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Supplemental Results 

DNA level copy number alterations of the snoRNAome  

Copy number variation is a major factor in the genetic alterations driving cancer. Considering our 

findings that sdRNAs are correlated with numerous features of cancer immunity, we wondered which of 

the parental snoRNAs, if any, are recurrently subject to copy number amplification or deletion in human 

cancers. By analyzing copy number data from TCGA, we focused on genomic regions of significant 

amplification or deletion (GISTIC 2.0 q < 0.05) and intersected these loci with the coordinates of each 

snoRNA (Figure S7a-b, Tables S16-17). Of note, snoID_0379 and SNORD69 were found to be significantly 

amplified (q = 1.55 * 10-7) and deleted in lower grade glioma (q = 8.92 * 10-4), respectively; these snoRNAs 

are 2 of 8 total snoRNAs with an ImmuneSurv score of 4 in lower grade gliomas. SnoID_0379 expression 

was positively correlated with PD-L1, negatively correlated with intratumoral CD8+ T cell abundance, and 

associated with poorer survival. Given that patients with high snoID_0379 expression have poorer survival, 

it is logical that amplification of snoID_0379 would be positively selected for in lower grade glioma. In the 

complete opposite direction, SNORD69 expression was negatively correlated with PD-L1 expression, 

positively correlated with CD8+ T cell abundance, and associated with better survival. In stark contrast to 

snoID_0379, SNORD69 was instead found to be recurrently deleted in lower grade gliomas, which is 

consistent with the mirrored directionality of its ImmuneSurv associations. It is therefore plausible that 

snoID_0379 gain and SNORD69 loss are selected for in lower grade glioma by influencing the tumor-

immune microenvironment. 

 

SdRNAs distinguish primary tumors and metastases in melanoma 

Understanding the progression of cancer towards metastatic disease is critical for improving patient 

outcomes. As our prior results indicated that sdRNA expression signatures can be utilized to parse out 

different types and subtypes of cancers, we wondered if certain sdRNA expression patterns are specifically 

associated with metastasis. In the TCGA dataset, metastatic melanoma (SKCM) samples are well 

represented (n = 353). We compared sdRNA expression in metastatic samples to primary tumors (n = 97), 



and identified 68 differentially expressed sdRNAs (adjusted p < 0.05) (Figure S10a, Table S6). sdRNAs 

that were downregulated in metastases include those derived from ZL23 (p = 6.96 * 10-8), SNORD173 (p = 

4.68 * 10-6), and ZL7 (p = 1.38 * 10-6), while the top upregulated sdRNA is derived from SNORD30 (p = 

9.47 * 10-6) (Figure S10b). These data indicate that a host of sdRNAs are differentially expressed in 

metastatic melanoma compared to primary tumors, pointing to sdRNAs as potential players in the metastatic 

progression. 

 

Reanalysis of independent smRNA-seq datasets confirms dynamic expression of sdRNAs in cancer 

By reanalyzing independent smRNA-seq datasets, we further confirmed the expression of 

sdRNAs in lung cancer (GSE33858; Figure S11a-c), colon cancer 64 (GSE46622; Figure S11d-e), and 

pancreatic cancer 65 (E-MTAB-3494; Figure S11f-h). These smRNA-seq libraries were size-selected for 

17-27nt, 18-30nt, and < 40nt RNA species, which are approximately consistent with the TCGA smRNA-

seq datasets and would be expected to encompass sdRNAs but not full-length snoRNAs. Importantly, we 

again confirmed the 5’ or 3’ bias of smRNA-seq reads that mapped to snoRNAs, consistent with the 

asymmetric processing of snoRNAs into sdRNAs. Additionally, the expression of sdRNAs was sufficient 

to partition different subtypes of lung cancer (Figure S11c), while also distinguishing normal pancreatic 

tissue from pancreatic adenocarcinomas (Figure S11g). In aggregate, the reanalysis of these smRNA-seq 

datasets validated the widespread and dynamic expression of sdRNAs in multiple human cancers. 

  



Supplemental Figure Legends 

Figure S1: Construction and characterization of the pan-cancer sdRNA atlas 

a. Snapshot of smRNA-seq reads from TCGA-C8-A26V-01A mapping to several snoRNAs encoded within 

the human SNHG1 locus. The mapped reads demonstrate a 5’ or 3’ bias, indicative of sdRNAs. 

b. Snapshot of smRNA-seq reads from TCGA-EA-A3HS-01A mapping to SNORD60 within the human 

SNHG19 locus. The mapped reads demonstrate a 5’ or 3’ bias, indicative of sdRNAs. 

c. Scatterplot detailing the distribution of median sdRNA expression in 32 different cancer types (total n = 

10,262 tumor samples), grouped by parental snoRNA. Values shown are in terms of log2 transcripts per 

million (tpm), with the median value shown for each parental snoRNA (n = 942 snoRNAs).  

 

Figure S2: Lengths of reads mapping to snoRNA loci across cancer types 

Bar plots detailing the lengths of reads mapping to snoRNA loci in the TCGA smRNA-seq datasets. Data 

are expressed as percentages of total mapped reads to snoRNA loci. These read lengths are consistent with 

the expected size range of sdRNAs.  

 

Figure S3: Distributions of reads mapping to C/D snoRNAs across cancer types 

Average profiles and heat maps of the mapped read distributions from all expressed C/D snoRNAs across 

32 cancer types (the plots of KICH, LGG and OV from Figure 1g are redisplayed here). The read 

distributions generally clustered into three groups (k1, k2, k3). Values shown are normalized to maximum 

read depth for each snoRNA. 

 

Figure S4: Distributions of reads mapping to H/ACA snoRNAs across cancer types 

Average profiles and heat maps of the mapped read distributions from all expressed H/ACA snoRNAs 

across 32 cancer types (the plots of ACC, BRCA and UCS from Figure 1h are redisplayed here). The read 

distributions generally clustered into three groups (k1, k2, k3). Values shown are normalized to maximum 

read depth for each snoRNA. 



 

Figure S5: Correlation analysis of high-variance sdRNAs reveals clusters of co-expression modules 

a. Heat map of the standard deviation in expression for each sdRNA within individual cancer types, grouped 

by parental snoRNA. Even within a cancer type, sdRNA expression signatures were highly dynamic (n = 

942 parental snoRNAs).  

b. Heat map of pairwise Pearson correlation coefficients for high variance sdRNAs (n = 300). Right panel, 

the median log2 tpm expression across all tumors for each snoRNA. Examples of sdRNA clusters are 

outlined by boxes in the heat map. 

 

Figure S6: t-SNE rendering of patient populations based on sdRNA expression signatures across 

individual cancer types 

t-SNE plots of sdRNA expression in tumors from 32 different cancer types (total n = 10,262), grouped by 

parental snoRNA. t-SNE dimensions are the same as shown in Figure 2, but now each cancer type is 

visualized separately. These data further demonstrate the heterogeneity of sdRNA expression both across 

and within cancer types.  

 

Figure S7: Additional t-SNE analysis 

a. t-SNE plot of normal adjacent tissues (n = 675 samples). Samples are color-coded according to the 

adjacent cancer type. 

b. t-SNE plot of cancers derived from the gastrointestinal tract, lung, kidney, and melanocytes similar to 

Figure 3b, with the difference that here the samples are color-coded according to histologic cancer type 

rather than the tissue of origin. 

c-f. t-SNE plots of sdRNA expression in tumors from 32 different cancer types (total n = 10,262), colored 

by PD-L1 expression (c), GZMA expression (d), endothelial cell abundance (e), and patient survival (f). 

For patient survival, to avoid issues with censored data, only patients who had deceased were considered. 

 



Figure S8: sdRNAs are correlated with tumor vascularization across multiple cancers 

a. Heat map of sdRNAs positively correlated with endothelial cell abundance (EndothelialScore) (adjusted 

p < 0.05, adjusted within each cancer type), as determined by the xCell deconvolution algorithm. For 

visibility, only sdRNAs that were positively correlated in four or more cancer types are shown. Boxes are 

colored according to the Spearman correlation with EndothelialScore. Parental snoRNAs without annotated 

names are instead labeled by their host gene in parentheses. SnoRNA classifications are annotated on top 

based on a color legend on the right panel. 

b. Scatter plots depicting the correlation between EndothelialScore and SNORD114-1 sdRNA expression 

in breast adenocarcinoma (BRCA, n = 965), colorectal adenocarcinoma (COAD, n = 265), head and neck 

squamous cell carcinoma (HNSC, n = 435), sarcoma (SARC, n = 230), skin cutaneous melanoma (n = 89), 

stomach adenocarcinomas (STAD, n = 335), thymomas (THYM, n = 111), and uterine corpus endometrial 

carcinoma (UCEC, n = 159). Spearman correlation coefficients and associated p-values are noted on each 

plot. SNORD114-1 sdRNA abundances are shown as transcripts per million (tpm), while EndothelialScores 

were determined by the xCell algorithm applied to the RNA-seq data. 

c. Bar plot depicting the number of significant sdRNAs in each cancer type, in relation to EndothelialScore. 

Red, positive correlation; blue, negative correlation.  

 

Figure S9: Pan-cancer copy number variation in snoRNAs 

a. Heat map of snoRNAs that are recurrently amplified in at least 2 cancer types (q < 0.05). Cells are colored 

by -log10 q-values. Right panel, bar plot detailing the number of cancer types in which a given snoRNA is 

significantly amplified. 

b. Heat map of snoRNAs that are recurrently deleted in at least 3 cancer types (q < 0.05). Cells are colored 

by -log10 q-values. Right panel, bar plot detailing the number of cancer types in which a given snoRNA is 

significantly deleted. 

 

Figure S10: Differential expression of sdRNAs in metastases and primary melanomas 



a. Volcano plot detailing log fold change and -log10 adjusted p-values for sdRNAs in metastases compared 

to primary melanomas, grouped by parental snoRNA. SdRNAs more highly expressed in metastases are 

colored red, while sdRNAs more highly expressed in primary melanomas are colored blue.   

b. Box plots comparing expression of ZL23, SNORD173, ZL7, and SNORD30 in metastases (red) compared 

to primary melanomas (blue). Associated p-values are indicated on the plot. Data are shown as log2 tpm. 

 

Figure S11: Analysis of independent smRNA-seq datasets confirms expression of sdRNAs in cancer 

a. Snapshot of smRNA-seq reads from a lung cancer (Sample 159T; GSE33858) mapping to SNORD43 

encoded within the RPL3 locus. The mapped reads demonstrate a 5’ bias, indicative of sdRNAs. 

b. Violin plot of the top 30 sdRNAs with the highest variance across the GSE33858 dataset. Data are shown 

in terms of log2 tpm. 

c. Principal component analysis of lung adenocarcinoma, lung squamous carcinoma, and lung 

adenosquamous carcinoma samples in GSE33858, based on sdRNA expression. 

d. Snapshot of smRNA-seq reads from a colon cancer (Sample P3met; GSE46622) mapping to SNORD98 

encoded within the CCAR1 locus. The mapped reads demonstrate a 3’ bias, indicative of sdRNAs. 

e. Violin plot of the top 10 sdRNAs with the highest variance across the GSE46622 dataset. Data are shown 

in terms of log2 tpm. 

f. Snapshot of smRNA-seq reads from a pancreatic cancer (Sample P4; E-MTAB-3494) mapping to 

SNORD26 encoded within the SNHG1 locus. The mapped reads demonstrate a 3’ bias, indicative of 

sdRNAs. 

g. Principal component analysis of pancreatic tumors and normal pancreas in E-MTAB-3494, based on 

sdRNA expression. 

h. Violin plot of the top 10 sdRNAs with the highest variance across the E-MTAB-3494 dataset. Data are 

shown in terms of log2 tpm. 

  



List of supplemental tables 

Table S1. SnoRNAome annotation used in this study 

Table S2. SnoRNA annotation summary statistics by subtype 

Table S3. Pan-cancer snoRNA transcriptome median expression 

Table S4. Correlation matrix of snoRNA transcriptome 

Table S5. Pan-cancer correlation between snoRNAs and their host genes 

Table S6. Cancer type-specific correlation between snoRNAs and their host genes. 

Table S7. SnoRNAome differential expression between primary tumors and metastases in SKCM 

Table S8. Significant correlations between snoRNAs and PD-L1 expression across 32 cancer types 

Table S9. Significant correlations between snoRNAs and tumor-infiltrating CD8+ T cell abundance across 

32 cancer types 

Table S10. Significant correlations between snoRNAs and GZMA expression across 32 cancer types 

Table S11. Significant correlations between snoRNAs and intratumoral endothelial cell abundance across 

32 cancer types 

Table S12. Log2 hazard ratios of snoRNAs significantly correlated with survival across 32 cancer types 

Table S13. PAN-CANCER summary table of snoRNA significant scores 

Table S14. SnoRNAs with top ImmuneSurv scores 

Table S15. SnoRNAs with high ImmuneSurv scores across multiple cancer types 

Table S16. Copy number analysis – q-values of significantly amplified snoRNAs 

Table S17. Copy number analysis – q-values of significantly deleted snoRNAs 

  



Cancer type abbreviations 
ACC Adrenocortical carcinoma 
BLCA Bladder urothelial carcinoma 
BRCA Breast invasive carcinoma 
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 
CHOL Cholangiocarcinoma 
COAD Colon adenocarcinoma 
DLBC Diffuse large B-cell lymphoma 
ESCA Esophageal carcinoma 
GBM Glioblastoma multiforme 
HNSC Head and neck squamous cell carcinoma 
KICH Kidney chromophobe 
KIRC Kidney renal clear cell carcinoma 
KIRP Kidney renal papillary cell carcinoma 
LAML Acute myeloid leukemia 
LGG Brain lower grade glioma 
LIHC Liver hepatocellular carcinoma 
LUAD Lung adenocarcinoma 
LUSC Lung squamous cell carcinoma 
MESO Mesothelioma 
OV Ovarian serous cystadenocarcinoma 
PAAD Pancreatic adenocarcinoma 
PCPG Pheochromocytoma and paraganglioma 
PRAD Prostate adenocarcinoma 
READ Rectum adenocarcinoma 
SARC Sarcoma 
SKCM Skin cutaneous melanoma 
STAD Stomach adenocarcinoma 
TGCT Testicular germ cell tumors 
THCA Thyroid carcinoma 
THYM Thymoma 
UCEC Uterine corpus endometrial carcinoma 
UCS Uterine carcinosarcoma 
UVM Uveal melanoma 
 


