Supplementary Materials for

Circularization of genes and chromosome by CRISPR in human cells CRISPR-C: Circularization of genes and chromosome by CRISPR in human cells

Henrik Devitt Møller^{1,†}, Lin Lin^{2,†}, Xi Xiang^{3,2,5†}, Trine Skov Petersen², Jinrong Huang^{1,4,5,6}, Luhan Yang ⁷, Eigil Kjeldsen⁸, Uffe Birk Jensen^{2,8}, Xiuqing Zhang^{3,4,6}, Xin Liu^{4,5,6}, Xun Xu^{4,5,6}, Jian Wang^{4,5,6,9}, Huanming Yang^{4,5,6,9}, George M. Church^{7,10}, Lars Bolund^{2,4,5,11}, Birgitte Regenberg^{1,*}, Yonglun Luo ^{2,4,5,6,11, †,*,‡}

¹Department of Biology, Faculty of Science, University of Copenhagen, Denmark

²Department of Biomedicine, Aarhus University, Denmark

³BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China

⁴BGI-Shenzhen, Shenzhen 518083, China

⁵BGI-Qingdao, Qingdao 266555, China

⁶China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China

⁷eGenesis, Inc., Cambridge, MA 02139, USA

⁸Department of Clinical Medicine, Aarhus University, Denmark.

⁹James D. Watson Institute of Genome Science, 310008 Hangzhou, China

¹⁰Department of Genetics, Harvard Medical School, Boston, MA 02115, USA

¹¹Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China

[†]These authors contributed equally to this work.

[‡]Lead contact.

* To whom correspondence should be addressed: Yonglun Luo, Tel: 0045-87167761; Fax: 0045-87 16 77 61; Email: <u>alun@biomed.au.dk</u>. Correspondence may also be addressed to Birgitte Regenberg Tel: 0045-35 32 16 80; Fax: 0045-35 32 16 80; Email: <u>bregenberg@bio.ku.dk</u>

This PDF file includes:

Supplementary Text Figs. S1 to S21 Table S1-S2

Supplementary Figure legends

Fig. S1. TRE-ECC biosensor vector map and sequence.

Fig. S2. CAG-ECC biosensor vector map and sequence.

Fig. S3. Model of CAG-ECC biosensor induction by CRISPR-pairs. Mediated by DNA repair, the two simultaneous double-stranded breaks, introduced by transient cell-transfection of CRISPR-pairs Cr1 and Cr2, will lead to formation of [EGFP^{circle}] and Δ EGFP or to the inversion of EGFP.

Fig. S4. Testing the CAG-ECC biosensor vector in HEK293T cells. (A) Graphical map of vector with sites of CRISPR-pairs (Cr1+Cr2). (B) Outline of plasmid assay experiment. (C) Light (LM) and fluorescence microscopy, green (EGFP), red (mCherry). Images (40x) in triplicates of HEK293T cells transfected with CAG-ECC biosensor vector together with Cr1+Cr2. (D) Images of serial sets of control transfection experiments. Tet, tetracycline. Transfection of EGFP plasmid with Cr1+Cr2 served as a positive control for green cells and negative for red cells.

Fig. S5. CAG-ECC biosensor microscopy assay at higher magnification in HEK293T cells. (A) Graphical map of the vector showing CRISPR-pairs (Cr1+Cr2). (B) Outline of plasmid assay experiment. (C) Fluorescence microscopy (100x) in different channels; blue (DAPI), green (EGFP), red (mCherry), merged images. Cr1+Cr2, gRNAs; pUC19, negative control transfection, EGFP plasmid, positive EGFP control; white bar, 50 μm.

Fig. S6. Testing the TRE-ECC biosensor vector in HEK293T cells. (A) Graphical map of vector with sites of CRISPR-pairs (Cr1+Cr2). (B) Outline of plasmid assay experiment. (C) Light (LM) and fluorescence microscopy, green (EGFP), red (mCherry). Images (40x) in triplicates of HEK293T cells transfected with TRE-ECC biosensor vector together with Cr1+Cr2 -/+ tetracycline (Tet). (D) Images of control HEK293T cell transfections.

Fig. S7. TRE-ECC biosensor microscopy assay at higher magnification in HEK293T cells. (A) showing CRISPR-pairs (Cr1+Cr2). (B) Outline of experiment. (C) Fluorescence microscopy (100x) in different channels; blue (DAPI), green (EGFP), red (mCherry), merged images. Cr1+Cr2, gRNAs; pUC19, negative control transfection; Tet, tetracycline; white bar, 50 µm.

Fig. S8. Assessment of cell clones with integrated CAG-ECC biosensor. (A, upper part) Outline of stable genomic integration of pCAG-ECC in HEK293T cells. (B) Copy-number DNA evaluation by Southern blot with EGFP-probe after KpnI digestion. (A, lower part) Outline of experiment for assessment of integrated TRE-ECC by CRISPR gRNAs (Cr1+Cr2). (C) FACS gating images of the nine isolated clones and treatment with Cr1+Cr2. (D) Histograms of fluorescence cell percentages of the nine CAG-ECC clones after CRISPR-C and FACS analysis.

Fig. S9. Integrated TRE-ECC assay of fifteen cell clones. (A, upper part) Outline of stable genomic integration of TRE-ECC in HEK293T cells. (A, lower part) Outline of CRISPR gRNAs (Cr1+Cr2) assay for assessment of integrated TRE-ECC clones. (B-C) FACS gating images of isolated clones after treatment with Cr1+Cr2 in (B) absence or (C) presence of tetracycline (Tet).

Fig. S10. Correlation between percentage of GFP+ or mCherry+ median intensity with copy numbers of ECC biosensor. Correlation was carried for the co-colored cells (GFP+mCherry+), Pearson rank test.

Fig. S11. Validation of CAG-ECC genotypes after dual-CRISPR. (A) PCR and Sanger sequencing test of genotypes formed after dual-CRISPR gRNA (Cr1+Cr2) in CAG-ECC clone 2 and clone 4, confirming

EGFP^{inversion} and [*EGFP*^{circle}] formation. C, negative CRISPR control; NC, non-template control. (B) Southern blot, probed with EGFP on HEK293T purified and digested DNA from untreated (C, *KpnI*) and Cr1+Cr2 treated cells (clone 2). X=*XbaI*, H=*HindIII*.

Fig. S12. Anticipated outcomes after CRISPR-C gene editing. *, junctions sites after dual-CRISPR restriction with specific gRNAs (scissors) and subsequent repair of DNA breakage sites, mediated by non-homologous end-joining or microhomology mediated end-joining.

Fig. S13. EccDNA detection by three different purification methods in HEK293T cells. (A) Map of chromosome 1, 2-3 kb downstream of the *CRP* locus. gRNAs: Cr3, Cr4; diagnostic oligos: p5 to p8. (B) Experimental outline of DNA purification and enrichment of eccDNA by exonuclease (Exo) removal of linear DNA (+, 15U; ++ 90U). (C) Gel-images of corresponding PCR products across the junctions of [*dsCRPcircle chr1:159.708-159.71Mb*], along with control test for linear DNA (p31+p32) and plasmid DNA (pUC19), using templates before (-Exo) and after exonuclease treatment (+Exo/++Exo) at three different cell concentrations (10⁵, 10⁴, 10² cells). Blue rectangles 1 and 2 represent [*dsCRPcircle 1q23.2:0.57 kb*] PCR product purified from genomic DNA preparation (G.DNA-prep) and cell lysate treated with exonuclease treatment (++Exo), respectively. (D) Chromatograms from Sanger sequencing of PCR products from the [*dsCRPcircle 1q23.2:0.57 kb*], blue rectangles 1 and 2. C, negative CRISPR control (HEK293T cell lysate); NC, non-template control.

Fig. S14. Detection of eccDNA by three different purification methods in HMF cells. (A) Map of chromosome 1, 2-3 kb downstream of the *CRP* locus. gRNAs; Cr3, Cr4; diagnostic oligos; p5 to p8. (B) Experimental outline of DNA purification and enrichment of eccDNA by exonuclease (Exo) removal of linear DNA (+, 15U; ++ 90U). (C) Gel-images of corresponding PCR products across the junctions of [*dsCRPcircle* 1q23.2:0.57 kb], along with control test for linear DNA (p31+p32) and plasmid DNA (pUC19), using templates before (-Exo) and after exonuclease treatment (+Exo/++Exo) at three different cell concentrations (from 10⁵ down to 10² cells). (D) Chromatograms from Sanger sequencing of PCR products, blue boxes, from purification of [*dsCRPcircle* 1q23.2:0.57 kb] from genomic DNA preparation (G.DNA-prep) and cell lysate. C, negative CRISPR control (HEK293T cell lysate); NC, non-template control.

Fig. S15. Validation of deletion after CRISPR-pairs at the *UPA* **locus.** (A) Map of chromosome 10 map at the *PLAU (UPA)* locus. gRNA, Cr5 and Cr6, diagnostic oligos; p9 to p12. (B) Experimental outline. (C) Gel-image of corresponding PCR products across the junctions of the ΔUPA and corresponding chromatogram from Sanger sequencing, red box.

Fig. S16. Deletion and inversion validation at the *TRIM28* **locus after CRISPR-pairs.** (A) Chromosome 19 map at the *TRIM28* locus. gRNA, Cr7 and Cr8, diagnostic oligos; p13 to p16. (B) Experimental outline. (C) PCR confirmation of the $\Delta TRIM28$ after Cr7+Cr8. (D) PCR and sequencing confirmation of the *TRIM28*^{inversion}. C, negative CRISPR control of HEK293T cell lysate.

Fig. S17. Indel distribution across the junction of [TRIM28^{circle}] in HEK293T.

Fig. S18. CAG-ECC time-course of [*EGFP^{circle}*] **expression and retention in cell culture.** (A) Outline of time-course experiment. (B) Left, percent fluorescence cells from 1 to 6 cell passages (1:3 split-ratio. (C) Corresponding FACS gating images from B. (D) Outward PCR analysis of [*EGFP^{circles}*] at passage 1 to 6. Cr1+Cr2 (1+2), CRISPR gRNAs; C, control – gRNA; ctrl, DNA template control. (E) Quantification of [EGFP^{circles}] by normalizing to *GAPDH* (solid line) using Image J. Theoretical 1/3 dilution curve was presented as dash line.

Fig. S19. Genotyping of △*EGFP*, [*EGFP*^{circle}], *EGFP*^{INV} of FACS-sorted ECC reporter cells after CRISPR-C. (A) Presentation of gating examples of FACS-sorted ECC reporter cells after CRISPR-C; P1-

P4 represent the different population of cells. (B) PCR genotyping. *GAPDH* was used as internal control. (C) Quantification of PCR genotyping results from (B) by Image J.

Fig. S20. Dot plots of fluorescent intensity (GFP), GFP+ cell counts in control and CRISPR-C treated ECC reporter cells over 6 passages. Control (CTRL) cells were transfected with a pUC19 control plasmid, and CRISPR-C treated cells were treated with Cr1+Cr2.

Fig. S21. Metaphase spreads and FISH of telomere and whole chromosome 18 painting.

Karyotyping of chromosome 18 in wildtype (WT) HEK293T cells and after treatment with CRISPR-pairs (Cr1+Cr2), using telomere staining (Telo) and whole chromosome 18 painting (WCP18). Blue, DAPI; Red, telomere; Cyan, chromosome 18.

Supplementary Tables

Table S1

gRNA name	5'-3' (sense)	3'-5' (anti-sense)	hg38 region	CRISPR target
Cr1	CACCGAGAGCCCCAGAGACCGGCAC	AAACGTGCCGGTCTCTGGGGCTCTC	-	ECC-biosensor
Cr2	CACCGCTTGAACGCGTCCCGGCTTG	AAACCAAGCCGGGACGCGTTCAAGC	-	ECC-biosensor
Cr3	CACCGTGATAGCTCTAAAAGCACA	AAACTGTGCTTTTAGAGCTATCAC	1q23.2	dsCRP
Cr4	CACCGATAATTGCTTAATCACACA	AAACTGTGTGATTAAGCAATTATC	1q23.2	dsCRP
Cr5	CACC <u>GTGGCCACACAAATGTGAGG</u>	AAACCCTCACATTTGTGTGGGCCAC	10q22.2	uPA
Cr6	CACC <u>GACAAGTTGGGAAGGCTTCA</u>	AAACTGAAGCCTTCCCAACTTGTC	10q22.2	uPA
Cr7	CACC <u>GAGAGCGCCTGCGACCCGAG</u>	AAACCTCGGGTCGCAGGCGCTCTC	19q13.43	TRIM28
Cr8	CACCGTGCTTCTCCAAAGACATCG	AAACCGATGTCTTTGGAGAAGCAC	19q13.43	TRIM28
Cr9	CACCGAGCTGGTCAGTAACTCCTCT	AAACAGAGGAGTTACTGACCAGCTC	1q23.1	chr1
Cr10	CACCGTGAGATCCTGGAGAAAAGC	AAACGCTTTTCTCCAGGATCTCAC	1q23.1	chr1
Cr11	CACCGTGGAAGACAAATTCCATTAA	AAACTTAATGGAATTTGTCTTCCAC	1q23.1	chr1
Cr12	CACCGAGTTCTCAGTCCACCATTAA	AAACTTAATGGTGGACTGAGAACTC	1q23.1	chrl
Cr13	CACCGTAAGGCTTTTTATTGCAGG	AAACCCTGCAATAAAAAGCCTTAC	1q23.1	chr1
Cr14	CACCGATTAGGAGGTCAGAAACTTG	AAACCAAGTTTCTGACCTCCTAATC	1q23.1	chr1
Cr15	CACCGAAGGTGACCTTCAAATTTGT	AAACACAAATTTGAAGGTCACCTTC	1q23.1	chrl
Cr16	CACCG <u>TGGCATACAAGAAATAATGA</u>	AAACTCATTATTTCTTGTATGCCAC	1q23.1	chr1
Cr17	CACCGATGGTCAGTGTCTCGTGGGC	AAACGCCCACGAGACACTGACCATc	18p11.22	Ring-chr1 (left arm)
Cr18	CACCGATTGGTCAGATGTCTGCCAA	AAACTTGGCAGACATCTGACCAATc	18p11.22	Ring-chr1 (left arm)
Cr19	CACCGTGCTGATTACTATGAGGTA	AAACTACCTCATAGTAATCAGCAC	18q21.2	Ring-chr1 (right arm)
Cr20	CACCGCTCAGGAAATCATCATTGC	AAACGCAATGATGATTTCCTGAGC	18q21.2	Ring-chr1 (right arm)

PCR target	PCR test	5'- 3' Forward	5'- 3' Reverse	Expected size (bp)	hg38 region	Oligo ID
PLAU (uPA)	Deletion/wt	TACGAACAGGGTGAGGCGAGAG	TGCCAACGGACATTTTAAAGATGTC	258+654	10q22.2	p9 + p12
PLAU (uPA)	EccDNA	AGTGGAAGTGGTAAGGGGTGGC	ATTTGGGGACAGGGAGGGATGG	199	10q22.2	p10+p11
dsCRP_2kb	Deletion/wt	CTCCGTCTTGCACTAGGGGTAT	GGTTGTCGTACTTGCCTGGATT	639 +1232	1q23.2	p8+p5
dsCRP_2kb	EccDNA	TGCTTCTTTAAACGTGACCACCT	GGTCTTCCCCTTAGCCTACTTCT	530	1q23.2	p6+p7
dsCRP_2kb	Inversion	GGTTGTCGTACTTGCCTGGATT	GGTCTTCCCCTTAGCCTACTTCT	453	1q23.2	p5+p7
dsCRP_2kb Inversion +/-SINE		CTCCGTCTTGCACTAGGGGTAT	TGCTTCTTTAAACGTGACCACCT	756+500	1q23.2	p8+p6
TRIM28	Deletion/wt	AGCCTCGGCCTCTGCCTCAGCC	GTTCGCATCCTGGGCGTCGGTG	171+661	19q13.43	p13+p16
TRIM28	EccDNA	TTGTAACAGTCTCCCACATCCCT	TCGTATGCAGGACCCAGAAAGTA	297	19q13.43	p14+p15
TRIM28	Inversion	TCGTATGCAGGACCCAGAAAGTA	GTTCGCATCCTGGGCGTCGGTG	340	19q13.43	p15+ p35
pUC19	Plasmid control	CTGCAGGTCGACTCTAGAGGAT	CCATTCAGGCTGCGCAACTG	195	-	p33+ p34
EGFP (ECC biosensor)	Deletion/wt	GTTATCCTCCTCGCCCTTGC	TCCGTACCACTTCCTACCCT	142+2059	-	p4+p0
EGFP (ECC biosensor)	EccDNA	AAGGGATGGTTGGTTGGTGG	GTGCTGCTTCATGTGGTCGG	361	-	p1+p3
EGFP (ECC biosensor)	Inversion	AACAGCTCCTCGCCCTTG	TCCGTACCACTTCCTACCCT	127	-	p2+p0
mCherry (ECC biosensor)	Inversion	AAGGGATGGTTGGTTGGTGG	GTTATCCTCCTCGCCCTTGC	156	-	p1+p4
dsCRP_106kb	EccDNA	TGCTTTATGTCACATTGCTTTGC	TGCTTCTTTAAACGTGACCACCT	666/756	1q23.1	P24+P19
dsCRP_106kb	Linear DNA	CACAAAAGGGCGTAGAGTTACC	GGTTGTCGTACTTGCCTGGATT	591/500	1q23.1	P23+P17
dsCRP_52kb	EccDNA	TCAAGGTCTTTTATACCCAAGTCA	TGCTTCTTTAAACGTGACCACCT	617	1q23.1	P21+P17
dsCRP_52kb	Linear DNA	AGACGCCTTCTGTCACATCC	GGTTGTCGTACTTGCCTGGATT	788	1q23.1	P22+P17
dsCRP_54kb	EccDNA	CATCTGGGTCTAGCGCATTT	TGCTTCTTTAAACGTGACCACCT	785	1q23.1	P21+P17
dsCRP_54kb	Linear DNA	GACATTCTTCCTCTACCTCCCC	GGTTGTCGTACTTGCCTGGATT	833	1q23.1	P22+P17
upCRP_101kb	EccDNA	GGTTGTCGTACTTGCCTGGATT	TTAGTCCATCTGTCCACTGAGC	724/707	1q23.1	P17+P25
upCRP_101kb	Linear DNA	TGCTTCTTTAAACGTGACCACCT	ATTAACTGTCCTTCCATGTGCC	615/635	1q23.1	P19+P26
upCRP_12kb	EccDNA	GGTTGTCGTACTTGCCTGGATT	TCAAACACTATGGGAATGAGGC	672/680	1q23.1	P19+P20
upCRP_12kb	Linear DNA	TGCTTCTTTAAACGTGACCACCT	GTGACCCCTTAATCAATCTCTCC	763/763	1q23.1	P17+P18
CRP_207kb	EccDNA	TGCTTTATGTCACATTGCTTTGC	TTAGTCCATCTGTCCACTGAGC	589/686	1q23.1	P24+P25
CRP_207kb	Linear DNA	CACAAAAGGGCGTAGAGTTACC	ATTAACTGTCCTTCCATGTGCC	573/479	1q23.1	P23+P26
Ring-chrom 18	EccDNA	CATGGAAGTTTGGACAACAATGCTG	AGGATTACTCTGGTGACCTGGCATG	562/478/505/4 21	18p11.22- 18q21.2	P28+P29
Ring-chrom 18	Linear DNA	CTCCCAACAAACAGCCTGAGCGTCC	ATCAGCACAGCACCATCTTAGGTAC	541/641/597/6 81	18p11.22- 18q21.2	P27+P30

Table S2.

wt=wildtype; up=upstream; ds=downstream

pCAG-ECC biosensor vector

5'...GACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGG AAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCCCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGA **CGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTA** AATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTCGA CTTCTCCTCCGGGCTGTAATTAGCGCTTGGTTTAATGACGGCTTGTTTCTTTTCTGTGGCTGCGTGAAAGCCTTGAGGGGCTCCGGGAGGGCCCTTT TTTTATGGTAATCGTGCGAGAGGGCGCAGGGACTTCCTTTGTCCCAAATCTGTGCGGAGCCGAAATCTGGGAGGCGCCGCCGCACCCCCTCTAGCGG CGGGGCTGTCCGCGGGGGGACGGCTGCCTTCGGGGGGGGCGGGGCAGGGCGGGGTTCGGCTTCTGGCGTGTGACCGGCGGCTCTAGAGCCTCTGCTA **ACCATGTTCATGCCTTCTTCTTTTTCCTACAGCTCCTGGGCAACGTGCTGGTTATTGTGCTGTCTCATCATTTTGGCAAAGAATCTAGATACCCTCG** <mark>TAAAGGTCTAGA</mark>GCTAGCGAATTCGGGGCAC<u>AGAGCCCCCAGAGACCGGCAC</u>CGGT<mark>CCAACCTGAAAAAAAGTGATTTCAGGCAGGTGCTCCAGGTAA</mark> TTAAACATTAATACCCCACCAACCAACCATCCCTTAAACCCTTACCTCTTGCTCAGCTAATTACAGCCCGGAGGAGAAGGGCCGTCCCGGCCGCCCACCA CCCGCCGCGCGCTTCGCTTTTTATAGGGCCGCCGCCGCCGCCGCCGCCATAAAAGGAAACTTTCGGAGCGCGCCGCTCTGATTGG TGACTAATACGTAGATGTACTGCCAAGTAGGAAAGTCCCATAAGGTCATGTACTGGGCACAATGCCAGGCGGGCCATTTACCGTCATTGACGTCAAT AGGGGGCGTACTTGGCATATGATACACTTGATGTACTGCCAAGTGGGCAGTTTACCGTAAATACTCCACCCATTGACGTCAATGGAAAGTCCCTATT GGCGTTACTATTGACGTCAATGGGCGGGGGCGGTCGTTGGGCGGCCAGGCGGGCCATTTACCGTAAGTTATGTAACGGGTACCTCTAGAGCCATTT GTCTGCAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCCCATAGAGCCCCACCGCATCCCCAGCATGCCTACTGTC ATCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCATCCAACCTCGAG<mark>TTACTTGTACAGCTCGTCCATGCCGAGAGTGATCCCCGGCGGCGGCG</mark> 3GAACTCCAGCAGGACCATGTGATCGCGCTTCTCGTTGGGGTCTTTGCTCAGGGCGGACTGGGTGCTCAGGTAGTGGTTGTCGGGCAGCAGGACACGGC ;CCGTCGCCGATGGGGGGTGTTCTGCTGGTAGTGGTCGGCGAGCTGCACGCTGCCGTCCTCGATGTTGTGGCGGATCTTGAAGTTCACCTTGATGCC **TCTTCTGCTTGTCGGCCATGATATAGACGTTGTGGCTGTTGTAGTTGTACTCCAGCTTGTGCCCCAGGATGTTGCCGTCCTTCTTGAAGTCGATGC** :CTTCAGCTCGATGCGGTTCACCAGGGTGTCGCCCTCGAACTTCACCTCGGCGGGGTCTTGTAGTTGCCGTCGTCCTTGAAGAAGATGGTGCGCCTC CTGGACGTAGCCTTCGGGCATGGCGGACTTGAAGAAGTCGTGCTGCTTCATGTGGTCGGGGGTAGCGGCTGAAGCACTGCACGCCGTAGGTCAGG CCAGGGCACGGGCAGCTTGCCGGTGGTGCAGATGAACTTCAGGGTCAGCTTGC GCCGTTTACGTCGCCGTCCAGCTCGACCA CTCCTCGCCCTTGCTCACCATGGTGGC GGTGCCCGGGAGACGCCAACCGCAAGCCGGGACGCGTTCAAGCTTCGCCTGGAGACGATCCGCCGCCACCatggtgagcaaggg ${\tt alcalcaagg} agticatgcgcttcaaggtgcacatggagggctccgtgaacggccacgagttcgagatcgagggcgaggg$ ctacgagggcacccagaccgccaagctgaaggtgaccaagggtggccccctgcccttcgcctgggacatcctgtcccctcagttcatgtacggctcaaggeetaegtgaageaeeeegeegaeateeeegaetaettgaagetgteetteeeegagggetteaagtgggagegegtgatgaaettegaggaeegegtgatgaaettegaggaeegegtgatgaaettegaggaeegegtgatgaaettegaggaeegegtgatgaaettegaggaeegegtgatgaaettegaggaeegegtgatgaaettegaggaeegegtgatgaaettegaggaeegegtgatgaaettegaggaeegegtgatgaaettegaggaeegegtgatgaaettegaggaeegegtgatgaaettegaggaeegegtgatgaaettegaggaeegegtgatgaaettegaggaeegegtgatgaaettegaggaeegegtgatgaaettegaageegegtgatgaaettegaaggaeegegtgatgaaettegaggaeegegtgatgaaettegaggaeegegtgatgaaettegaegaeegegtgatgaaettegaegaeegegaegegtgatgaaettegaegaeegegtgatgaaettegaegaeegegtgatgaaettegaegaeegegtgatgaaettegaegaeegegtgatgaaettegaegaeegegtgatgaaettegaegaeegegtgatgaaettegaegaeegegtgatgaaettegaegaeegegtgatgaaettegaegaeGTGTTGGGTCGTTTGTTCATAAACGCGGGGTTCGGTCCCAGGGCTGGCACTCTGTCGATACCCCACCGAGACCCCATTGGGGGCCAAT

Cr1

pTRE-ECC biosensor vector

5'...<mark>TTTACTCCCTATCAGTGATAGAGAACGTATGAAGAGTTTACTCCCTATCAGTGATAGAGAACGTATGCAGACTTTACTCCCTATCAGTGATAGA</mark> GAACGTATAAGGAGTTTACTCCCTATCAGTGATAGAGAACGTATGACCAGTTTACTCCCTATCAGTGATAGAGAACGTATCTACAGTTTACTCCCTA TCAGTGATAGAGAACGTATATCCAGTTTACTCCCTATCAGTGATAGAGAACGTATAAGCTTTAGGCGTGTACGGTGGGCGCCTATAAAAGCAGAGCT CGTTTAGTGAACCGTCAGATCGCCTGGAGCAATTCCACAACACTTTTGTCTTATACCAACTTTCCGTACCACTTCCTACCCTCGTAAAGGTCTAGAG CCCCACCAACCAACCATCCCTTAAACCCTTACCTCTTGCTCAGCTAAT ССТСАССТСТС ממיד CGCGGTCAGTCAGAGCCGGGG CATAAAAGGAAACTTT ААТАСААААТТ GATGTACTGCCAAGTAGGAAAGTCCCATAAGGTCATGTACTGGGCACAATGCCAGGGGGCCATTTACCGTCATTGACGTCAATAGGGGGGGCGT GGCATATGATACACTTGATGTACTGCCAAGTGGGCAGTTTACCGTAAATACTCCACCCATTGACGTCAATGGAAAGTCCCTATTGGCGGTTACTATTG ACGTCAATGGGCGGGGGTCGTTGGGCGGTCAGCCAGGCGGGCCATTTACCGTAAGTTATGTAACGGGTACCTCTAGAGCCATTTGTCTGC CAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCCCATAGAGCCCACCGCATCCCCAGCATGCCTGCTATTGTCTTCCCCAATCCTCC CCCTTGCTGTCCTGCCCCACCCCCCCAGAATAGAATGACACCTACTCAGACAATGCGATGCAATTTCCTCATTTTATTAGGAAAGGACAGTGG GAACTAGTGGATCCCCCGGGCTGCATCCAACCTCGAG<mark>TTACTTGTACAGCTCGTCCATGCCGAGAGTGATCCCGGCGGCGGCCACGAACTCCAGCAG</mark> GACCATGTGATCGCGCTTCTCGTTGGGGGTCTTTGCTCAGGGCGGACTGGGTGCTCAGGTAGTGGTTGTCGGGCAGCAGCAGCGGGGCCGTCGCC GGGGTGTTCTGCTGGTAGTGGTCGGCGAGCTGCACGCTGCCGTCCTCGATGTTGTGGCGGATCTTGAAGTTCACCTTGATGCCGTTCTTCTGCTTGT GGCCATGATATAGACGTTGTGGCTGTTGTAGTTGTACTCCAGCTTGTGCCCCAGGATGTTGCCGTCCTCCTTGAAGTCGATGCCCTTCAGC GCGGTTCACCAGGGTGTCGCCCTCGAACTTCACCTCGGCGCGGGTCTTGTAGTTGCCGTCCTTGAAGAAGATGGTGCGCCTGGACGTAGCCT **3CATGGCGGACTTGAAGAAGTCGTGCTGCTTCATGTGGTCGGGGTAGCGGCTGAAGCACTGCACGCCGTAGGTCAGGGTGGTCACGAG** GCCAGGGCACGGGCAGCTTGCCGGTGGTGCAGATGAACTTCAGGGTCAGCTTGCCGTAGGTGGCATCGCCCTCGCCCGGACACGCTGAACTT **GTGGCCGTTTACGTCGCCGTCCAGCTCGACCAGGATGGGCACCACCCCGGTGAACAGCTCCTCGCCCTTGCTCACCAT**GGTGGCGGTGCCCGGGAGA agttcatgcgcttcaaggtgcacatggagggctccgtgaacggccacgagttcgagatcgagggcgagggcgagggccccctacgaggeagacegeeaagetgaaggtgaeeaagggtggeeeeetgeeettegeetgggaeateetgteeeeteagtteatgtaeggeetacgtgacccaggactcctccctgcaggacggcgagttcatctacaaggtgaagctgcgcggcaccaacttcccctccgacggccccgtaatgcagaa ${\tt catgggctgggaggcctcctccgagcggatgtaccccgaggacggcgccctgaagggcgagatcaagcagaggctgaagctgaagc$ actacqacqctqaqqtcaaqaccacctacaaqqqccaaqaaqcccqtqcaqctqcccqqcqcctacaacqtcaacatcaaqttqqacatcacct<mark>acaaqtaa</mark>GTTTAAAC CAATAAAAAGACAGAATAAAACGCACGGGT 'ATAGC....3 '

Cr1 _____ Cr2 ____

Fig. S4

Fig. S6

В - Tet Clone 1 Clone 2 Clone 3 Clone 4 mCherry+ GFP+ mCherry+ GFP+ mCherry-GFP+ mCherry GFPmCherry+ mCherry mCherry mCherry GFP-GFF GFF GFP Clone 5 Clone 6 Clone 7 Clone 8 mCherry-GFP+ mCherry GFP+ mCherry-GFP+ mCherry-GFPmCherry+ mCherry mCherrymCherry GFP-GFP GFP GFP mCherry Clone 12 Clone 9 Clone 10 Clone 11 mCherry-GFP+ nCherry-GFP+ mCherry GFP+ mCherry GFPmCherrymCherry mCherry mCherry-GFP GFF GFF GFP Clone 13 Clone 14 Clone 15 Clone 16 mCherry+ GFP+ GFP+ mCherry mCherry GFP+ mCherry GFPmCherry+ mCherry mCherrymCherry

С

GFP

GE

GFP

GFP-

Possible outcomes after gene-editing

A chr10:73,912,103-73,912,498 UPA (PLAU) locus (hg38)

A chr19:58,544,963-58,545,472 TRIM28 locus (hg38)

Indels of [TRIM28circle exon 1-2] in HEK cells

т	с	с	A	A	A	G	A	с	A	G	A	G	A	G	G	k	G/	ź	G	с	Reads	%	INDEL	Indel Seq. 5'-
																Γ	Τ				24,925	43.27	INS	С
																Γ					7,579	13.16	DEL	A
									Γ							Γ					3,911	6.79	BEJ*	-
																Γ					2,901	5.04	DEL	GAGAGGG
																Γ					2,625	4.56	DEL	G
									Γ	Γ						Γ					2,265	3.93	DEL	AGACAGAG
																Γ					2,182	3.79	DEL&INS	AAAGACA & C
										Γ						Γ					2,101	3.65	DEL	24bp
																Γ					1,879	3.26	INS	CC
																					1,690	2.93	INS	TC
																I					1,186	2.06	DEL	12 bp
																Ι	Ι				750	1.30	DEL	GAGAGGGA
																					540	0.94	DEL	GAG
																Γ					241	0.42	INS	46 bp
									Γ	Г	Γ					Γ	Т	1			186	0.32	DEL	12 bp
									Γ	Γ						I					171	0.30	DEL	11bp
																L					i	0.23	DEL	11bp

3 4 5 Passage

