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Theory
Bell state measurement

In general, the unitary transformations of the creation operators â† (at fixed polarization σ)

of the incoming photon modes l and r with respect to the outcoming photon modes l† and r†

passing a 50/50 BS (π-shift upon reflection) read as follows

â†l,σ →
â†
l†,σ

+ iâ†
r†,σ√

2
â†r,σ →

iâ†
l†,σ

+ â†
r†,σ√

2
(1)

These transformations applied to single photon input states (|1〉l and |1〉r) allows to obtain the

well known quantum superposition state

|1〉l |1〉r =
1

2
(â†l,σ + iâ†r,σ)(â

†
r,σ + iâ†l,σ) |0〉l |0〉r =

1√
2
(|2〉l† |0〉r† + |0〉l† |2〉r†) (2)

Let’s now consider the input photons to be in one of the maximally entangled Bell states. Using

the creation operators we can rewrite the transformation as

|φ+〉lr =
1√
2

(
â†l,H â

†
r,H + â†l,V â

†
r,V

)
|0〉l |0〉r

|φ−〉lr =
1√
2

(
â†l,H â

†
r,H − â

†
l,V â

†
r,V

)
|0〉l |0〉r

|ψ+〉lr =
1√
2

(
â†l,H â

†
r,V + â†l,V â

†
r,H

)
|0〉l |0〉r

|ψ−〉lr =
1√
2

(
â†l,H â

†
r,V − â

†
l,V â

†
r,H

)
|0〉l |0〉r

(3)



Using Equation (1) we can calculate how each Bell state transforms after the BS

|χ〉φ+ =
1

2
(|HH〉l† + |V V 〉l† + |HH〉r† + |V V 〉r†)

|χ〉φ− =
1

2
(|HH〉l† − |V V 〉l† + |HH〉r† + |V V 〉r†)

|χ〉ψ+ =
1√
2
(|HV 〉l† + |HV 〉r†)

|χ〉ψ− =
1√
2
(|H〉l† |V 〉r† + |V 〉l† |H〉r†)

(4)

In an ideal teleportation experiment, the states described in Equation (4) will emerge from the

BS with equal probability. Out of the 4 states, the last one is the only one that provides a

single photon at each of the output ports and, therefore, can be easily detected by recording

simultaneous coincidences between two APDs placed right after the BS. While this simplifies

the experimental set-up, it also reduces the number of three-fold coincidence in a teleportation

experiment. It is also worth noting that the discussion above holds for completely indistin-

guishable photons. In the next section, we discuss the more general case where photons are

only partially indistinguishable.

Teleportation fidelity

The overlap in Hilbert space of two quantum states, hence fidelity, gives an approximation of

the successful state reconstruction.The density matrix of the input photon is an experimentally



prepared single photon state whose polarization are to be teleported, therefore simply reads

as ρXL
= |ψ〉XL

〈ψ|XL
. The statistically mixed density matrix of the output photon ρXXE

essentially depends on the outcome of a Bell state measurement for the three-photon quantum

superposition |ψ〉XLXXEXXE
. The arbitrary input wavefunction in the linear-polarized frame

may be expressed as

|ψ〉XL
= a |H〉+ b |V 〉 (5)

The other two photons are in the known polarization-entangled two-photon state emerging from

the QD transition cascade

|ψ〉XE ,XXE
(t) =

1√
2

(
|H〉XE

|H〉XXE
+ eδ(t) |V 〉XE

|V 〉XXE

)
(6)

and accounts for the evolution of the superposition state in the presence of a finite fine structure

splitting δ(t) = − iFSSt
h̄

. Using the following equations

|HH〉XL,XE
=

1√
2

(
|φ+〉XL,XE

+ |φ−〉XL,XE

)
|V V 〉XL,XE

=
1√
2

(
|φ+〉XL,XE

− |φ−〉XL,XE

)
|HV 〉XL,XE

=
1√
2

(
|ψ+〉XL,XE

+ |ψ−〉XL,XE

)
|V H〉XL,XE

=
1√
2

(
|ψ+〉XL,XE

− |ψ−〉XL,XE

)
(7)

the wavefunction of the whole quantum system reads

|ψ〉XL,XE ,XXE
(t) = |ψ〉XL

⊗ |ψ〉XE ,XXE
(t) =

=
1

2
|φ+〉XL,XE

⊗
(
a |H〉XXE

+ eδ(t)b |V 〉XXE

)
+

1

2
|φ−〉XL,XE

⊗
(
a |H〉XXE

− eδ(t)b |V 〉XXE

)
+

1

2
|ψ+〉XL,XE

⊗
(
b |H〉XXE

+ eδ(t)a |V 〉XXE

)
+

1

2
|ψ−〉XL,XE

⊗
(
b |H〉XXE

− eδ(t)a |V 〉XXE

)
(8)



By performing a Bell state measurement on XL and XE (see previous section), the polariza-

tion of the output photon |ψ〉XXE
is defined instantaneously and can be related to the input

polarization upon a unitary transformation

|ψ〉φ
+

XXE
= σ0(t) |ψ〉XL

|ψ〉ψ
+

XXE
= σx(t) |ψ〉XL

|ψ〉ψ
−

XXE
= σy(t) |ψ〉XL

|ψ〉φ
−

XXE
= σz(t) |ψ〉XL

(9)

where the time-dependent Pauli matrices describing the unitary transformation are

σ0(t) =

(
1 0
0 eδ(t)

)
σx(t) =

(
0 1
eδ(t) 0

)
σy(t) =

(
0 1
−eδ(t) 0

)
σz(t) =

(
1 0
0 −eδ(t)

)
(10)

The complete density matrix of the output photon then reads

ρXXE
=

∫ tmax

tmin

P (t)
∑
B

p|B〉 |ψ〉BXXE
〈ψ|BXXE

(t)dt (11)

where P (t) = 1
T1X

e
−t

T1X is the probability distribution function over time and it is related to

the temporal emission of an exciton with lifetime T1X . In the presence of a FSS, this term is

important to evaluate the time-averaged fidelity to the expected entangled state (see Equation

(6)), i.e., in the presence of a FSS, photons which come shortly after the excitation have a larger

fidelity to the expected Bell state. Thereby, the temporal integration boundaries in Equation

(11) provide a direct way to see how the density matrix evolves over time in the presence

of a FSS. It is also important to note that in our comparison with the experiment we set the

integration boundaries from 0 to ∞. This implies that we do not temporally post-select the

emitted photons and, as a consequence, we do not resolve the time evolution of the density

matrix but we simply see how the presence of a FSS affects the overall teleportation fidelity. In

Equation (11), p|B〉 is the probability to recognize a particular Bell state and it depends on the



quantum interference visibility VHOM . In fact, while we arrange our set-up to detect |ψ−〉 in

our Bell state measurement, the non-perfect visibilities of two-photon interference implies that

we may observe coincidences also from the other Bell state. In order to take into account this

deviation from the ideal scenario, we assume that the probability to detect a |ψ−〉 is depending

linearly on the VHOM as follows

p|ψ−〉 =
1

4
+

3

4
VHOM (12)

On the other hand, this also means that as the visibility decreases, we must expect an increase

in the probability of false detection originating from another (undesired) Bell state

p|ψ+〉 = p|φ+〉 = p|φ−〉 =
1

4
− 1

4
VHOM (13)

The good agreement between theory and experiment confirms a posteriori that this linear ap-

proximation is indeed adequate. As Equation (11) allows us to calculate the density matrix of

the output photon as a function of the relevant QD parameters (VHOM and FSS) we can now

calculate the teleportation fidelity as

F
|ψ−〉
T = Tr[ρXXE

σy |ψ〉XL
〈ψ|XL

σ†y] (14)

The average fidelity between a pure state and a mixed state is thereby understood when exam-

ining the system in the basis of the input state |ψ〉XL
. It can be then easily seen that the fidelity

will be equal to the matrix element ρXL,XL
:= 〈ψ′XL

|ρXXE
|ψ′XL

〉, where ψ′XL
is the spin-flipped

wavefunction of the input state. For more details we refer the interested reader to the reference

given in the main text.

Density matrix reconstruction

We orient ourselves, without loss of generality, on the measurement of the density matrix for a

diagonal input state, where we define the photon counts of our third-order correlation measure-



ments as
n0 =

1

2
(〈H|ρXXE

|H〉+ 〈V |ρXXE
|V 〉)

nx = 〈L|ρXXE
|L〉

ny = 〈V |ρXXE
|V 〉

nz = 〈D|ρXXE
|D〉

(15)

Here, the n0 correlation counts serve as the normalization and are equivalent to the side peak

correlation events individually evaluated for every single measurement, as explained in the main

text. If we (at least) measure the third-order correlation for three orthogonal XXE output states

at the fixed diagonal input state, we can derive the corresponding Stokes vectors

S0 = 〈D|ρXXE
|D〉+ 〈A|ρXXE

|A〉

Sx = 〈D|ρXXE
|A〉+ 〈A|ρXXE

|D〉

Sy = 〈D|ρXXE
|A〉 − 〈A|ρXXE

|D〉

Sz = 〈D|ρXXE
|D〉 − 〈A|ρXXE

|A〉

(16)

It is well known that these vectors allow to construct the polarization matrix via the Pauli spin

matrices σi (see reference given in the main text)

ρDAXXE
=

1

2

3∑
i=0

Si
S0

σi (17)

These measurements adapted to the other input states allow us to reconstruct all the presented

density matrices.



1 2

0.1

1
  IRF

1 2 3
0.01

0.1

1

N
o
rm

a
liz

e
d

In
te

n
s
ity

Delay (ns)

 XX
   X 

a b

-40 -20 0 20 40

-60

-40

-20

0

20

t 2
(n

s
)

 (ns)

D
X

L

D
XX

E

2.0

1.5

1.0

0.5

0.0

Dt
10

ig. S1. Lifetime and full third-order correlation. (a) Measured lifetime of an arbitrary
QD measured for both X and XX, respectively (Inset: Recorded instrument response function
(IRF) used for the deconvolution of the experimental data). (b) Example of a normalized third-
order teleportation correlation represented on large time scales for an arbitrary QD measured in
the diagonal polarization base.

QD [#] VHOM [%] FSS [µeV] fE [%] f exp.T [%] f theoryT [%]
1 65(2) 1.15(0.16) 93(0.3) 74.5(1.6) 74.0
2 62(3) 1.24(0.12) 91(0.3) 71.6(0.8) 72.5
3 57(4) 1.76(0.20) 86(0.3) 67.6(0.7) 68.3
4 57(4) 2.52(0.30) 82(0.3) 63.8(0.8) 64.6
5 58(4) 2.98(0.14) 78(0.3) 61.3(1.3) 63.2

Table S2
The measured two-photon interference visibility VHOM , fine structure splitting FSS and cor-
responding entanglement fidelity fE are given for each of the QDs. Together with the priorly
shown lifetimes, the theoretical model is used to obtain the expected average teleportation fi-
delity f theoryT and is compared to the experimental one f exp.T .

. Compiled experimental and theoretical results of all QDs under investigation.

QD [#] XX [ps] X [ps]
1 146(9) 268(16)
2 142(8) 259(10)
3 136(7) 255(8)
4 131(6) 271(15)
5 145(6) 273(10)

Table S1 Lifetimes of measured QDs. The resulting lifetimes of the X and XX transition for
all studied QDs fitted by an exponential decay after deconvolution with the instruments response
function.
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ig. S2 (a) Normalized third-order correlation of
a V-polarized (top) as well as R-polarized (bottom) X input state for co-polarized (left) and
cross-polarized (right) detection of XX photons. (b) Corresponding calculated values of the
teleportation fidelity as a function of the systems duty cycle. We observe a fidelity of 71(3)%
and 75(3)% for the linear and circular input state, respectively. The classical limit of teleporta-
tion is highlighted as a dashed-orange line.

. Teleportation measurements on QD1.F



ig S3 Classical teleporter. (a) The two-photon interference measured in co-polarized
configuration of an arbitrary chosen QD exhibiting a large FSS of 7.05(0.09)µeV. The depicted
HOM visibility is the result from a fit with 5 Lorentzian peaks (bold red). (b) Cross-correlation
of the non-entangled (time average) QD photons in the linear base. A correlation as high as
0.950(0.005) is observed after aligning the QD reference frame to the experimentally defined
polarization frame with the aid of variable retarders. (c) The measured teleportation fidelity
(identical experimental conditions as the investigated, entangled QDs) for differently polarized
input states. Due to the intrinsic, classical correlation of the emitted QD photons a fidelity
value of 72(1)% for linearly polarized photons, clearly above the classical limit, is observable.
The average fidelity of 58(1)%, however, demonstrates the necessity to prove non-classical
correlations in at least two basis to indicate true quantum teleportation.

R
e
(r
)

1.00

0.75

0.50

0.25

0.00

Im
(r
)

0.50

0.25

0.00

-0.25

-0.50

H

V

V H

V

V

H

a

H

R
e
(r
)

1.00

0.75

0.50

0.25

0.00

Im
(r
)

0.50

0.25

0.00

-0.25

-0.50

L

R

R L

R

R

L

b

L

ig (a) Experimental real and imaginary part of
the teleported single photon density matrix for a linear polarized and (b) circular polarized input
state represented in the appropriate eigensystems, respectively. We extract f linearT = 68.0(1.5)%
and f circularT = 71.9(1.5)%.
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. S . Single-qubit density matrices for QD2.
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