Table S1. List of primers

Purpose	Primer	Sequence (5 \rightarrow 3', Adaptors used for Gibson assembly are labeled in red)
PARS11 knockout		
	Pars11_5UTRf1199_Not1	AGTTCTAGAGCGGCCGCCTTCTTTGCATTTATAAGATACAAG
	Pars11_5UTRr1862_N4	GTCAGGTGCCTGGTACCCTTTCTTACTTCTGATTTTTTAATC
	Pars11_3UTRf3159_N4	CTGACGTCGCACCATCCCTTTTTAGTTATATTTTTGTGGATTG
	Pars11_3UTRr3801_Not1	ACCGCGGTGGCGGCCGCTTACAAAGCTATTAAATTGTGATTC
Pars11 C-terminal HA tagging		
	Pars11_CDSf2468_Not1	AGTTCTAGAGCGGCCGCATCAAGGCTAAATCATCCTAATC
	Pars11_CDSr3125_HA	GTCGGGGACGTCGTAGGGGTATCCATTATTTTAAGTTTAGGTTGCCTTT
	Pars11_3UTRf3126_HA	CCCTACGACGTCCCCGACTACGCCTGAATTTTAATATCAATTATTTTT
	Pars11_3UTRr3569_N4	GTCAGGTGCCTGGTACCCAATTCATATTAATAAAGGAAATTTG
	Pars11_3UTRf3564_N4	CTGACGTCGCACCATCCCTGAATTATAAATTCTAGATTTCTAAT
	Pars11_3UTRr4151_Not1	ACCGCGGTGGCGGCCGCAATAGCATTCACAATATACTTTTG
PARS11 knockout validation		
	Pars11_Cdsqf2409	CAAGAAAGTAAGGTCTCTTAATTTG
	Pars11_Cdsqr2745	TAATTACATTGCTCTAGAAAAAGTG
ATR1 RNAi		
	ATR1_N5if7625_5F	TAAACTTAAACATCCCGGGGGATCCATGAGCTAGATTAAACACTTTTAG
	ATR1_N5ir8282_5R	TTGCATATCCGTTACTTACGGATCCTTAATTAGTTTCATTATGATCCTTG
	ATR1_N5if7625_3F	GCTGACCGATTCAGTTCGCCTGCAGATGAGCTAGATTAAACACTTTTAG
	ATR1_N5ir8282_3R	TAAAAGAAGAATTCAAAGGCTGCAGTTAATTAGTTTCATTATGATCCTTG
Pars11-16A construct		
	Pars11_16AQ_5UTRr912	CTTCTTATTGATATATGTTTTCAGACTCAT
	Pars11_16AQ_IDTf	ATGAGTCTGAAAACATATATCAATAAGAAG
	Pars11_16AQ_IDTr	TAAGCAATTTGTCCAACCATCAA
	Pars11_16AQCDSf1514	CTTGATGGTTGGACAAATTGCT
RT-PCR		
	18s F	CCTGGGAAGGTACGGGTAAT
	18s R	AAGGTTCACCAGACCATTCG

RT-PCR		
	Spo11_cds2f2319	GCTAAAGGTTTAGTAACTGGTAATG
	Spo11_cds2r2668	TTTCCCAGTAATCATTATACAATTC
Sequence for PARS11 1-0	603 bp mutation	
		atg agt ctg aaa aca tat atc aat aag aag aaa gct taa aac tta ggt tct gct tag tca tcg gct gca gct ctc aca tca ctt tag tca aat tgc ttt aca gca aag gga taa atg gtt gct taa aat gct tag aac gct cag aat acc att caa atg cag tgc aat gct caa gct cag tag ata ctc gct caa ggt att tat ttt aat agt tca att tgt aat taa ttt aat at tta atc tct cag ctg ctt aat ttc ctg tgc cta aaa act cta gcc tta tga ttg aag aac caa ata tct ttg gat aaa ctg gat aca gct cat tca aaa ata aga acc taa att ctg ctt aga ata cat cct ttt taa att agt tag ctt aag acg aag cta atg att ctt aca att aaa ttc tac atg aga ata att tta att cta att agt tag ctt aag acg aag cta atg att ctt aca att aaa ttc tac atg aga ata att tta ttt aaa atc cta atc tga act aaa gct ttc taa att aaa gct atc aac ttc ttg ctt agc ata acc taa agt aag ctc aat tgt ttc ttc cag cga tcc aag aaa gta agg tcg ctt aat ttg atg gta agt ctg ctt aga tat tta atc ctt ctg aat caa ggc taa atc atc cta atc tga tat aaa gta gct tga tgg ttg gac aaa ttg ct

Table S2

Frequency distribution of cytological stages in samples taken from *atr1* cultures for PFGE from t=5 h, 6 h and 7 h after meiosis induction. Post-meiotic stages were largely absent at these timepoints. Therefore, post-meiotic DSBs cannot acount for the DNA fragmentation seen.

	Stages	Pre-meiotic	Early prophase	Mid prophase	Late prophase	Attempted	Post-anaphase	RNAi escapers	Sample size
t	%				-metaphase I	Anaphase I		(WT-like stages)	(no. of nuclei)
5 h		15.5	50	35.5	5	0	0	3	200
6 h		10.5	10	11.5	58	8	0.5	1.5	200
7 h		11	3	6	50	7	21	2	250

Prophase stages were classified as early mid and late according to the increasing degree of chromosome condensation, since the length of nuclei does not change in the absence of ATR.

Table S3

BLAST search for Pars11 protein homologs

Group		Species	Protein ID	BLASTP E-value*
Multicellular animals		Homo sapiens	sp Q9Y4D8-	0.21
			4 HECD4_HUMAN	
		Mus musculus	sp Q8CAQ8-	0.12
			5 MIC60_MOUSE	
		Danio rerio	ENSDARP00000122296	0.021
		Drosophila melanogaster	FBpp0082802	0.42
		Caenorhabditis elegans	ZK430.1	3.3
Land plant		Aradidopsis thaliana	AT5G45610.1	0.95
Fungi		Saccharomyces cerevisiae	YOR237W	0.12
-		Schizosaccharomyces pombe	SPAC664.14.1:pep	0.52
Protist	Tetrahymena	Tetrahymena borealis	EI9_05736.1	2.31E-56
	·	Tetrahymena elliotti	EI7_06775.1	1.79E-58
		Tetrahymena malaccensis	EIA_05075.1	0
	Other ciliates	Paramecium tetraurelia	GSPATP00036354001	0.065
		Ichthyophthirius multifilis	IMG5_094660	0.17
		Oxytricha trifallax	Contig20793.0.g60 Guanylate-	0.21
			binding	
		Stylonychia lemnae	Contig10830.g11578	0.001
	Other protists	Plasmodium falciparum	PF3D7_1227500	0.45
	-	Toxoplasma gondii	TGME49_206430	0.61
		Trypanosoma brucei	Tbg972.7.3660	0.57
		Giardia lamblia	GL50581 1183	1.9

*BLASTP e-value threshold was set to 10 (default).

A. Diagram of the somatic gene knockout construct. DNA fragments used for homologous recombination were amplified from wild-type Tetrahymena genomic DNA using PCR. The NEO4 (paramomycin resistance) or CHX (cycloheximide resistance) cassette was removed from the respective plasmids by Smal digestion (Gao et al. 2013, Genes Dev. 27: 1662-1679). DNA fragments and drug resistance cassette were then cloned into the linearized pBluescript SK(-) vector by Gibson assembly. DNA fragments in the knockout construct and their corresponding loci in the somatic genome are indicated by light blue fields.

B. Diagram of the ATR1 RNA-interference construct. A fragment of the ATR1 ORF (from 1295 bp to 1952 bp) was amplified from genomic DNA using PCR. Two copies of this fragment were inserted end-to-end behind a Cd2+-inducible MTT1 metallothionein promoter (red arrowhead) in plasmid pNeo5-RNAi (Akematsu et al. 2017, eLife 6: e26176). After shooting the linearized plasmid DNA into Tetrahymena cells, the NEO5 (paramomycin resistance) cassette and ATR1 RNA-interference cassette is integrated into the nonessential BTU1 gene locus due to flanking homologies.

C. Diagram of the C-terminal epitope tagging construct. The Pars11 C-terminal HA tagging construct was generated in a similar way to the PARS11 somatic knockout construct.

D. Diagram of the construct for the substitution of Pars11 N-terminal S/T-Q sites. This construct was generated in a similar way as the PARS11 somatic knockout construct. In this construct, all 16 serine and threonine codons within the 603 bp 5' PARS11 coding sequence were replaced by alanine codons (16A, blue box).

Figure S2

PARS11 knockout confirmation using RT-PCR

To confirm the deletion of the somatic *PARS11* gene in *pars11* Δ strains, mutants of different mating types were starved and mixed to induce conjugation. Total RNA of *pars11* Δ mating pairs was isolated at 3 hours after induction of meiosis using the TriFast reagent (PeqLab, Erlangen, Germany). cDNA was then synthesized using 1 µg of DNase I treated total RNA with the RevertAid H Minus Reverse Transcriptase kit (Thermo Fisher Scientific, Waltham, MA, USA) and random hexamers (Integrated DNA Technologies, Leuven, Belgium). cDNA synthesized from total RNA isolated from wild type 3 h after induction of meiosis, and genomic DNA (gDNA) extracted from vegetative cells of wild-type strain B2086 were used as controls. *PARS11* fragments were amplified from WT cDNA and gDNA samples using the PARS11-specific intron-spanning primers whereas this fragment was not amplified using *pars11* Δ cDNA (see asterisk). This result, together with the gDNA qPCR result (not shown), indicates the knockout of the *PARS11* gene from the MAC genome of *pars11* Δ mutants. *18S* rRNA/rDNA and *SPO11* specific fragments were amplified as loading control and indicator of meiosis, respectively. Primers used for PCR reactions are listed in Table S3.

Predicted secondary structure of the Pars11 protein

The N-terminus of Pars11 is poor in secondary structural elements, but many alpha helices are found in its C-terminal lysine-rich region. The secondary structure of the *T. thermophila* Pars11 protein was predicted by JPred4 with default settings (Drozdetskiy et al. 2015, Nucl. Acids Res. 43: W389-W394). Putative alpha helices and beta sheets are annotated as red bars and green arrows, respectively. The confidence estimate for the prediction is indicated by both the height of the black bars below the structures and the number. High values mean high confidence levels.

Pars11 remains nonphosphorylated (solid arrowhead) in *spo11* Δ , but phosphorylation (open arrowhead) is induced by DNA damaging agents cisplatin and UV, and is suppressed by the ATR inhibitor caffeine

Western blot of HA-tagged Pars11 (~44 kDa). A caffeine-sensitive (i.e. possibly ATR-dependent) modified Pars11 form (open arrowhead) is present during late prophase (3.5 h after induction of meiosis).

а

YDLMARIKTYMADESFNDMLLKLDKAIDELGGDMSL

>Maize_Phs1 MRGVHRHQGTWIPASCPASLCVCHPSLPSAVPVLTISIGDVVFEEHFVSILNFSWPQVTCVT QCPIRGSRVVFVSFCDKFKQIQKFAVRFPQPCDAESFLSCVECSCGSSGTMDIIPFGSDYVC EDSSASEYIVSNGLHHRLDDASNLEEQCFDHTIDEPPMNYHEETDQHVLEPLSASNTSNNSA FPPSFNQMLKSCSIDYDQEEPCPLAASNHVLQEVYVLDTSHDERTAGKGMDAAEGVDASILT

>Mus_rec114 MSEAGNVASGLGLPGEVSQWSLKRYGRFMLLDNVGSPGPSSEAAAAGSPTWKVFESSEESGS LVLTIVVSGHFFISQGQTLLEGFSLIGSKNWLKIVRRMDCLLFGTTIKNKSRMFRVQFSGES KEEALERCCGCV0TLA0YVTV0EPDSTT0EL00S0GPREAGES0GKDPL00GPSLTLE0HVC MAAGAGVLOERTSVTHRAOSILAPEKLTLAYEGSSWGTEELGPFLRLCLMDONFPAFVEEVE KELKKITGLRN

QLRSKVLFYLKQDSFIQLCQSLERVWNKM*

>pombe_rec7 MNIFPIVKYSVAEDSYTTDSSHINWSHYSDGGFTLSLTSGLLQIRQHEELIQSINLLDLWHQ LIPGTKEKCLTLLSRAPCMNIRAFTNNVMKRFOVKFPSDVHYMKAKVEFEKLGLVFKDAKSS SEKKQFNNSQSQSNNSQELSLMNNAYNKSSAQQPNLLLQPSYIPMTQTATTAVNNSTNYVNP APLQHVMPNAEIFSNTPPLKRFRGDAGMTQMPLRSDTSIESITASQQPTWDENVVITSSPFN PNRNAYSYGANSQYPIIAATPLNSQTQASWVAQPENQAYANLIPSPPTTSQILPTELTEEEK

GLEDVTEPPINDIFFDRFHQPQLEQHDSVPED

>Elegans_DSB-2 MSARGLKVEMYYKLAEKNEAETSDVSILIDGHKRKFAVICNGIGREMVDLHYDSKKFPRIFS RERHLYVMFSESTSDGFRLTFGATEREQFLRIMHSLGCLLDTAIVKFSQQSSSSQPPPMRRD STAVFNNSYNQYTSFQQASQPRVFSTIKLELSGDSCNSAFQPSQPTGFPDNQLLTIKKSSSN QISLSVEVADKCIQTEDLVDLLADDEYCMRKALRKMIENPSFIKAVAAAENTLQYIPQAEQE

MYEYCSVVIKKYSKYTIPSFAPNGFQSMLEPPQIDKWQHLSANCTLQFRVLLMDSRQILINV VLNNSTLLENIRLPLGDNQDLIQFSCKSPIISCKYISEEFGPRMLRRFQMNLPNDVEFNRTV VSLKNLNFVLRTARTSIAQSTITSOVOGNNNGTKVCFTEGPKVSSYTNPNTOFOTONMIMDF SQRYQEESERESNNRSNITLPHDSIQIAQQIWPNTDLNVVQSSQDLNTPMATQTVLGRPESL IVQPLEVSQSPPNTTNCLPNAENKKKKVDTTSDFTSRKEIALCKTGLLETIHIPKERESQMQ SVTGLDATPTIIWSPGKDNTAKKNTSNKKNIDDKLTNPQKSGNTHTPDRNKEVLPNGTLNET RKEASPSEGLTIRVKNVNRNASRKISKRLIKEKLKDEEFMKWVNKVETVLNKMFEK

>Yeast_Rec114

>Tetra_Pars11 MSLKTYINKKKSQNLGSSQSSAAALTSLQSNCFTAKGQMVSQNSQNTIQMQCNTQTQQI LSQASQFPVPKNSSLMIEEPNIFGQTGYSSFKNKNLNSTQNTSFLNQLSQDEANDSYNQILH ENNFIQNPNLNQSFLNQSYQLLSQHNLKQSQLFLPAIQESKVSQFDGKSSQIFNPSESRLNH PNLIQSSLMVGQISQQQQLANISLQLLQDEILKQKIEQRERELILKQELLQEMRDLKHFFQS NVIKQIEDKNEQMQGECQKSIEEVQKKVENVVKTIFDYIKDEKQEEKKKNSVAQSDYAQDIS DLYNTVNSIKGKLDKEGLNQQFQQDLNKAIKIIFSKINSAKRSVKKQIVQTNMSLRNKRKKA TOTONN

MEME search for shared motifs in Pars11 and the Rec114 family

Figure S5

DISCOVERED MOTIFS

>Arabidopsis_Prd2 MSSSVAEANHTEKEESLRLAIAVSLLRSKFHNHQSSSSTSRCYVSSESDALRWKQKAKERKKEII RLQEDLKDAESSFHRDLFPANASCKCYFFDNLGVFSGRRIGEASESRFNDVLRRRFLRLARRRSR RKLTRSSQRLQPSEPDYEEEAEHLRISIDFLLELSEADSNDSNFSNWSHQAVDFIFASLKKLISM GRNLESVEESISFMITQLITRMCTPFKGNEVKQLETSVGFYVQHLIRKLGSEPFIGQRAIFAISQ RISILAENLLFMDPFDESFPEMDECMFILIQLIEFLICDYLLPWAENEAFDNVMFEEWIASVVHA RKAVKALEERNGLYLLYMDRVTGELAKRVGQITSFREVEPAILDKILAYQEIE

>Mus_MEI4 MDIQPWYLKTSKLALALAIIHSKPADRSSREYTEYLASLVTQKESTWKSKLEALEAEVLQLRQKL LLSRISSGLFKNGPDVLPTLSDQEPTSSENTLTLMDDSGCVLSNEQRNEPAELSQHFVESTDPPL LPLPLEKRPRTTLENPLSSHMQFFQHLLELKKWTESSSLKVYLTHFEKDSSTVSDSVSQLLDALI TFYRNPKLPFSSFWTEAVGTLARLASDFNLSNHIFKRCSKKLEEFEKTLLQAILENNSINRFQVQ RYVSQSLVTLGSCSLLRKSIISLLLSEVNSFVDDLGAIDQDQGIYDVTRYENIFSLFWILEQVLQ QAPQGDRTAHMDHSIPEMQTFLQKHDEVIFRLSDAFPLFAFYLWRLGVLLNSAEMETVKNESLP

SKSAYSAPSILLIGLKDMLFPEDIS

>pombe_rec24 MNGTNTEDNSKQILIQTMYTYDSSGETLKIAIAWKIILKKPKGKNIKDYIEALRKGIEDQEHCEK YASTLLEPRPKTKKDVVLKNSNVTECVALKAKPFSKKIEDMDIFLLTNVHENLQEKRQTSGSLAH LDIEYTFNGLFRFLKCTADIKLKQTKVYEGADFLRIKTLFEEIFMFLKRDCKSPLVLTRLVELGD YVLDLIIITQSIMQNNANNGTGVISRAKFLEFYVFLEQLIFNKLSFASVEQLEKLLDQIVKRMKI CFTYCKNDNPSIRLLYSECFFSYAEIYFPCLHSFDAQLSSAASKCVQILRDIITNEELQTDKQEL

NLIARFRLSRWFNETENI

>Yeast_Mei4 MSRGKLEDMEQKETSEVDWIICFALIQSRNPTLWKRALSRKKGDVEDVGALKSEKNLKINPRENS KHIYKWVAPFENGFLNNKSLFAHLEPIYNFLCQNKYKSFEDAVGLKELQSFSKDVSTADINNWFL PRYKILLKILSLKTKEIDFRGLSQVFQTLQILLVSHYSHRIDSDSSFKRTLIDVHVFNFIAKFLF NRILLKKNQNDPKWLQNFYDQGDGKHLCDKVDYKRLCSLHFTLIYSIINIQLIKIKTNQTFEPQI LKYVSVLKLIEHILIIIESLIHVLIRFVSKHKLICINRKKAYCRVYLERELSLKKTYLKNFYSVI SGVPEKELGGLLKILKIVILSLLETFESIEWQHLKPFLEKFPAHEISLQKKRKYIQAALLITAER

>Tetra_Pars11 MSLKTYINKKKSQNLGSSQSSAAALTSLQSNCFTAKGQMVSQNSQNSQNTIQMQCNTQTQQILSQ ASQFPVPKNSSLMIEEPNIFGQTGYSSFKNKNLNSTQNTSFLNQLSQDEANDSYNQILHENNFIQ NPNLNQSFLNQSYQLLSQHNLKQSQLFLPAIQESKVSQFDGKSSQIFNPSESRLNHPNLIQSSLM VGQISQQQQLANISLQLLQDEILKQKIEQRERELILKQELLQEMRDLKHFFQSNVIKQIEDKNEQ MQGECQKSIEEVQKKVENVVKTIFDYIKDEKQEEKKKNSVAQSDYAQDISDLYNTVNSIKGKLDK EGLNQQFQQDLNKAIKIIFSKINSAKRSVKKQIVQTNMSLRNKRKKATQTQNN

MEME search for shared motifs shared in Pars11 and the Mei4 family

DISCOVERED MOTIFS

MOTIF LOCATIONS

Figure S6

Structural features of *Tetrahymena* Pars11 and budding yeast RMM proteins and Hop1

Of the yeast RMM proteins, Rec114 most closely resembles Pars11 due to the presence of highly clustered S/T-Q motifs.No other similarities are found.

Diagrams were generated with the Illustrator for Biological Sequences (IBS) (Liu et al. 2015, Bioinformatics 31: 3359-3361).

Tetrahymena Pars11 alignments

The S/TQ cluster domains are defined as regions where three or more SQ or TQ motifs are found within a tract of 100 residues or less. Gray bars indicate the N-terminal S/T-Q clusters, green bars the conserved Lys-rich C-terminus. Numbers under the S/T-Q clusters indicate the number of S/T-Q motifs. Diagrams were generated with the Illustrator for Biological sequences (Liu et al. 2015, Bioinformatics 31: 3359-3361).

Figure S7 continued

	1 10	20	30	40 50	60	70
T.the/1-378	MSLKTYINKKK	SONLG SSOSSAA	ALTSLQSNCFTAK	GOMVSONSONSONTI	OM OCNTOTOO	ILSQASQFPVPKNSSLMI
T.mal/1-379	MSLKTY <mark>I</mark> NKKK.	.NQNLGSSQSSSA	VLSSLÕSNSLTAK	(GQMAAQNSQNSQNTI	QQM. QSNTQTQQ	ISTQTSQFPVLKNSTVMI
T. can/1-405	MSLKTF <mark>I</mark> NKYK.	.NQNTKSSQSSAA	SFSTISSTSFAPK	GQVVPQNSQNSQNFS	QQTSTLF <mark>SQQ</mark> CISFILYCTI?	LTF <mark>IYFN</mark> L <mark>T</mark> IVPSSAQKNQYTII
T.epi /1-410	MSLKNF <mark>I</mark> GKYK.	.QQSNKSSQSSS	AFSNISTNSFAS.	SKPQSQNNNNSY	HKVVNSQQTPA	SFLSQNLPSSQRNPSLQL
T.vor/1-387	MSLKTF <mark>I</mark> NKYK.	.NQNQKSSQSSAA	TFSSISANGFSTK	(<mark>G Q Q A S S N S Q N T S N Q F</mark>	'S <mark>Q</mark> KMN <mark>SQQTTTQ</mark> P	IYSQNASSQFSASNNN
T.bor/1-316	KNQYTIIDEGRI	A <mark>SQN</mark> LN	KSYQVN	IKQASTYNSKSTSIP.	NSFLQDQP	, TYEN
T.sha/1-254	MSLQNF <mark>I</mark> QKYR.	. HSNNKQSS <mark>SSQSS</mark> TG	SFSNISSNTFASQ	TNQSTQPVQ	QQQQQQQ P	YFQKTNNP
T.pyr /1-247	MSLKTF <mark>I</mark> NKYK.	.NQNMKSSQSSGA	SFSQISTAGFSGK	(PQHGSQNSQNSQSPF	'Q <mark>QK</mark> VNSQQTQP	VYSQSNFL
T.ell/1-191	MSLKTY <mark>I</mark> NKKK.	.NQNLGSSQSSAA	AFSSLQPNNFTAK	CQIISQNSQSSQNTL	, QM. , <mark>SSNTQTQ</mark> Q	VLTQ
consensus>60	mslktfInk.k.	.nqnssqss.a	.fsn.fk	.qqnsqn.qn	.qqtq	iy.q

	8 Q	эò	100	110	120	130	140	150	160
T.the /1-379	EEPNIFGQ	TGYSSFK	NKNLNST	QNTSFLNQLSQDEANDS	GYNQILH <mark>E</mark> 1	NNFIQNPNLN	<mark>IQS</mark> FLN. <mark>Q</mark> SYQL	L.SQHNLKQSQ	LFLPA
T. mal/1-380	EEPSILGQ	QNCHSQYM	INKNLNST	QNTSIFNQFPQDEANYS	GYNQILN <mark>E1</mark>	NNFSQIPNLN	JQSYVNQ <mark>Q</mark> SYQL	L.TQHNLKQSQ	LFLPT
T. can/1-406	DEGRIASQ)NLNKSYQ	VNKQASTYNS	KSTSIPNSFLQDQPTYE	ENQIENN <mark>D</mark>	SFFIQSQNLN	JNSAHMQ <mark>N</mark> LNGL	NLVQQNLNQSQ	LFLPT
T.epi/1-411	MQDEMKSP	PECFQSVS	LKMAQPYNPK	QNNNMNQTVAEDINDNI	NTFNQLDSSNR <mark>E</mark>	SFYIQAPLLN	JNNGQTL <mark>N</mark> LSSFN1	IPYNQNNI SNG <mark>Q</mark> S <mark>NLNQSQ</mark>	LNLQT
T.vor/1-388		NNNNSFR	NNNNQPSSTY	QTQSLSQFLQDDHQDTQ	QMQSQNDIK <mark>E</mark>	SFYIQNTSLI	NSPNQY <mark>Q</mark> QYSNG.	IYPQSNLNQSQ	LYLPT
T.bor /1-317					QIENN <mark>D</mark>	SFFIQSQNLN	INSAHMQ <mark>N</mark> LNGL	NLVQQNLNQSQ	LFLPT
T.sha /1-255									TNIPP
T.pyr /1-248									LLVP.
T.ell/1-192								· · · · · · · · · · · · · · · · · · ·	
consensus>60					qe	f.ql.	.nq	q.nl.qsq	1.1p.

	170	180	190 200	210	220 230	240
T.the /1-378	IQESKVSQFDGKSS	QIFNPSESRLNHP	PNLIQSSLMVGQISQQQL	ANISLQLLQE	EILKQKIEQRERELILK	QELLQE. MRDLKHFFQ
T.mal/1-379	IQESKVSKFDEKCS	QIFNPYESRLNNT	TNLLQSNLIVGQISQQQQL	ANFSLQFLQE) E I L K Q K I E Q R E R E L I L K	QELLLE. MRDLKQFFQ
T.can/1-405	IQESKVTMFDGGQS	QVYYHQ <mark>EPRL</mark> IKP	PNLNQSNVYLSQFSQQQQM	ATIQFQILQD	EIQKQKVEQKERELLK	QELLSE. MKDLKQYFK
T.epi /1-410	NMESNLSGYCGQMN	ITQINPNESRLIRP	PNLNQSCISIGQLGQQHSING	NYNCNNYQNN <mark>NQYQQMLQE</mark>	EMMKCRFEQQQRENHLK	IELLYE MKKIKTYFK
T.vor /1-387	IQESKVSSFDGGSG	SFFFPQDSRIMKP	PSLNQSAIILGQFPQSSHV	SNTQFQLIQE	ELQKTKIEQKEREFQMK	QELLSEMKDLKDYFR
T.bor /1-316	IQESKVTMFDGGQS	QVYYHQEP RL IKP	PNLNQSNVYLSQFSQQQQM	ATIQFQLLQD) E I Q K Q K V E Q K E R E L L L K	QELLSE. MKDLKQYFK
T.sha/1-254	TKNT				LK	QELLTEMKNIKKYMK
T.pyr /1-247				ANFQISILG.	VE	QEFLSATRMKELKSYFK
T.ell/1-191					KLVLK	QELLQE MRDLKQFFQ
consensus>60	esf	e.r	l . qs q q	q.lqd	lekeq.erelk	qElL.eMkdlK.%f.

Figure S7 continued

	250 260	27 o	280	290	300	310	320	330	340
T.the/1-378 T.mal/1-379 T.can/1-405 T.epi/1-410 T.vor/1-387 T.bor/1-316 T.sha/1-254 T.pyr/1-247 T.ell/1-191 consensus>60	SNVIKQIEDKNEQM SNLIKQLEDKNVSM SSVISELEEQNEKV.QK EIVVEEIRDKLKRK.EQ ATMAQYLENQQVNS.NL SSVISELEEQNEKV.QK ENILQDIKSKTDTIKQK TTIIEQLQTQNEKS.SQ NSVIKQVEDKNMQV	QGECQKSIEEVQK QGEFQKNIEQIQTK TQVECKQHFEKVHKK AQQEYQNHLQQVQK TQVECKQHFEXVHKK LQNEVCKQHFEXVHKK LQNEYECYLEQIQTF QQESCKQHFSQVQKK QNECKKNMDEVQNK QNECKKNMDEVQNK	VENVVKTIFD VENVVNTVFD VENVVTKIFD CEGVVQTVFD CEGVVQTVFD VEQVVKTVFD VEQVVKTVFD VEQVVKTVFD VEQVVKTVFD VEQVVKTVFD VENVV.t!FD	XIKDEKQEEK XIKDEKQEDK XIKDEKQEDK XIKDDKLGNR FLQDHNLTAQ FLQDHNLTAQ FLQDKNGQN XIKDDKKGNR FLSDDTNDKK XMKDEQQEDK	KKNSVAQSDY KKNSVABSV EKKDVAGSV EKKDVAQSDY KKNKVSDSEY KKIDVAGSV KKIDVAGSV KKISVAGSY KKNSVADSEY KKNSVADSY KK	AQDISDLYN AQDISDLFY AQDISDLRQ ARNISDLYN QDISDLRQ ARNISDLYT AQDISDLFT AQDISDLFT AQNISDLYT AQNISDLYT AQNISDLYN	TVNSIKGKL.D TVNTIKQSL.D TVNQIKDLI.D LVIDIKHDI.T TVNQIKDLI.D LUIDIKHDI.T TVNQIKTQM.E TVNQIKSDLKN TVNQIKRQM.D TVNMLKSQL.D	. KEGLNQQFQQD KGSNQQFQKD APQTFQQNIQSD SEPNSANANTPQN TPPTNFSQQITSD JAPQTFQQNIQS ISLKSIENSLTDN LTPKSFSDSVTQD QNYHQTFQQD	DINKAI DINKAL DINKGL DINKGL DINKAI DINKAL DINKAL DINKAI
	350	360 370							
T.the/1-378 T.mal/1-379 T.can/1-405 T.epi/1-410 T.vor/1-387 T.bor/1-316 T.sha/1-254 T.pyr/1-247 T.ell/1-191 consensus>60	KIIFSKINSAKRSVKKQ KIIFSKINSAKRSVKKQ QIIFTKINQAKRSVKKQ QTLLEKINQAKKSVKKQ KILFQKINSAKRSVKKQ QIIFTKINQAKRSVKKQ QIIFTKINQAKRSVKKQ QILFAKITTAKNSVKKQ KIIFGKINSAKRSK .iif.K!n.aKrSvkkq	IVQ.TNMSLENKEKK VVQ.TNMVLENKIKK VVQSTAKPIQKRKKF IISSTANPIQKREKC VVSSTTLITQKREYF VVQSTAKPVQKEKKF VIDSTNKPIQKREPY IIQSTARPMQKEGPY	(ΑΤ ΑΤ	/GVVPVPAVD	QTQNN QTSNN QVKED RDKK NEQNNQ QVKED NQKKRK NKNNN QCKRN				

Orthologs of *T. thermophila* Pars11 proteins were identified by BLASTP or tBLASTn searches against proteomes or draft genomes of other *Tetrahymena* species in two databases (http://ciliate.org and http://ciliate.ihb.ac.cn). Protein sequences were aligned using MUSCLE (Edgar 2004, Nucl. Acids Res. 32: 1792-1797) and colored according to amino acid sequence similarity using Espript 3.0 (Robert and Gouet 2014, Nucl. Acids Res. 42 W1: W320-W324). Regions with >60% similarity are framed in blue. Identical residues are boxed in red, and similar residues are colored in red. The conserved C-terminal region was green underlined. The accession numbers of these proteins are: EIA_05075.1 (*Tetrahymena malaccensis*), TVORAX00043590 (*Tetrahymena vorax*), TSP00031430 (*Tetrahymena* canadensis), TEPIDO00188250 (*Tetrahymena* empidokyrea), TSHANG00212290 (*Tetrahymena shanghaiensis*), EI7_06775.1(*Tetrahymena elliotti*). Pars11 coding genes in *Tetrahymena borealis* and *Tetrahymena pyriformis* were incorrectly annotated, hence we corrected their annotation manually according to their genome sequences.