are shown for two biological replicates (Rep1 and Rep2). B) Metaplots and heatmaps of WT and *Tbrh1-/-* DRIP signal over the CDS +/- 1 kb of each Pol II transcribed gene, using data from replicate 2 (Rep 1 is shown in Fig.5A). C) Metaplots and heatmaps of WT DRIP signal over the mapped dominant and non-dominant polyadenylation sites (PAS), +/- 0.5 kb, of each Pol II transcribed gene. D) Metaplots and heatmaps of WT DRIP signal over the mapped dominant and heatmaps of WT II transcribed gene. D) Metaplots and heatmaps of WT II transcribed gene. D) Metaplots and heatmaps of WT II transcribed gene. D) Metaplots and heatmaps of WT II transcribed gene. D) Metaplots and heatmaps of WT II transcribed gene. D) Metaplots and heatmaps of WT II transcribed gene. D) Metaplots and heatmaps of WT II transcribed gene. D) Metaplots and heatmaps of WT II transcribed gene. D) Metaplots and heatmaps of WT II transcribed gene. D) Metaplots and heatmaps of WT II transcribed gene. D) Metaplots and heatmaps of WT II transcribed gene. D) Metaplots and heatmaps of WT II transcribed gene.

Figure S11. Correlating R-loop localisation and base skew around the start codon of RNA Pol II genes in *T.* **brucei.** Metaplots of WT DRIP signal (pink) compared to GC (A) and AT (B) skew (blue) over the ATG (+/- 500 bp) of the first gene of each Pol II PTU (left), and over the rest of the genes with the Pol II PTU (right).

Figure S12. Correlating R-loop and transcription initiation-associated factor localisation around RNA Pol II gene SSRs in *T. brucei.* WT DRIP signal (blue) metaplot is compared to H2A.Z (A), H4K10ac (B), H2B..V (C) and BDF3 (D) ChIP-seq (red) signal over divergent (left), head-to-tail (middle) and convergent (right) SSRs (+/- 8 kb).

Figure S13. R-loop enrichment shows no correlation with histone variants associated with transcript termination. Metaplots of WT DRIP signal (blue) compared to histone H3.V (A) and H4.V (B) ChIP-seq signal (red) over divergent (left), head-to-tail (middle) and convergent (right) SSRs (+/- 8 kb).

Table S1. GO terms enriched in genes with at least one DRIP-enriched region within the CDS.

Chrom 1

)	200	40) 60		_kb
il.	an far strand	a nilita da		i II I Alian	3.6
h		John	- المراجعة المراجعة		I.
					1
Chro	om 4				

Chrom 2

Chrom 5

Chrom 3

200

400

60

m⁰

0

800 1000 1200 1400

1

0	1	400		800		1200	kb
		1					
الاياسي مح	Ache and	أراد الراقية المعادلات	القسار والدر			العان البينية	يحالا أنراليون
الأليمين	يعامل فالدام	أمليق الترجيه	لعديان ومعا	und and and		- en el este	والمل المحالي
					1 11 111		

Chrom 7

Chrom 8

0	200	400	600	800	1000	1200	1400	1600	1800	2000	2200	kb
HU L	an a	and and		ر میں الاس			a music	ال باليون مراجع	ي بالال	سادام		a. bi
AN L	all tax	المربية الم	المحدولين مريق	يد الله	والمري الأرامي	. Andre	المربان الم					الاستلك
							1 11 1 1	111 111	1 1111			

Chrom 9

0	500	1000	1500	2000	2500	3000 kb
well all a second	J. M. 144		a charactering	and the second second	he produced by	and the second
Land State Street	and the second second	under the land	المراجع والمراجع	المراجع والمراطعة		Laboratory and shall

Chrom 10

Chrom 11

0	500	1000	1500	2000	2500	3000	3500	4000	4500	kt
	Martin herebert der der sterne lete		ويتواسط والمعالي	ه ا مع ب ماله	under som and and	madel market		and the second of	A Street House	Helphille -
	a contractor of a started	ويترابط ومستردات	المراجع المستعلمات المراجع	a la sur dans		والمعادينية ومعالية ويعا		And the barrier of		A AIN ALIM
1										

В

Distance from CDS (bp)

С

100000 🖥

10000

1000

100

10

1

 $^{\perp}$

No R-loop

Tb rh 1-/-

0.1

5' UTR length (bp)

AT skew

Α

В

Α

Tb927_07_v5.1:1,029,126-1,098,531

С

В

D

Fig.S10

1500

Fig.S12

שו	Name	Result count Fold en	richment P-val	ue	senjamini
GO:0005488	binding	1509	1.13	7.88E-08	3.94E-06
GO:0032559	adenyl ribonucleotide binding	397	1.32	3.16E-06	4.84E-05
GO:0030554	adenyl nucleotide binding	401	1.32	3.28E-06	4.84E-05
GO:0005524	ATP binding	395	1.32	3.87E-06	4.84E-05
GO:0032555	purine ribonucleotide binding	453	1.27	1.42E-05	6.55E-05
GO:0032549	ribonucleoside binding	452	1.26	1.55E-05	6.55E-05
GO:0001882	nucleoside binding	452	1.26	1.55E-05	6.55E-05
GO:0032550	purine ribonucleoside binding	452	1.26	1.55E-05	6.55E-05
GO:0001883	purine nucleoside binding	452	1.26	1.55E-05	6.55E-05
GO:0017076	purine nucleotide binding	457	1.26	1.59E-05	6.55E-05
GO:0097367	carbohydrate derivative binding	459	1.26	1.60E-05	6.55E-05
GO:0032553	ribonucleotide binding	459	1.26	1.60E-05	6.55E-05
GO:0035639	purine ribonucleoside triphosphate binding	451	1.26	1.70E-05	6.55E-05
GO:0003674	molecular function	2075	1.07	3.08E-05	0.000109916
GO:0000166	nucleotide binding	490	1.23	6.03E-05	0.00018835
GO:1901265	nucleoside phosphate binding	490	1.23	6.03E-05	0.00018835
GO:0036094	small molecule binding	494	1.23	6.59E-05	0.000193732
GO:0043168	anion hinding	480	1.23	7 04F-05	0.000195516
GO:0005515	protein hinding	636	1 18	0.000103838	0.000273259
GO:0097159	organic cyclic compound hinding	842	1.10	0.000176392	0.000273233
60:1901363	heterocyclic compound hinding	8/2	1.14	0.000176392	0.000419981
GO:00/3167	ion hinding	678	1.14	0.000170392	0.000413381
60:0016997		112	1.10	0.001624205	0.000337023
GO:0010887	ATPase activity coupled		1.44	0.001024295	0.005211585
60:0016462	nyrophosphataso activity	200	1.45	0.002349301	0.003311383
GU:0010462	bydroloso activity acting on acid anbydrides	200	1.20	0.004109398	0.007902088
GO:0016818	in phosphorus containing on actu annyurides,	200	1.26	0.004100208	0 007002688
CO:0017111	nucleocide triphosphatase activity	200	1.20	0.004109398	0.007902088
GO:0016817	hudroloso activity acting on acid anhydrides	201	1.27	0.004362270	0.008113320
GO:0016817	ATD dependent belieses activity	201	1.20	0.004900523	0.008868791
GO:0008026	ATP-dependent helicase activity	43	1.00	0.008623755	0.014372925
G0:0070035	budroloso activity	43	1.00	0.008023755	0.014372925
GO:0016787		421	1.14	0.009754508	0.015/330//
GO:0016773	phosphotransferase activity, alconol	151	1 25	0.010070962	0 000560701
CO:000428C		151	1.25	0.019376414	0.023560721
GO:0004386		51	1.49	0.018276414	0.027235004
G0:0004672		122	1.27	0.018519803	0.027235004
GO:0016301	kinase activity	161	1.23	0.020322907	0.028621349
GO:0004016	adenyiate cyclase activity	41	1.56	0.020607371	0.028621349
GO:0003729	mRNA binding	110	1.28	0.022840644	0.030393689
GO:0003774	motor activity	59	1.42	0.023099204	0.030393689
GO:0004674	protein serine/threonine kinase activity	/5	1.35	0.024219967	0.030838196
GO:0009975	cyclase activity	41	1.53	0.024670556	0.030838196
GO:0003723	RNA binding	249	1.16	0.027699753	0.032811201
GO:0044822	poly(A) RNA binding	110	1.27	0.027812196	0.032811201
GO:0022804	active transmembrane transporter activity	69	1.36	0.028217632	0.032811201
GO:0008094	DNA-dependent ATPase activity	21	1.82	0.031811929	0.035760812
GO:0003777	microtubule motor activity	55	1.4	0.032184731	0.035760812
GO:0003676	nucleic acid binding	436	1.11	0.033776143	0.036562734
GO:0016772	transferase activity, transferring				
	phosphorus-containing groups	228	1.16	0.03436897	0.036562734
GO:0005215	transporter activity	138	1.21	0.036986137	0.038527226
GO:0008017	microtubule binding	44	1.42	0.044181551	0.045083215
GO:0003824	catalytic activity	1000	1.06	0.048957109	0.048957109