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Supplemental Information for “Emergent Elasticity in the Neural Code for Space”

Code available at https://github.com/ganguli-lab/EmergentElasticityAnalysisAndSimulations

OVERVIEW OF SUPPLEMENTAL MATERIALS

In this supplemental information we first provide a reference for all mathematical symbols used (Sec. I). In Sec. II we
present, in full mathematical detail, a general family of models that combines attractor networks, velocity-conjunctive
cells, and plastic error correcting landmark cells, that can all work together to form maps of space in one dimension.
In Sec. III, we then perform model reduction on this model to derive simplified low dimensional equations which
capture the essential combined neural and synaptic dynamics of the full model. By linearizing, we derive an even
simpler model in Sec. IV, which can be applied towards understanding how a simple geometry is learned through
exploration in Sec. V.

In Sec. VI we provide a simple specific example of a neural model which yields analytic formulas for the effective
reduced dynamics. The reader is encouraged to refer to this section to build intuition.

In Sec. VII, we extend the above mathematical formalism to two-dimensional attractor models yielding grid cells
in two dimensions, and show how linearization of the exploration process yields a mechanical “particles-on-springs”
model in Sec. VIII. We outline several connections to experiments in Sec. IX, and then discuss several extensions and
lemmas used for the theory in Sec. X, as well as explain details of simulations and data analysis in Sec. XII.
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TABLE I: Table of symbols used in main paper.

Variable Name Symbol Type Units
Exploration/dynamics time scale t Scalar Time
Neural ring position u Angle (defined modulo 2π) Neur. sheet length

(Dimensionless)
Synaptic activation of attractor cells s(u) Scalar function of neural ring position Firing rate
Pairwise cellular interactions J(u− u′) Scalar function of neural ring position 1/(Neur. sheet length×

Time)
Leak time τm Scalar Time
Firing nonlinearity G Scalar function Firing rate/Time

Attractor state φA(t) Angle (also neural ring position) function of time Dimensionless

Steady bump pattern s∗(u− φA) Scalar function of neural ring position Firing rate
One-dimensional animal position x(t) Scalar function of time Physical length
One-dimensional running velocity v(t) Scalar function of time Physical length/Time
1D path integration constant k Scalar Angle/Physical length
Landmark cell index i Integer label Dimensionless

Landmark cell firing rate sLi (t) Scalar function of time Firing rate
Landmark cell firing field Hi(x) Scalar function of animal position Firing rate
Landmark cell synaptic weights (neu-
ral ring basis)

Wi(u) Scalar function of neural ring position 1/Neur. sheet length

Weight component in attract. basis φL Angle (defined modulo 2π) Dimensionless

Attractor force law F(φP − φA) Function of difference of neural ring position Dimensionless
Landmark strength ω Scalar 1/Time
Training time T Scalar Training sessions

Linearized landmark pinning phase θLi Unrolled angle (not defined modulo 2π ) Dimensionless
Box width L Scalar Physical length
Width of wall cues LWall Scalar Physical length
Box traversal time τ Scalar Time
Animal running speed v0 Positive scalar (speed not velocity) Physical length/Time
Magnitude of effect of east landmark
on west landmark (spring constant)

MWE Scalar 1/Training session

Path integration amount between west
wall and east wall

∆XA
W→E Scalar Physical length

Position self-estimate XA[x(t), t] Scalar functional of path history and time Physical length

Landmark position estimate XL
E , XL

W Scalar Physical length

Landmark pinning phase θLE, θ
L
W Unrolled phase Dimensionless

2D neural sheet position u Position on periodic rhombus, defined mod. (0, 2π), (
√

3π, π) Neur. sheet length
Pairwise cellular interactions J(|u− u′|) Function of neural sheet distance (Neur. sheet length)−2/

Time
Synaptic activation s(u) Scalar function of 2D neural sheet position Firing rate

Steady bump pattern s∗(u− φA) Scalar function of 2D neural sheet position Firing rate

2D attractor state (location of firing
bump)

φA Position on periodic rhombus, defined mod. (0, 2π), (
√

3π, π) Neur. sheet length
(Dimensionless)

2D attractor force law F(φP − φA) 2D vector function of neural sheet separation Dimensionless
2D running velocity v(t) 2D vector function of time Physical length/Time
2D path integration constant K 2×2 matrix (2D animal velocity→ 2D neural sheet velocity) Angle/Physical length
2D position r(t) 2D vector Physical length
Synaptic weights (neural sheet basis) Wi(u) Scalar function of neural sheet position (Neur. sheet length)−2

Synaptic weights (attractor basis) W̃i(φ
L) Scalar function of position on periodic rhombus (Neur. sheet length)−2

Synaptic weight component in attrac-
tor basis

φL Position on periodic rhombus, defined mod. (0, 2π), (
√

3π, π) Neur. sheet length
(Dimensionless)

2D position self-estimate RA 2D vector Physical length

2D landmark position estimate RL
i 2D vector Physical length

Magnitude of effect of landmark j on
landmark i

Mij Scalar 1/Training session

Mean path integration between land-
mark i and landmark j

∆RA
j→i 2D vector Physical length
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1. Table of all symbols used in SI

A. Table for one-dimensional model and its reduction

TABLE II: Table of Symbols for One-Dimensional Model(Sec. II) and its Reduction(Sec. III, Sec. IV)

Variable Name Symbol Type Units
Exploration/Neural dynamics time
scale

t Scalar Seconds

Neural ring position u Angle (defined modulo 2π) Neur. sheet length
(Dimensionless)

Synaptic activation of non-conjunctive
attractor cells

s(u) Scalar function of neural ring position Firing rate

Pairwise cellular interactions J(u− u′) Scalar function of neural ring position 1/(Neur. sheet length×
Time)

Leak time τm Scalar Time
Firing nonlinearity G One-variable function Firing rate/Time
Attractor dynamics DA[s] Functional of synaptic activation; both inputs and

outputs a function of neural ring position
Firing rate/Time

Attractor state (location of firing bump) φA(t) Angle (defined modulo 2π) function of time Neur. sheet length
(Dimensionless)

Steady bump pattern s∗(u− φA) Scalar function of neural ring position Firing rate
Jacobian of dynamics around attractor
state φA

JacφA(u, u′) Matrix of scalars, indexed by pairs of neural sheet
positions (u, u′)

(Neur. sheet length)−2

×Time−1

Generic perturbation to attractor state ∆s(u) Scalar function of neural ring position Firing rate
Generic perturbation strength ε Scalar 1/Time

Generic perturbation to network
dynamics

ε δs(u− φP) Scalar function of neural ring position Firing rate/Time

Path integration perturbation strength εPI Scalar 1/Time
Offset of outgoing connections of
velocity-conjunctive cells

∆φPI Angle (defined modulo 2π) Dimensionless

Synaptic activation of velocity-
conjunctive attractor cells

sEC(u),
sWC(u)

Scalar function of neural ring position Firing rate

Conjunctive characteristic speed vC0 Positive scalar (speed not velocity) Physical length/Time
Landmark cell perturbation strength εLM Scalar Neur. sheet length×

(Firing rate) /Time
Shift in outgoing connections of velocity
conjunctive cells

∆φPI Difference in neural ring position Neur. sheet length

Center of perturbation to network φP Angle (defined modulo 2π) Neur. sheet length
One-dimensional position x(t) Scalar function of time Physical length

Attractor force law F(φP − φA) Function of difference of neural ring position Dimensionless
One-dimensional running velocity v(t) Scalar function of time Physical length/Time
One-dimensional animal position x(t) Scalar function of time Physical length
1D path integration constant k Scalar Angle/Physical length
Landmark cell index i Integer label Dimensionless

Landmark cell firing rate sLi (t) Scalar function of time Firing rate
Landmark cell firing field Hi(x) Scalar function of animal position Firing rate
Synaptic weights (neural ring basis) Wi(u) Scalar function of neural ring position 1/Neur. sheet length

Synaptic weights (attractor basis) W̃i(φ
L) Scalar function of angle 1/Neur. sheet length

Synaptic weight component in attractor
basis

φL Angle (defined modulo 2π) Dimensionless

Training time T Scalar Training sessions
Landmark strength ω Scalar 1/Time

Linearized landmark pinning phase θLi Unrolled angle (not defined modulo 2π ) Dimensionless
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B. Table for simplest environment case

TABLE III: Table of Symbols for Simplest Environment Case (Sec. V)

Variable Name Symbol Type Units
Box width L Scalar Physical length
Width of wall cues LWall Scalar Physical length
Width of cue-depleted zone LInt Scalar Physical length
Box traversal time τ Scalar Time
Animal running speed v0 Positive scalar (speed not velocity) Physical length/Time
Magnitude of effect of east landmark
on west landmark

MWE Scalar 1/Training session

Path integration amount between
west wall and east wall

∆XA
W→E Scalar Physical length

Position self-estimate XA[x(t), t] Scalar functional of path history and time Physical length
Landmark pinning phase θL

i Unrolled phase Dimensionless
Landmark position estimate XL

i Scalar Physical length

C. Table of units for mechanical framework

TABLE IV: Table of units mechanical framework (Sec. VIII )

Variable Name Symbol Type Units
Position estimate given a path
history

RA[r(t), t] 2D vector functional of path history and
time

Physical length

Mean position self-estimate at a
given position

R̄A(r) 2D vector function of animal position Physical length

Mean position self-estimate across
landmark field i

R̄A
i 2D vector Physical length

Total landmark strength at a given
position

ω(r) Scalar function of animal position 1/Time

Effect of landmark forcing at r′ on
position self estimate at r

S(rB, rA) Scalar function of animal position pairs
(depends on path statistics)

1/(Physical length2)

Reverse animal trajectory rrev(t) 2D vector function of time Physical length
Effect of landmark forcing at time t′

on self-estimate at time t
F[r(t), t, t′] 2D vector functional of time pairs and

path history
1/Time

Degree of memory of input from time
t′ at time t

Mem[r(t), t, t′] 2D vector functional of time pairs and
path history

Dimensionless
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D. Table of symbols for two-dimensional model, reduction, linearization, and mechanical proof

TABLE V: Table of symbols for two-dimensional model (Sec. VII)

Variable Name Symbol Type Units
2D neural sheet position u Position on periodic rhombus, defined modulo

(0, 2π), (
√

3π, π)
Neur. sheet length
(Dimensionless)

Firing nonlinearity G Scalar function Firing rate/Time
Pairwise cellular interactions J(|u− u′|) Function of neural sheet distance (Neur. sheet length)−2

Synaptic activation s(u) Scalar function of 2D neural sheet position Firing rate
Steady bump pattern s∗(u− φA) Scalar function of 2D neural sheet position Firing rate
2D attractor state (location of firing
bump)

φA Position on periodic rhombus, defined modulo
(0, 2π), (

√
3π, π)(function of time)

Neur. sheet length
(Dimensionless)

Attractor force law F(φP −φA) 2D vector function of neural sheet separation Dimensionless
Attractor dynamics DA[s(u)] Functional of synaptic activation; both inputs

and outputs a function of neural sheet position
Time derivative of synap-
tic activation

2D running velocity v(t) 2D vector function of time Physical length/Time
Two dimensional path integration
constant

K 2 × 2 Matrix (transforms 2D animal velocity
to 2D attractor state velocity)

Angle/Physical length

2D animal position r(t) 2D vector function of time Physical length
Landmark cell index i Integer label Dimensionless
Landmark cell firing rate sL

i (t) Scalar Firing rate
Landmark cell firing field Hi(r) Scalar function of 2D physical position Firing rate
Synaptic weights (neural sheet basis) Wi(u) Scalar function of neural sheet position (Neur. sheet length)−2

Synaptic weights (attractor basis) W̃i(φ
L) Scalar function of position on periodic

rhombus
(Neur. sheet length)−2

Synaptic weight component in at-
tractor basis

φL Position on periodic rhombus, defined modulo
(0, 2π), (

√
3π, π)

Neur. sheet length
(Dimensionless)

Landmark pinning phase θL
i Unrolled 2D phase Dimensionless

Training time T Scalar Training sessions
Landmark strength ω Scalar 1/Time
Position self-estimate RA 2D vector Physical length
Landmark position estimate RL

i 2D vector Physical length
Average landmark position estimate
at a position

RL(r) 2D vector function of physical position Physical length

Total landmark strength at a
position

ω(r) Scalar function of physical position 1/Time

Magnitude of effect of landmark j on
landmark i

Mij Scalar 1/(Training session)

Mean path integration between land-
mark i and landmark j

∆RA
j→i 2D vector Physical length
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E. Table of units for experiments and simulations

TABLE VI: Table of symbols for experiments and simulations (Sec. XII)

Variable Name Symbol Type Units

Head direction unit vector ĤD(t) 2D unit vector (function of time) Dimensionless
Experimentally observed animal po-
sition (center of diodes)

r(t) 2D vector Dimensionless

Path condition C Boolean functional of time and path history
r(t) (path condition is satisfied or not satisfied
at a certain time given the path history)

Dimensionless

Grid cell label GC Integer label Dimensionless
Variational step distance for cross-
correlation

∆rC 2D vector Physical length

Conditional firing rate of cell GC
given path condition C

sCGC(r) Scalar function of 2D animal position Physical length

Cross-correlation between two path
conditions C1, C2 for grid cell GC

CC1C2GC (∆rC) Scalar function of 2D difference in animal
position

Dimensionless

Firing field center rff 2D animal position Physical length
Firing field ff Set of 2D animal positions Physical length
Spike shift for path condition C, grid
cell GC, and firing field ff

SC,GC,ff 2D difference vector Physical length

Spike position rSpk 2D vector Physical length
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II. FULL HIGH-DIMENSIONAL MODEL OF DYNAMICS AND LEARNING FOR PATH
INTEGRATION AND ENVIRONMENTAL EXPLORATION

We first consider a one-dimensional attractor network consisting of a large population of neurons whose connectivity
is determined by their position on an abstract ring, as in Fig. SI.1. For analytical simplicity, we take a neural field
approach [1], so that position on the ring is described by a continuous coordinate u, with the activation, or firing rate
of a neuron at each position u given by s(u) (see list of symbols and units in Table II).

In the interest of generality, we do not commit to any particular functional form for the neural field model presented
in this section. To help build intuition, the reader is encouraged to refer to Sec. VI, where a simple, exactly solvable
model is presented.

1. Cell Types

Our model has three types of cells.

A. Non-conjunctive attractor network cells

Non-conjunctive cells that form an attractor network are uniformly distributed on a neural ring, and have a firing
rate s(u), where u is the position on the neural ring. Non-conjunctive attractor network cells have outgoing connec-
tions to each other with a weight of J(u′ − u), yielding some set of attractor dynamics. These additionally receive
inputs from conjunctive attractor network cells and landmark cells. In general, to yield a steady bump pattern, J will
have local excitation and mid-range inhibition (Fig. SI.1A).

B. Conjunctive-velocity sensitive cells

The model also has a ring of east-conjunctive (EC) and a ring of west-conjunctive (WC) cells. The firing rates
of these cells at a position u on their respective rings depend instantaneously on the firing rates s(u) along the
non-conjunctive attractor ring and the animal running velocity through the functions

sEC(u) =

(
vEast

vC0

)
s(u), sWC(u) =

(
vWest

vC0

)
s(u). (SI.II.1)

Here vEast, vWest correspond to the east and west components of the animal velocity v:

vEast =

{
v v > 0
0 v ≤ 0

, vWest =

{
0 v ≥ 0
−v v < 0

, vEast − vWest = v,

and vC0 is the characteristic speed at which conjunctive cell firing rates equal the non-conjunctive attractor network
cell firing rates.

The east-conjunctive cells at u have outgoing weights onto the attractor ring so that the peak synaptic output is
biased, and centered at a point u+∆φPI, where ∆φPI is the bias in the direction of outgoing weights. West-conjunctive
cells have outgoing weights with opposite bias to u−∆φPI. In general, weights from a conjunctive cell at u will have
an outgoing synaptic strength profile that peaks at u+ ∆φPI for east-conjunctive cells (Fig. SI.1B) and u−∆φPI for
west-conjunctive cells (Fig. SI.1C). Here, for simplicity, we have each east (west) conjunctive cell at u connect to a
single non-conjunctive attractor cell at u ± ∆φPI. See Sec. X 1 for a more realistic case in which a conjunctive cell
connects to multiple non-conjunctive attractor network cells.

C. Landmark cells

Landmark cells do not live on a neural ring like the attractor cells and the velocity-conjunctive cells. Instead, each
landmark cell i has a position-dependent normalized firing rate of sL

i (t) = Hi(x(t)), where Hi(x) is some function of
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immediate animal position. They do, however, have plastic synaptic connections onto every non-conjunctive cell in
the attractor network with neural ring position-dependent strength Wi(u) (Fig. SI.1D).

2. Attractor dynamics

Over the short exploration time scale t, the equations (extended version of Eq. 1(Main)) for neural dynamics [2]
are (Fig. SI.1):

ds (u)

dt
= −s(u)

τm
+ G

(∫

u′
J(u− u′)s(u′)

)

︸ ︷︷ ︸
Non-conjunctive (Fig. SI.1A)

+ εPI (sEC (u−∆φPI))︸ ︷︷ ︸
East cells (Fig. SI.1B)

+εPIsWC (u+ ∆φPI)︸ ︷︷ ︸
West cells (Fig. SI.1C)

+ εLM

∑
i

(
Wi(u)sL

i (t)
)

︸ ︷︷ ︸
Landmark Cell Inputs (Fig. SI.1D)

(SI.II.2)
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decades of recordings in multiple brain regions have re-
vealed diverse neural correlates of spatial maps in the
brain. In particular, the medial entorhinal cortex (MEC)
contains neurons encoding for direction, velocity, land-
marks, as well as grid cells exhibiting striking firing pat-
terns reflecting an animal’s spatial location (2–6). More-
over, the geometry of these firing patterns depends on
the shape of the environment being explored (7–10). In
particular, these grid firing patterns can be deformed in
irregular environments (11, 12), in a manner evocative
of deformations of solids forced into into an irregular
container, suggesting a mechanical model for these de-
formations (13–15). Also, these firing patterns are not
simply driven by current sensory cues; there is evidence
for path integration (16–18) in that firing patterns appear
almost immediately (2), phase di�erences are preserved
across environments (19), firing patterns become noisier
the longer an animal has spent away from a landmark
(20, 21), and can be shifted depending on which landmark
the animal has most recently encountered (22, 23).

Despite this wealth of experimental observations, no
mechanistic circuit model currently explains how known
aspects of neuronal dynamics and synaptic plasticity can
conspire to learn, through exploration, a self-consistent
internal map of a novel environment that both behaves like
a deformable medium, and also retains, at higher-order,
some knowledge of recently encountered landmarks. Here,
we show how an attractor network that combines path
integration of velocity with Hebbian learning (22, 24, 25)
of synaptic weights from landmark cells, can self-organize
to generate all of these outcomes. Intriguingly, a low
dimensional reduced model of the combined neuronal
and synaptic dynamics provides analytical insight into
how self-consistent maps of the environment can arise
through an emergent, elastic relaxation process involving
the synaptic weights of landmark cells.

Model reduction of an attractor network coupled to
sensorimotor inputs

Our theoretical framework assumes the existence of three
interacting neural components: (1) an attractor network
capable of realizing a manifold of stable neural activity
patterns, (2) a population of velocity-tuned cells that
carry information about the animal’s motion, and (3) a
population of sensory driven landmark cells that fire if and
only if the animal is in a particular region of space. Our
goal will be to understand how the three populations can
interact together and self-organize through synaptic plas-
ticity, sculpted by experience, to create a self-consistent
internal map of the environment. Here, we describe the
neuronal and synaptic dynamics of each component in
turn, as well as describe a model reduction approach to
obtain a low dimensional reduced description of the entire
plastic circuit dynamics. Our low dimensional description
provides insight into how self-consistency of the neural
map emerges naturally through an elastic relaxation pro-
cess between landmarks.

��
DRAFT

ing an animal’s spatial location (2–6). Firing patterns
are sensitive to the environment being explored (7–10).
In particular, these firing patterns can be deformed in
irregular environments (11), in a manner evocative of de-
formations of solids forced into into an irregular container,
suggesting a mechanical model for these deformations
(12, 13). Moreover, these firing patterns are not simply
driven by current sensory cues; there is evidence for path
integration (14, 15) in that the firing patterns become nois-
ier the longer an animal has spent away from a landmark
(16, 17), and can be shifted depending on which landmark
the animal has most recently encountered (18, 19).

Despite the wealth of these experimental observa-
tions, no mechanistic circuit model currently explains
how known aspects of neuronal dynamics and synaptic
plasticity can conspire to learn, through exploration, a
self-consistent internal map of a novel environment that
both behaves like a deformable medium, and also retains,
at higher-order, some knowledge of recently encountered
landmarks. Here we show analytically that an attractor
network that combines path integration of velocity with
Hebbian learning of synaptic weights from landmark cells,
can self-organize to generate all of these outcomes. Intrigu-
ingly, a low dimensional reduced model of the combined
neuronal and synaptic dynamics provides insight into how
self-consistent maps of the environment emerge through
an e�ective mechanical relaxation process involving the
synaptic weights of landmark cells.

2. Model reduction of an attractor network coupled
to sensorimotor inputs

Our theoretical framework assumes the existence of three
interacting components: (1) an attractor network capable
of realizing a D dimensional manifold of stable neural
activity patterns, (2) a population of velocity-tuned cells
that carry information about the animal’s motion, and
(3) a population of sensory driven landmark cells that fire
if and only if the animal is in a particular region of space.
Our goal will be to understand how the three populations
can interact together and self-organize through synaptic
plasticity, sculpted by experience, to create a consistent
internal map of the environment. Here, we describe the
neuronal and synaptic dynamics of each component in
turn, as well as describe a model reduction approach to
obtain a low dimensional reduced description of the entire
plastic circuit dynamics.

A manifold of stable steady states from attractor network
dynamics . We first consider a D = 1 dimensional attrac-
tor network (20, 21) consisting of a large population of
neurons living on a D = 1 dimensional neural sheet. For
analytical simplicity, we take a neural field approach, so
that position on the sheet is described by a continuous
coordinate u, with the firing rate of a neuron at position
u given by s(u). Each neuron interacts with neighbor-
ing neurons through a translation invariant connectivity,

yielding the dynamics

ds (u)
dt

= ≠s(u) + F
5⁄

uÕ
J(u ≠ uÕ)s(uÕ)

6
. [1]

Here J(u ≠ uÕ) defines the synaptic weight from a cell at
position uÕ to a cell at u, and F is a nonlinearity. We will
refer to these dynamics as ds/dt = Dyn[s]. Many appro-
priate choices of J and F , corresponding for example to
short range excitation and long range inhibition, will yield
a family of stable, or steady state, localized bump activity
patterns sSS (u ≠ „A), parameterized by the position of
their peak „A. The existence of this stable manifold is a
consequence of translation invariance, so that each stable
state is a translation along the neural sheet of a basic
bump firing pattern sSS (u). Furthermore, we assume
for simplicity periodic boundary conditions on the neural
sheet, so that both the coordinate u along the sheet, and
the coordinate „A specifying a point on the manifold of
stable attractor patterns�, are periodic variables defined
modulo 2fi (Fig. 1).

Fig. 1. Schematic of a one-dimensional periodic neural sheet with short-
range excitation (solid gray arrows) and longer range inhibition (dotted black
arrows). This yields a 1D family of bump-attractor states sSS (u ≠ „A), which
are mapped onto a single periodic variable „A representing the translation of
the bump pattern.

Motions along the attractor manifold due to external in-
puts. We will eventually show how to map the coordinate
„ along the attractor manifold to the position in physical
space of the animal. However, in order to appropriately
form such an internal estimate of position, and map the
environment, the attractor state must be influenced by
external inputs from both the velocity cells and landmark
cells in a consistent manner. We first derive a general

�This can be straightforwardly generalized to multi-bump attractor networks

2
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cells in a self-consistent manner. We first derive a reduced

description for how a general external feedforward input

to the attractor network modifies its dynamics.

Suppose the attractor network is at one of its steady

state bump patterns s ú(u≠
„ A

) centered at u =
„ A

. Fur-

ther suppose that each neuron at position
u on the neu-

ral ring experiences an external additive input current

‘”
s

!
u≠

„ P "
that is centered, or localized on the neural

ring around some other location
u =

„ P. The neural

dynamics of the attractor in Eq. 1, in response to this

additive external input is then modified to:

ds(u)/dt = D
A [s] +

‘”
s(u≠

„ P
).

When
‘ is small, the external inputs are weak relative to

the recurrent inputs that determine the shape of the bump

pattern. In this situation, the evolving firing rates will be

confined to the 1D manifold of steady states s ú(u ≠
„ A

).

In essence, a small excitatory perturbation
”
s(u ≠

„ P)

centered at position
u =

„ P
on the neural ring, will trans-

late the stable bump pattern towards the perturbation,

without changing its shape. Therefore, to track the entire

dynamics of the network, we do not need to track the

firing rate of every neuron; we need only track the time de-

pendent position of the peak of the activity bump, „ A
(t).

Thus we can reduce the entire high dimensional neural

dynamics to a low dimensional e�ective scalar dynamics:

d„ A
/dt =

‘F(„ P
≠

„ A
).

[2]

In App. D, we show how to analytically compute the force

law F(„ P
≠

„ A
) governing the velocity of the bump peak,

in terms of the shape of the bump s ú(u≠„ A
) and the shape

of the additive input perturbation
”
s(u≠

„ P). However,

for the particular external inputs we consider below, the

qualitative structure of the force law as a function of the

input perturbation will be highly intuitive.

Path integration through conjunctive position velocity inputs

Following (27, 28), we achieve path integration by coupling

the attractor network to conjunctive position and velocity-

tuned cells such that east (west) movement-selective cells

form feedforward synapses into the attractor network that

are shifted in the positive (negative)
u direction (Fig.

2A, B). We can use our model reduction framework via

Eq. 2 to show analytically (App. E) that this choice of

connectivity leads to path integration:

d„ A
/dt =

v0k.

[3]

Here, k is a constant of proportionality that relates animal

velocity to the rate of phase advance in the attractor

network(k = 2fi/Field Spacing). Solving Eq. 3 allows us

to recover path integration where the resulting integrated

attractor phase is only a function of current position
x(t):

„ A
(t) =

„ A
(x(t)) =

„ A
(0) +

k[x(t) ≠
x(0)].

Thus the connectivity of the conjunctive position velocity

cells in Fig.
2A, B

ensure that as the mouse moves

east (west) along a 1D track, the attractor phase moves

clockwise (counterclockwise), at a speed proportional to

velocity. The collection of neurons in the attractor then

trace out periodic firing patterns as a function of spatial

position, all with the same period but di�erent phases.
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Fig. 2. A) When the animal moves east, east-conjunctive cells with biased

outgoing connections move the attractor pattern in the positive u direction. B)

When the animal moves west, the attractor pattern is moved in the negative u

direction. C) Schematic of a landmark cell correcting the the attractor bump

(Eq. 4). A single landmark cell will pull the peak of the bump pattern towards

the peak of its efferent synaptic strength profile.

However, even though these 1D
grid cell firing pat-

terns are now a function of physical space, they still are

not yet anchored to the environment. There is as yet

no mechanism
to set the phase of each cell relative to

landmarks, and indeed these grid patterns rapidly deco-

here without anchoring to landmarks, as demonstrated

experimentally (20, 29). Coupling the attractor network

to landmark-sensitive cells can solve this problem.

Landmark Cells
We model each landmark cell i as purely

sensory driven cell with a firing rate that depends on

location through s L
i (t) = H

i (x(t)). Here H
i (x) is the firing

field of the landmark cell. An example of a landmark cell

could, for example, be an entorhinal border cell (4). Every

landmark cell forms feed-forward connections onto each

cell in the attractor network at ring position
u with a

synaptic strength W
i (u).

Consider for example a single landmark cell whose

synaptic strength W(u) as a function of position
u on

the neural ring consists of a single bump centered at a

particular location
u =

„ L
(Fig. 2C). Through our model

reduction framework of Eq. 2, if this landmark cell fires,

then it will exert a force on any other attractor bump

pattern
s ú(u≠

„ A
) centered at u =

„ A
, through:

d„ A
/dt =

ÊF(„ L
≠

„ A
).

[4]

Here we have introduced
Ê as a parameter that controls

how strongly landmark cells influence the attractor phase.

In essence, when each landmark cell fires, it forces the

the attractor state „ A
to flow towards the phase „ L

corre-

sponding to the location of its maximal outgoing synaptic

strength. An attractor phase „ A
that is smaller (larger)

than the landmark cell synapses’ peak location
„ L

will in-

crease (decrease) and settle down at „ L
(Fig. 2C). Indeed

for general synaptic strength patterns peaked at u =
„ L,

the force law will have the same qualitative features as

F(„ L
≠

„ A
) = sin !

„ L
≠

„ A "
(App. D).

However there is, as of yet, no mechanism to enforce

consistency between the path integration dynamics of the
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Fig. 1. Schematic of a
ring attractor with short-
range excitation (red ar-
rows) and longer range in-
hibition (blue arrows). This
yields a 1D family of bump-
attractor states sú(u≠„A),
which are mapped onto a
single periodic variable „A

representing the peak of
the bump pattern.

A manifold of stable states from attractor network dynamics
We first consider a one-dimensional attractor network con-
sisting of a large population of neurons whose connectivity
is determined by their position on an abstract ring, as in
Fig. 1. For analytical simplicity, we take a neural field
approach (26), so that position on the ring of neurons is
described by a continuous coordinate u, with the firing
rate of a neuron at position u given by s(u). Each neuron
interacts with neighboring neurons through a translation
invariant connectivity, yielding the dynamics

ds (u)
dt

= ≠s(u)
·m

+ G
3⁄

uÕ
J(u ≠ uÕ)s(uÕ)

4
. [1]

Here J(u ≠ uÕ) defines the synaptic weight from a cell
at position uÕ to a cell at u, ·m is the “leak time” and
G is a nonlinearity. We will refer to these dynamics as
ds(u)/dt = DA[s]. Many appropriate choices of J and
G, corresponding for example to short range excitation
and long range inhibition, will yield a family of stable,
or steady state, localized bump activity patterns sú(u ≠
„A), parameterized by the position of their peak „A (27,
28). This one-dimensional family of stable bump activity
patterns can itself be thought of as ring of stable firing
patterns in the space of all possible firing patterns. Just
as u indexes a family of neurons on the neural sheet, the
coordinate „A indexes the di�erent stable neural activity
patterns, with a particular value of „A corresponding to a
stable bump on the neural ring centered at coordinate u =
„A. For simplicity we set units such that the coordinate
u along the neural ring, and the coordinate „A along the
ring of stable attractor patterns are both angles, defined
modulo 2fi. Thus u and „A are phase variables denoting
position along the neural ring and ring of bump attractor
patterns respectively.

Motions along the attractor manifold due to external inputs
So far, the attractor network described above has a ring
of stable bump activity patterns parameterized by the
periodic coordinate „A, but these neural activity patterns
are as yet unanchored to physical space. We will even-
tually show how to anchor the coordinate „A along the
attractor manifold to the actual position of the animal in
physical space. However, in order to appropriately form
such an internal map of position, and thereby map the
environment, the attractor state must be influenced by
external inputs from both velocity and landmark sensitive

2

��PI

��PI
��PI

Wi(u)

W
i(u)

East Vel Cells

Non Conjunctive Attractor Cells
Non Conjunctive Attractor Cells

FIG. SI.1:

A) Schematic of a ring attractor with short-range excitation (red arrows) and longer range inhibition (blue arrows).
B) East-conjunctive cells with clockwise biased outgoing connections (u→ u+ ∆φPI) C) West-conjunctive cells with
counterclockwise biased outgoing connections (u → u − ∆φPI). While in Eq. SI.II.2, we assume a simple uniform
offset for velocity-conjunctive cells, this constraint can be generalized to more realistic outgoing connections as well
(Sec. X 1). D) Landmark cells. The landmark cell doesn’t live on the neural sheet, but has outgoing connections to
attractor neurons with a strength of Wi(u).

Here J(u− u′) defines the synaptic weight from a cell at position u′ to a cell at u, τm is the “leak time” and G is a
nonlinearity (See Sec. X 1 for how variants of these dynamics can be solved.) The firing rates of east-west conjunctive
cells are given by the non-conjunctive firing rates and the animal velocity [3]:

sEC(u) =

(
vEast

vC0

)
s(u), sWC(u) =

(
vWest

vC0

)
s(u),

and the firing rates of the landmark cells are:

sL
i (t) = Hi(x(t)).

3. Plasticity dynamics

The long term learning (Eq. 5(Main)) is mediated by the updates of the Hebbian weights Wi(u) from the landmark
cells to the attractor network:

dWi(u)

dT
= 〈s(u)|i Firing〉 −Wi(u) =

∫
t
s(u, t)sL

i (t)∫
t
sL
i (t)

−Wi(u) (SI.II.3)

There is a separation of timescales between the navigation dynamics (Eq. SI.II.2) and the learning dynamics (Eq.
SI.II.3). The integral

∫
t

represents the average within a single training session [4] (assumed to be much longer than
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the time it takes to traverse the environment), while d/dT represents plasticity across training sessions [5], or at least
over several traversals through the environment. We note that the equations for learning (Eq. SI.II.3) and dynamics
(Eq. SI.II.2) implicitly depend on (1) the environmental geometry, (2) the landmark firing fields H(x), and (3) the
distribution of animal trajectories x(t). We will see below how these three ingredients interact to determine learned
circuit outcomes.

III. MODEL REDUCTION OF HIGH-DIMENSIONAL NEURAL DYNAMICS TO A REDUCED PHASE
DYNAMICS

In this section (List of symbols and units in Table II) we will first show how the state of the ring attractor can be
mapped onto a single periodic variable (Sec. III 1) representing the peak of the bump pattern. Then, using this low-
dimensional representation, we develop a framework to understand the effect of perturbations on the low-dimensional
attractor state (Sec. III 2), and then use this framework to understand the effect of path integration (Sec. III 3) and
landmarks (Sec. III 4) on this state. Finally, in Sec. III 5, we also map the Hebbian learning rule to this reduced
representation. In Sec. VI, we present an exactly solvable model which reduces to analytically solvable functions for
effective dynamics.

1. Reducing the ring attractor network state to a single phase variable

We will refer to the non-velocity, non-landmark dynamics as DA[s]:

DA[s] = −s(u)

τm
+ G

(∫

u′
J(u′ − u′)s(u′)

)
.

When there is no external sensory input, Eq. SI.II.2 reduces to:

ds (u)

dt
= DA[s].

How can we characterize these dynamics?

K"

DRAFT

ing an animal’s spatial location (2–6). Firing patterns
are sensitive to the environment being explored (7–10).
In particular, these firing patterns can be deformed in
irregular environments (11), in a manner evocative of de-
formations of solids forced into into an irregular container,
suggesting a mechanical model for these deformations
(12, 13). Moreover, these firing patterns are not simply
driven by current sensory cues; there is evidence for path
integration (14, 15) in that the firing patterns become nois-
ier the longer an animal has spent away from a landmark
(16, 17), and can be shifted depending on which landmark
the animal has most recently encountered (18, 19).

Despite the wealth of these experimental observa-
tions, no mechanistic circuit model currently explains
how known aspects of neuronal dynamics and synaptic
plasticity can conspire to learn, through exploration, a
self-consistent internal map of a novel environment that
both behaves like a deformable medium, and also retains,
at higher-order, some knowledge of recently encountered
landmarks. Here we show analytically that an attractor
network that combines path integration of velocity with
Hebbian learning of synaptic weights from landmark cells,
can self-organize to generate all of these outcomes. Intrigu-
ingly, a low dimensional reduced model of the combined
neuronal and synaptic dynamics provides insight into how
self-consistent maps of the environment emerge through
an e�ective mechanical relaxation process involving the
synaptic weights of landmark cells.

2. Model reduction of an attractor network coupled
to sensorimotor inputs

Our theoretical framework assumes the existence of three
interacting components: (1) an attractor network capable
of realizing a D dimensional manifold of stable neural
activity patterns, (2) a population of velocity-tuned cells
that carry information about the animal’s motion, and
(3) a population of sensory driven landmark cells that fire
if and only if the animal is in a particular region of space.
Our goal will be to understand how the three populations
can interact together and self-organize through synaptic
plasticity, sculpted by experience, to create a consistent
internal map of the environment. Here, we describe the
neuronal and synaptic dynamics of each component in
turn, as well as describe a model reduction approach to
obtain a low dimensional reduced description of the entire
plastic circuit dynamics.

A manifold of stable steady states from attractor network
dynamics . We first consider a D = 1 dimensional attrac-
tor network (20, 21) consisting of a large population of
neurons living on a D = 1 dimensional neural sheet. For
analytical simplicity, we take a neural field approach, so
that position on the sheet is described by a continuous
coordinate u, with the firing rate of a neuron at position
u given by s(u). Each neuron interacts with neighbor-
ing neurons through a translation invariant connectivity,

yielding the dynamics

ds (u)
dt

= ≠s(u) + F
5⁄

uÕ
J(u ≠ uÕ)s(uÕ)

6
. [1]

Here J(u ≠ uÕ) defines the synaptic weight from a cell at
position uÕ to a cell at u, and F is a nonlinearity. We will
refer to these dynamics as ds/dt = Dyn[s]. Many appro-
priate choices of J and F , corresponding for example to
short range excitation and long range inhibition, will yield
a family of stable, or steady state, localized bump activity
patterns sSS (u ≠ „A), parameterized by the position of
their peak „A. The existence of this stable manifold is a
consequence of translation invariance, so that each stable
state is a translation along the neural sheet of a basic
bump firing pattern sSS (u). Furthermore, we assume
for simplicity periodic boundary conditions on the neural
sheet, so that both the coordinate u along the sheet, and
the coordinate „A specifying a point on the manifold of
stable attractor patterns�, are periodic variables defined
modulo 2fi (Fig. 1).

Fig. 1. Schematic of a one-dimensional periodic neural sheet with short-
range excitation (solid gray arrows) and longer range inhibition (dotted black
arrows). This yields a 1D family of bump-attractor states sSS (u ≠ „A), which
are mapped onto a single periodic variable „A representing the translation of
the bump pattern.

Motions along the attractor manifold due to external in-
puts. We will eventually show how to map the coordinate
„ along the attractor manifold to the position in physical
space of the animal. However, in order to appropriately
form such an internal estimate of position, and map the
environment, the attractor state must be influenced by
external inputs from both the velocity cells and landmark
cells in a consistent manner. We first derive a general

�This can be straightforwardly generalized to multi-bump attractor networks

2

E
xcitatory

In
h
ibitory

cells in a self-consistent manner. We first derive a reduced

description for how a general external feedforward input

to the attractor network modifies its dynamics.

Suppose the attractor network is at one of its steady

state bump patterns s ú(u≠
„ A

) centered at u =
„ A

. Fur-

ther suppose that each neuron at position
u on the neu-

ral ring experiences an external additive input current

‘”
s

!
u≠

„ P "
that is centered, or localized on the neural

ring around some other location
u =

„ P. The neural

dynamics of the attractor in Eq. 1, in response to this

additive external input is then modified to:

ds(u)/dt = D
A [s] +

‘”
s(u≠

„ P
).

When
‘ is small, the external inputs are weak relative to

the recurrent inputs that determine the shape of the bump

pattern. In this situation, the evolving firing rates will be

confined to the 1D manifold of steady states s ú(u ≠
„ A

).

In essence, a small excitatory perturbation
”
s(u ≠

„ P)

centered at position
u =

„ P
on the neural ring, will trans-

late the stable bump pattern towards the perturbation,

without changing its shape. Therefore, to track the entire

dynamics of the network, we do not need to track the

firing rate of every neuron; we need only track the time de-

pendent position of the peak of the activity bump, „ A
(t).

Thus we can reduce the entire high dimensional neural

dynamics to a low dimensional e�ective scalar dynamics:

d„ A
/dt =

‘F(„ P
≠

„ A
).

[2]

In App. D, we show how to analytically compute the force

law F(„ P
≠

„ A
) governing the velocity of the bump peak,

in terms of the shape of the bump s ú(u≠„ A
) and the shape

of the additive input perturbation
”
s(u≠

„ P). However,

for the particular external inputs we consider below, the

qualitative structure of the force law as a function of the

input perturbation will be highly intuitive.

Path integration through conjunctive position velocity inputs

Following (27, 28), we achieve path integration by coupling

the attractor network to conjunctive position and velocity-

tuned cells such that east (west) movement-selective cells

form feedforward synapses into the attractor network that

are shifted in the positive (negative)
u direction (Fig.

2A, B). We can use our model reduction framework via

Eq. 2 to show analytically (App. E) that this choice of

connectivity leads to path integration:

d„ A
/dt =

v0k.

[3]

Here, k is a constant of proportionality that relates animal

velocity to the rate of phase advance in the attractor

network(k = 2fi/Field Spacing). Solving Eq. 3 allows us

to recover path integration where the resulting integrated

attractor phase is only a function of current position
x(t):

„ A
(t) =

„ A
(x(t)) =

„ A
(0) +

k[x(t) ≠
x(0)].

Thus the connectivity of the conjunctive position velocity

cells in Fig.
2A, B

ensure that as the mouse moves

east (west) along a 1D track, the attractor phase moves

clockwise (counterclockwise), at a speed proportional to

velocity. The collection of neurons in the attractor then

trace out periodic firing patterns as a function of spatial

position, all with the same period but di�erent phases.
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Fig. 2. A) When the animal moves east, east-conjunctive cells with biased

outgoing connections move the attractor pattern in the positive u direction. B)

When the animal moves west, the attractor pattern is moved in the negative u

direction. C) Schematic of a landmark cell correcting the the attractor bump

(Eq. 4). A single landmark cell will pull the peak of the bump pattern towards

the peak of its efferent synaptic strength profile.

However, even though these 1D
grid cell firing pat-

terns are now a function of physical space, they still are

not yet anchored to the environment. There is as yet

no mechanism
to set the phase of each cell relative to

landmarks, and indeed these grid patterns rapidly deco-

here without anchoring to landmarks, as demonstrated

experimentally (20, 29). Coupling the attractor network

to landmark-sensitive cells can solve this problem.

Landmark Cells
We model each landmark cell i as purely

sensory driven cell with a firing rate that depends on

location through s L
i (t) = H

i (x(t)). Here H
i (x) is the firing

field of the landmark cell. An example of a landmark cell

could, for example, be an entorhinal border cell (4). Every

landmark cell forms feed-forward connections onto each

cell in the attractor network at ring position
u with a

synaptic strength W
i (u).

Consider for example a single landmark cell whose

synaptic strength W(u) as a function of position
u on

the neural ring consists of a single bump centered at a

particular location
u =

„ L
(Fig. 2C). Through our model

reduction framework of Eq. 2, if this landmark cell fires,

then it will exert a force on any other attractor bump

pattern
s ú(u≠

„ A
) centered at u =

„ A
, through:

d„ A
/dt =

ÊF(„ L
≠

„ A
).

[4]

Here we have introduced
Ê as a parameter that controls

how strongly landmark cells influence the attractor phase.

In essence, when each landmark cell fires, it forces the

the attractor state „ A
to flow towards the phase „ L

corre-

sponding to the location of its maximal outgoing synaptic

strength. An attractor phase „ A
that is smaller (larger)

than the landmark cell synapses’ peak location
„ L

will in-

crease (decrease) and settle down at „ L
(Fig. 2C). Indeed

for general synaptic strength patterns peaked at u =
„ L,

the force law will have the same qualitative features as

F(„ L
≠

„ A
) = sin !

„ L
≠

„ A "
(App. D).

However there is, as of yet, no mechanism to enforce

consistency between the path integration dynamics of the
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FIG. SI.2:

A) The ring attractor dynamics ds(u)/dt = DA[s] yield a 1D family of bump-attractor states s∗(u − φA), which are
mapped onto a single periodic variable φA representing the peak of the bump pattern. B) Manifold schematic of
attractor dynamics. In the state space of s(u), there exists a one-dimensional manifold of stable attractor dynamics
s∗ (Teal circle). A state s(u) not on the manifold will eventually be pulled towards some steady state s∗(u − φA) on
the manifold.

Many appropriate choices of J and G, corresponding for example to short range excitation and long range inhibition,
will yield a stable, or steady state, localized bump activity pattern [6, 7]. We assume we have chosen J to be an even
function whose shape admits such stable bump solutions. In Sec. VI we describe a specific choice of J that leads to an
exactly solvable model. Because the dynamics are translation-invariant, every translation of a steady bump pattern
is also a steady bump pattern. We call these stable bump patterns patterns s∗(u−φA), parameterized by the position
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of their peak firing φA [6, 7].

This one-dimensional family of stable bump activity patterns can itself be thought of as ring of stable firing patterns
in the space of all possible firing patterns. Just as u indexes a family of neurons on the neural sheet, the coordinate φA

indexes the different stable neural activity patterns, with a particular value of φA corresponding to a stable bump on
the neural ring centered at coordinate u = φA. For simplicity we set units such that the coordinate u along the neural
ring, and the coordinate φA along the ring of stable attractor patterns are both angles, defined modulo 2π. Thus u
and φA are phase variables denoting position along the neural ring and ring of bump attractor patterns respectively.

2. Effects of perturbations on the reduced attractor state

The dynamics of Eq. SI.II.2 are:

ds (u)

dt
= DA[s] + εPI (sEC (u−∆φPI))︸ ︷︷ ︸

Input from east cells

+εPI sWC (u+ ∆φPI)︸ ︷︷ ︸
Input from west cells

+εLM

∑
i

(
Wi(u)sL

i (t)
)

︸ ︷︷ ︸
Landmark cell inputs

,

where sEC, sEC are defined in Eq. SI.II.1. While we have characterized the stable fixed points of ṡ = DA[s] in
the absence of landmark and self-motion cues, we have not yet shown how the attractor network responds to these
extra inputs. Assuming that the intrinsic dynamics are much stronger than the inputs applied from landmark and
conjunctive cells, we can treat these inputs as small perturbations to the intrinsic dynamics. We can then describe
how these small input perturbations cause the attractor bump to move around, without changing shape. To do so, we
first derive a reduced description for how a general weak external feedforward input to the attractor network modifies
its dynamics.

A. Attractor dynamics under small perturbations

Here, we examine how an attractor network with a steady-state firing pattern s∗(u−φA) responds when its dynamics
are perturbed by some small additional input εδs(u−φP), which is centered at φP. This perturbed dynamics is given
by

ds(u)

dt
= DA[s] + εδs(u− φP). (SI.III.4)

In order to understand the effect of this small perturbation, we need to linearize the dependence of dynamics on
synaptic activation. The linearization of dynamics around an arbitrary state s0(u) with a generic perturbation to the
attractor state ∆s(u) is defined by the functional derivative:

DA[s0 + ∆s] ≈ DA[s0] +

(∫

u

δDA

δs (u)
∆s(u)

)∣∣∣∣
s=s0

(SI.III.5)

We can write Eq. SI.III.5 in matrix notation using the Jacobian Jacs0 around s0:

DA[s0 + ∆s] ≈ DA[s0] + Jacs0 ·∆s, where Jacs0 =
δDA

δs (u)

∣∣∣∣
s=s0

(SI.III.6)

Because s(u) will always be close to a steady state under a small perturbation, we specifically need to understand
JacφA , the Jacobian of these dynamics around the point s∗(u− φA) [8].

B. Linearized response of the attractor network to perturbations

Because

DA[s∗(u− φA)] = 0 For all φA, (SI.III.7)
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Eq. SI.III.4 reduces to:

ds

dt
= DA

[
sφA + ∆s

]
+ εδs ≈

0︷ ︸︸ ︷
���

�DA

[
sφA

]
+ JacφA ·∆s+ εδs.

Likewise, Eq. SI.III.7 tells us that the sliding mode s∗′(u − φA) (the spatial derivative of s∗
(
u− φA

)
) is a zero-

eigenvector of the Jacobian JacφA [9]. This can be seen through the definition of the Jacobian:

JacφA ·
[
s∗′
(
u− φA

)]
= −

(
δDA[s (u)]

δs (u)

∣∣∣∣
s(u)=s∗(u−φA)

)
·
(
ds∗(u− φA)

dφA

)
= − d

dφA

0 For all φA

︷ ︸︸ ︷
((((

((((((
DA

[
s∗
(
u− φA

)])
= 0.

Moreover, because s∗(u−φA) is a stable one-dimensional family of solutions of DA, JacφA must be a negative semidef-

inite matrix, where the sliding mode s∗′(u − φA) is the only eigenvector of JacφA with a non-negative eigenvalue
[10].

C. Mathematical background: response of linear dynamical systems to perturbations

How will a dynamical system, with a negative semidefinite Jacobian having a single zero mode, respond to a weak
perturbation? To answer this question, we first review some mathematical background. Consider a simple case of a
two-dimensional line attractor with a state s = (s0, s1). The dynamics ds/dt = DA(s) are:

" " " " " " " "

" " " " " " " "

DA

~�s

~s

d~s

dt
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C. Mathematical background: response of linear dynamical systems to perturbations

How will a dynamical system, with a negative semidefinite Jacobian having one zero mode, respond to a weak
perturbation. Here we review some mathematic background. Consider a simple case of a two-dimensional line
attractor with a state ~s = (s0, s1). The dynamics d~s

dt DA(~s) are:

d

dt

✓
s0

s1

◆
=

✓
0 0
0 �!D

◆✓
s0

s1

◆

Adding a perturbation of ~�s = (�s0, �s1) yields the dynamics:

d

dt

✓
s0

s1

◆
=

✓
0 0
0 �!D

◆✓
s0

s1

◆
+

✓
�s0

�s1

◆
=

✓
�s0

�s1 � !Ds1

◆
(SI.IV.5)

and note that there are no interactions between the two modes. In the limit where the attractor dynamics are very
strong (!D ! 1), Eq. SI.IV.5 reduces to

ds0/dt = �s0, s1= 0, (SI.IV.6)

i,e. the s0 mode is free to move, while the s1 direction is anchored at zero.

In matrix notation, the reduction of Eq. SI.IV.5 to Eq. SI.IV.6 is

d~s/dt = Jac · ~s + ~�s ) d~s/dt =
⇣
ŝ0 · ~�s

⌘

| {z }
Projection onto Sliding Mode

ŝ0|{z}
Sliding Mode

Where ŝ0 is the zero-eigenvector of Jac[10]. The reasoning in App. IV 2 D is an analogous but high-dimensional
generalization applied to functions and functional derivatives. [Sam-I included this to be pedagogical about
the sliding mode. It seems like this background knowledge is not as common as I thought]

D. Projection of perturbations onto the sliding mode

When an external perturbation is small and Jac�A is symmetric, e.g. dṡ(u0)/ds(u) = dṡ(u)/ds(u0) [11], the eigen-
vectors of Jac�A are orthogonal. Therefore, given any perturbation:

ds(u)/dt = DA[s] + ✏�s(u � �P), (SI.IV.7)

the e↵ective perturbation will be the projection of the actual perturbation �s(u� �P) onto the sliding mode, i.e., the
single zero-mode of the Jacobian:

ds(u)

dt
⇡ ✏


1

N

Z
s⇤0
�
u � �A

�
�s

�
u � �P

��

| {z }
Projection onto Sliding Mode

· s⇤0
�
u � �A

�
| {z }
Sliding Mode

= ✏


1

N

Z
s⇤0(u)�s(u �

⇥
�P � �A

⇤
)

�

| {z }
Projection onto Sliding Mode

s⇤0
�
u � �A

�
| {z }
Sliding mode

, (SI.IV.8)

where N is proportional to the magnitude of the sliding mode, such that the projection is properly normalized. We
can define the projection onto the sliding mode to be the negative of the e↵ective force law F

�
�P � �A

�
, to get (Fig.

SI.3):

ds(u)

dt
= �✏F(�P � �A) s⇤0

�
u � �A

�
. (SI.IV.9)

Eq. SI.IV.9 shows that at any given time, the temporal derivative ds(u)/dt is a multiple of the spatial derivative
s⇤0(u� �A). Therefore, the e↵ect of any perturbation can be reduced to an e↵ective force on the single-variable bump
position:

d�A

dt
= ✏F(�P � �A), (SI.IV.10)

~s0

~s1

s0 s1

s0 s1
�!�!

. . .

. . .. . .

" " "

" " "
FIG. SI.3:

Schematic of perturbed line attractor dynamics (Eq. SI.III.9). Any applied perturbation will the projected onto the
ŝ0 direction, which is the zero-eigenvector of the Jacobian.

d

dt

(
s0

s1

)
=

(
0 0
0 −ωD

)
·
(
s0

s1

)
.

Adding a perturbation of δs = (δs0, δs1) yields the dynamics:

d

dt

(
s0

s1

)
=

(
0 0
0 −ωD

)
·
(
s0

s1

)
+

(
δs0
δs1

)
=

(
δs0

δs1− ωDs1

)
. (SI.III.8)

Note that there are no interactions between the two modes. In the limit where the attractor dynamics are very strong
(ωD →∞), Eq. SI.III.8 reduces to

ds0/dt = δs0, s1= 0, (SI.III.9)

i,e. the s0 mode (“the sliding mode”) is free to move, while the s1 mode is anchored at zero.

In matrix notation, the reduction of Eq. SI.III.8 to Eq. SI.III.9 is the reduction of the full dynamics under a
perturbation (Equivalent to Eq. SI.III.8):

ds/dt = Jac · s + δs (SI.III.10)
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to the projection of the perturbation onto the sliding mode (Equivalent to Eq. SI.III.9):

ds/dt = (ŝ0 · δs)︸ ︷︷ ︸
Proj. onto

Sliding Mode

× ŝ0︸︷︷︸
Sliding Mode

, (SI.III.11)

where ŝ0 = (1, 0) is the zero-eigenvector of Jac [11].
The reasoning in Sec. III 2 D is an analogous but higher-dimensional generalization of Eq.SI.III.11, applied to

functions and functional derivatives. In essence, in the higher dimensional case, an input-perturbation will be restored
along all dimensions in firing rate space back to the manifold of attractor bump patterns, except in the single direction
along the sliding mode. Since the sliding mode is a spatial derivative of the bump pattern, adding in the sliding mode
will move the bump pattern along the manifold of attractor states. Moreover, the rate of motion will be proportional
to the inner product of the profile of the external input perturbation as a function along the neural ring, and the spatial
derivative of the current bump pattern. We now study this inner-product, or projection of the input perturbation
onto the attractor network sliding mode to yield a force law for attractor bump motion.

D. Projection of perturbations onto the sliding mode

When an external perturbation is small and JacφA is symmetric at a given firing rate profile of s(u), e.g.

JacφA(u′, u) =
d (DA[s](u′))

ds(u)
=
d (DA[s](u))

ds(u′)
= JacφA(u, u′),

the eigenvectors of JacφA are orthogonal [12]. Therefore, given any small perturbation to the dynamics:

ds(u)/dt = DA[s] + εδs(u− φP), (SI.III.12)

the effective perturbation will be the projection of the actual perturbation δs(u− φP) onto the sliding mode, i.e., the
single zero-mode of the Jacobian:

ds(u)

dt
≈ ε

[
1

N

∫

u

s∗′
(
u− φA

)
δs
(
u− φP

)]

︸ ︷︷ ︸
Projection onto Sliding Mode

s∗′
(
u− φA

)
︸ ︷︷ ︸
Sliding Mode

= ε

[
1

N

∫

u

s∗′(u)δs
(
u−

[
φP − φA

])]

︸ ︷︷ ︸
Projection onto Sliding Mode

s∗′
(
u− φA

)
︸ ︷︷ ︸
Sliding mode

, (SI.III.13)

where we have substituted u→ u+φA in the second step [13], and N is equal to the squared magnitude of the sliding
mode [14] to ensure that the projection is properly normalized.

We can define the negative of projection onto the sliding mode to be an effective force law F
(
φP − φA

)
, i.e.

F
(
φP − φA

)
= − 1

N

∫

u

s∗′(u)δs
(
u−

[
φP − φA

])

to get (Fig. SI.4):

ds(u)

dt
= −εF(φP − φA) s∗′

(
u− φA

)
. (SI.III.14)

Eq. SI.III.14 shows that at any given time, the temporal derivative ds(u)/dt is a multiple of the spatial derivative
s∗′(u− φA). Therefore, the effect of any perturbation can be reduced to an effective force on the single-variable bump
position:

dφA

dt
= εF(φP − φA). (SI.III.15)

We can verify that the effective force law of Eq. SI.III.15 yields Eq. SI.III.14:

ds∗
(
u− φA

)

dt
=
ds∗
(
u− φA

)

dφA

dφA

dt
= −s∗′

(
u− φA

) dφA

dt
= − εF(φP − φA)︸ ︷︷ ︸

dφA/dt

s∗′
(
u− φA

)
, (SI.III.16)

where we have used the fact that ds∗(u− φA)/dφA = −ds∗(u− φA)/du = −s∗′(u− φA).
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a. Form of the force function When the perturbation takes the form of input from localized Hebbian landmark
cells, the perturbation function is simply the attractor bump pattern s∗(u− φL). Therefore, defining ∆φ = φL − φA,

F (∆φ) = −
∫

u

s∗′(u)s∗(u−∆φ) = −
∫

u

s∗′(u+ ∆φ)s∗(u) = −
∫

u

d[s∗(u+ ∆φ)]

d∆φ
s∗(u) = − d

d∆φ

[∫

u

s∗(u+ ∆φ)s∗(u)

]
.

Therefore, the force function is simply the negative derivative of the spatial autocorrelation function of the bump
pattern. Because the spatial autocorrelation is even and maximized at ∆φ = 0 (minimized at ∆φ = π), the force
function will be odd, with positive (negative) values for positive (negative) ∆φ. As long as the bump size is not much
smaller than the bump spacing, the autocorrelation will decrease gradually between ∆φ = 0, ∆φ = π, leading to
a long range force function which only approaches zero at, and far from, the origin. This behavior is qualitatively
matched by F (∆φ) = sin(∆φ). For simplicity, we define the magnitude of F(∆φ) to give it a slope of 1 at ∆φ = 0;
all strength information can be absorbed in the factor ε it is multiplied by.

b. Dynamics with non-symmetric Jacobians. JacφA will in general be non-symmetric. In this case, we may use
the same techniques as before, except now we must use a non-orthogonal projection onto the sliding mode:

ds(u)

dt
≈ ε

[∫

u

vproj

(
u− φA

)
δs(u− φP)

]

︸ ︷︷ ︸
Non-orthogonal projection onto sliding mode

s∗′
(
u− φA

)
︸ ︷︷ ︸
Sliding Mode

= −εF(φP − φA)s∗′
(
u− φA

)
(SI.III.17)

where vproj(u− φA) can, in principle, be solved through diagonalization of the Jacobian JacφA .

" " """" "

" DA
"

"

""
"

"

" " "

"
"

""

"
"

"A s⇤(u � �A)

d�

dt

s⇤(u � �A)

s^{\! * \! }(\! u \!  -  \! \phi_{\text{A}}\!)

the neural ring centered at coordinate u = „A. For simplicity we set units such that the coordinate u along the neural
ring, and the coordinate „A along the ring of stable attractor patterns are both angles, defined modulo 2fi. Thus u
and „A are phase variables denoting position along the neural ring and ring of bump attractor patterns respectively.

D. Reducing perturbation to an effective force law in the one-variable “ring” representation

We can represent the dynamics of of Eq. 19 are:

ds (u)
dt

= DA[s] + ‘ (sEC (u ≠ �„PI))¸ ˚˙ ˝
Input from east cells

+ sWC (u + �„PI)¸ ˚˙ ˝
Input from west cells

+
ÿ

i

!
Wi(u)sL

i (t)
"

¸ ˚˙ ˝
Landmark Cell Inputs

While we have solved for the stable dynamics of DA in the absence of landmark and self-motion cues, we have
not yet shown how the attractor network incorporates and combines this information. Assuming that the intrinsic
dynamics are much stronger than the inputs applied from landmark and conjunctive cells, we can treat these inputs as
perturbations to the intrinsic dynamics; to do so, we derive a reduced description for how a general external feedforward
input to the attractor network modifies its dynamics.

Attractor dynamics under small perturbations. Consider a steady-state firing rate pattern sú(u ≠ „A) under some
translation-invariant neural dynamics function DA[s] that is given some perturbation centered at „P having the same
periodicity as sú:

ds(u)
dt

= DA[s] + ‘”s(u ≠ „P).

In order to understand the e�ect of this perturbation, we need to understand the Jacobian of these dynamics around
the point sú

!
u ≠ „A"

:

Jac„A = ”DA[s (u)]
”s (u)

----
s(u)=sú(u≠„A)

Modes of the Jacobian. Because sú
!
u ≠ „A"

is a stable one-dimensional family of solutions of DA, Jac„A must be a
negative semidefinite matrix. Because

DA
#
sú

!
u ≠ „A"$

= 0 For all „A,

there is a single zero-eigenvector ¶, the sliding mode súÕ(u ≠ „A): [Sam-The sú works nicely everywhere but
here, where it conflicts with the prime symbol]

Jac„A ·
#
súÕ(u ≠ „A)

$
= ≠

A
”DA[s (u)]

”s (u)

----
s(u)=sú(u≠„A)

B
·
3

dsú(u ≠ „A)
d„A

4
= ≠

d

0˙ ˝¸ ˚
((((((((!
DA

#
sú

!
u ≠ „A"$"

d„A = 0.

Effect of small perturbations. When an external perturbation is small and Jac„A is symmetric, e.g. dDA[s(uÕ)]/ds(u) =
dDA[s(u)]/ds(uÕ), the e�ective perturbation will the the projection of the actual perturbation onto the sliding mode:

ds(„)
dt

¥ ‘

5⁄
súÕ(u ≠ „A)”s

!
u ≠ „P"6

¸ ˚˙ ˝
Projection onto Sliding Mode

· súÕ(u ≠ „A)¸ ˚˙ ˝
Sliding Mode

= ‘

5⁄
súÕ(u)”s(u ≠

#
„P ≠ „A$

)
6

¸ ˚˙ ˝
Projection onto Sliding Mode

súÕ(u ≠ „A)¸ ˚˙ ˝
Sliding mode

We can define the projection onto the sliding mode to be the negative of the e�ective force law F
!
„P ≠ „A"

, to get

ds(u)
dt

= ≠‘F(„P ≠ „A)súÕ(u ≠ „A). [21]

¶We can show this by contradiction; if Jac
„A had any other non-negative modes, the family of steady states would be larger.

17

s⇤(u��A)

�s(u � �P)

�s(u��P)

the neural ring centered at coordinate u = „A. For simplicity we set units such that the coordinate u along the neural
ring, and the coordinate „A along the ring of stable attractor patterns are both angles, defined modulo 2fi. Thus u
and „A are phase variables denoting position along the neural ring and ring of bump attractor patterns respectively.

D. Reducing perturbation to an effective force law in the one-variable “ring” representation

We can represent the dynamics of of Eq. 19 are:

ds (u)
dt

= DA[s] + ‘ (sEC (u ≠ �„PI))¸ ˚˙ ˝
Input from east cells

+ sWC (u + �„PI)¸ ˚˙ ˝
Input from west cells

+
ÿ

i

!
Wi(u)sL

i (t)
"

¸ ˚˙ ˝
Landmark Cell Inputs
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dynamics are much stronger than the inputs applied from landmark and conjunctive cells, we can treat these inputs as
perturbations to the intrinsic dynamics; to do so, we derive a reduced description for how a general external feedforward
input to the attractor network modifies its dynamics.
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perturbations to the intrinsic dynamics; to do so, we derive a reduced description for how a general external feedforward
input to the attractor network modifies its dynamics.
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ṡ(u)=s⇤0(u��A)
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FIG. SI.4:

A) Schematic of how perturbation slides attractor state along manifold. There exists a one-dimensional manifold
of steady attractor states s∗(teal circle), which is supported by the attractor dynamics DA(Gray arrows). Any per-
turbation in the direction of δs(u − φP) will be projected to the sliding mode s∗′(u − φA) along the manifold. B)
When the animal travels east, the resulting perturbation s∗(u− [φA −∆φPI]) rotates the attractor network clockwise
at a rate that does not depend on the attractor state. C) When the animal travels west, the resulting perturbation
s∗(u+ [φA −∆φPI]) rotates the attractor network clockwise at a rate that does not depend on the attractor state. D)
Schematic of a landmark cell correcting the attractor bump (Eq. SI.III.22). A single landmark cell will pull the peak
of the bump pattern towards the peak of its efferent synaptic strength profile.

3. Proof of recovery of exact path integration

When the animal is moving, there are additional velocity inputs to the attractor network from the east-conjunctive
and west-conjunctive cells, yielding:

ds(u)/dt = DA[s] + vEastεPI s
∗(u−

[
φA −∆φPI

])
+ vWestεPI s

∗(u−
[
φA + ∆φPI

])
,
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where vEast, vWest are the east and west velocities of the animal. Treating δs = s∗, model reduction via Eq. SI.III.15
yields (Eq. 2(Main)):

dφA/dt = vEastεPIF
(
∆φPI +���

�
φA − φA

)
+ vWestεPIF

(
−∆φPI +���

�
φA − φA

)
=

[vEast − vWest]︸ ︷︷ ︸
v

εPIF (∆φPI)︸ ︷︷ ︸
k(Definition)

= vk, (SI.III.18)

where k is a constant of proportionality that relates animal velocity to the rate of phase advance in the attractor
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"K"
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Firing Field

Rotating Bump Pattern

FIG. SI.5:

Solving Eq. SI.III.18 yields an attractor phase (Eq. SI.III.19), and thus individual firing rates (top cell in attractor
ring, Eq. SI.III.20) which are only a function of current position x(t).

network (k = 2π/Grid Field Spacing). Solving Eq. SI.III.18 allows us to recover path integration (Fig. SI.5) where
the resulting (Eq. 3(Main)) integrated attractor phase is only a function of current position x(t):

φA(t) = φA(0) + k[x(t)− x(0)] (SI.III.19)

⇒ s(u, t) = s∗
(
u− φA(0)− k[x(t)− x(0)]

)
. (SI.III.20)

Thus the connectivity of the conjunctive-velocity cells in Fig. SI.4B, C ensure that as the animal moves east (west)
along a 1D track, the attractor phase moves clockwise (counterclockwise), at a speed proportional to velocity. The
collection of neurons in the attractor network then trace out periodic firing patterns as a function of spatial position,
all with the same period but different phases.

4. Anchoring of the attractor state to landmark cell synapses

When the animal is in a landmark field, there are additional inputs to the network from landmark cells. Each
landmark cell has Hebbian weights Wi(u) onto neurons at position u on the attractor ring. It is convenient to express
these Hebbian weights in the “attractor basis”, i.e., as a weighted superposition of attractor bumps with peaks at φL

with weighting W̃i(φ
L):

Wi(u) =

∫

φL

W̃i(φ
L)s∗(u− φL). (SI.III.21)

When a single landmark cell i is firing with rate sL
i (t), the dynamics become:

ds(u)/dt = DA[s] + εLMs
L
i (t)

∫

φL

W̃i(φ
L)s∗(u− φL).

First, we examine the effect on the attractor state from a single φL. When W̃i(φ
L) is localized near a single point

φL, the landmark perturbation is well described by

δs(u) = εLMs
L
i (t)W̃i(φ

L)s∗(u− φL),

and using Eq. SI.III.15 we recover the effective dynamics (Eq. 4(Main)) when the sole input comes from this landmark
cell firing:

dφA/dt = ωsL
i (t)W̃i(φ

L)F(φL − φA), (SI.III.22)
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where ω ∝ εLM. εLM sets the strength of synapses from the landmark cell to the attractor network, while ω is the
emergent strength of the effective force that the landmark cell exerts on the reduced attractor state.

Because we have linearized the effect of input perturbations, the effect of multiple perturbations to the reduced
attractor state is additive. Treating the force law F [δs] as a functional of a perturbation, both Eq. SI.III.13 and Eq.

SI.III.17 yield F
[
δA
s + δB

s

]
= F

[
δA
s

]
+ F

[
δB
s

]
. Therefore, the effect of a landmark cell i with arbitrary W̃i(φ

L) is:

dφA

dt
= ωis

L
i (t)

∫

φL

W̃i(φ
L)F(φL − φA). (SI.III.23)

a. Combined neural and synaptic dynamics during exploration. Again, taking advantage of the fact that weak
input perturbations act additively, we combine the effect of path integration on the attractor phase φA described in
Eq. SI.III.18 with the effect of multiple landmark cells with arbitrary learned weights W̃i(φ

L), each acting on the phase
through Eq. SI.III.23, we obtain the full dynamics of attractor phase driven by both animal velocity and landmark
encounters:

dφA

dt
=vk+

∑

i

ωiHi(x(t))

∫

φL

W̃i(φ
L)F(φL − φA). (SI.III.24)

Recall that sL
i (t) = Hi(x(t)).

Eq. SI.III.24 constitutes significant reduction of the original functional dynamics of Eq. SI.II.2. The attractor
state has been reduced from an arbitrary function over the neural sheet s(u) to a scalar φA. The effect of velocity-
conjunctive cells has been reduced to ideal path integration, and the effect of landmark cells has been reduced to a
distribution of forces “pulling” the attractor state to each synaptic weight peak φL. While these dynamics describe
exactly how the reduced attractor dynamics evolve given fixed synaptic weights from landmark cells to attractor cells;
it does not describe how the attractor weights themselves evolve. Next, we perform model reduction on the learning
dynamics of Eq. SI.II.3.

5. Hebbian learning of landmark cell synapses

The model assumes Hebbian plasticity with weight decay, of efferent landmark cell synapses during exploration
while both path integration and landmark cells are active. The synaptic dynamics follow Eq. SI.II.3:

dWi(u)

dT
= 〈s(u)|i Firing〉 −Wi(u) =

∫
t
s(u, t)sL

i (t)∫
t
sL
i (t)

−Wi(u). (SI.III.25)

Because the attractor firing rates can always be described as some translation of the steady bump pattern, s(u, t) =
s∗(u− φA(t)), the long term average 〈s(u)|i Firing〉 of attractor patterns s(u) conditioned upon landmark cell i firing
can be written as:

〈s(u)|i Firing〉 =

∫

φL

s∗(u− φL)Pr(φA(t) = φL|i Firing).

Thus all that matters for determining synaptic strength is the distribution of attractor phases that occur when the
landmark cell fires. Again, it is convenient to use the “attractor basis”, where the Hebbian weights are represented
as a weighted superposition of attractor bump patterns Wi(u) =

∫
φL W̃i(φ

L)s∗(u − φL). Representing Eq. SI.II.3 in

this basis yields the learning dynamics of the synaptic weighting coefficients (see Sec. XI 1 for a proof):

dW̃i(φ
L)/dT = Pr(φA(t) = φL|i Firing)−W̃i(φ

L). (SI.III.26)

Together, Eq. SI.III.24 and Eq. SI.III.26 reflect a complex coupled dynamics between neurons and synapses. In Eq.
SI.III.26 the distribution of attractor network activity patterns, or phases, drives plasticity in synapses from landmark
cells to the attractor network. In turn, these synaptic weights modify the evolution of the attractor network phase
via Eq. SI.III.24.
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6. From landmark cell synapses to pinning phases

From Eq. SI.III.23 we know the effect of a single landmark cell on the dynamics of the attractor state is given by:

dφA

dt
= ωsL(t)

∫

φL

W̃(φL)F(φL − φA).

We want to characterize the entire distribution of landmark cell synapses W̃(φL) using only two variables: 1) The
average pinning phase θL

Eff that the landmark pulls the attractor state to, and 2) the effective strength ωEff with which
the landmark cell pulls the attractor state [15]. The approximation problem is to find θL

Eff, ωEff such that the effective
force on the attractor state is well approximated when the animal is within the firing field:

ωEffH(x(t))F(θL
Eff − φA(t)) ≈ ωH(x(t))

∫

φL

W̃(φL)F(φL − φA(t)), (SI.III.27)

where the approximation is averaged over the joint exploration and attractor state statistics x(t), φA(t). This ap-
proximation can not be exact in general, but it becomes exact in certain limits.

A. Single bump state

When the Hebbian weights are a single bump state, i.e. W̃(φL) = δ(φL − φL
0 ), the approximation becomes exact,

recovering Eq. SI.III.22, where ωEff = ω, θL
Eff = φL

0 . More generally, as long as W̃(φL) is localized, the approximation

works well, where θL
Eff is the mean of the distribution W̃(φL), i.e.

θL
Eff =

∫

φL

W̃(φL)φL,

where the bounds of integration contain the localized bump W̃(φL). In this limit ωEff is close to ω and inversely

related to the dispersion of W̃(φL).

B. Sinusoidal force law

Another case in which the approximation works exactly and intuition can be built is when the force law is sinusoidal,
i.e. F(φL − φA) = sin(φL − φA) (See Sec. VI for an attractor network where this is the case). Here, we can solve Eq.

SI.III.27 exactly for arbitrary landmark cell synapses W̃(φL). We do so by summarizing the landmark cell synapses
with a single complex number:

zL =

(∫
W̃(φL)eiφ

L

)
.

The effective pinning phase θL
Eff is then given by the angle of zL, and the effective landmark strength ωEff is given by

the magnitude of zL

eiθ
L
Eff = zL/|zL|, ωEff =

∣∣zL
∣∣ω, zL = eiθ

L
EffωEff. (SI.III.28)

We can verify that the approximation Eq. SI.III.28 is exact:

ω

∫

φL

W̃(φL) sin(φL − φA) =

∫

φL

Imag
(
ωW̃(φL)ei(φ

L−φA)
)

=

Imag
(
zLe−iφ

A
)

= Imag
(
ωEffe

iθLEffe−iφ
A
)

= ωEff sin
(
θL

Eff − φA
)
.

(SI.III.29)

Next, in section Sec. IV, we will show a limit in which this approximation can be made exact, where the distribution
of synaptic weights W̃i(φ

L) as well as the attractor state distribution Pr
(
φA|i firing

)
are localized.
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IV. LINEAR APPROXIMATION

While the equations of Eq. SI.III.24 and Eq. SI.III.26 have been significantly reduced from the original equations
of Eq. SI.II.2, Eq. SI.II.3, there is an additional source of complexity in that the synaptic weights of each landmark
cell are described by an entire distribution over attractor phases W̃i(φ

L). In this section, we will show how these
dynamics can be linearized, yielding a single scalar representation for learned landmark cell synapses which can be
used to characterize both exploration and learning of environments (List of symbols and units in Table II).

1. Linearized representation of weights from landmark cells to the attractor network

For landmark cells with localized firing fields (much smaller than the grid spacing), the distribution of synaptic

weights W̃i(φ
L) tends to become localized [16] ; it does not spread evenly around the entire unit circle, but is rather

centered in a region. Recall from Sec. III 6 that we may simplify the force exerted by a landmark cell on the attractor
state in the manner of Eq. SI.III.27 by representing each landmark cell’s synaptic weight distribution by its weighted
average θL

i .

θL
i =

∫

φL

W̃i(φ
L)φL. (SI.IV.30)

Intuitively, θL
i is also the weighted average synaptic position (Fig. SI.6).
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the neural ring centered at coordinate u = „A. For simplicity we set units such that the coordinate u along the neural
ring, and the coordinate „A along the ring of stable attractor patterns are both angles, defined modulo 2fi. Thus u
and „A are phase variables denoting position along the neural ring and ring of bump attractor patterns respectively.

D. Reducing perturbation to an effective force law in the one-variable “ring” representation

We can represent the dynamics of of Eq. 19 are:
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While we have solved for the stable dynamics of DA in the absence of landmark and self-motion cues, we have
not yet shown how the attractor network incorporates and combines this information. Assuming that the intrinsic
dynamics are much stronger than the inputs applied from landmark and conjunctive cells, we can treat these inputs as
perturbations to the intrinsic dynamics; to do so, we derive a reduced description for how a general external feedforward
input to the attractor network modifies its dynamics.

Attractor dynamics under small perturbations. Consider a steady-state firing rate pattern sú(u ≠ „A) under some
translation-invariant neural dynamics function DA[s] that is given some perturbation centered at „P having the same
periodicity as sú:

ds(u)
dt

= DA[s] + ‘”s(u ≠ „P).

In order to understand the e�ect of this perturbation, we need to understand the Jacobian of these dynamics around
the point sú
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:
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----
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·
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Effect of small perturbations. When an external perturbation is small and Jac„A is symmetric, e.g. dDA[s(uÕ)]/ds(u) =
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We can define the projection onto the sliding mode to be the negative of the e�ective force law F
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, to get
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While we have solved for the stable dynamics of DA in the absence of landmark and self-motion cues, we have
not yet shown how the attractor network incorporates and combines this information. Assuming that the intrinsic
dynamics are much stronger than the inputs applied from landmark and conjunctive cells, we can treat these inputs as
perturbations to the intrinsic dynamics; to do so, we derive a reduced description for how a general external feedforward
input to the attractor network modifies its dynamics.
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Effect of small perturbations. When an external perturbation is small and Jac„A is symmetric, e.g. dDA[s(uÕ)]/ds(u) =
dDA[s(u)]/ds(uÕ), the e�ective perturbation will the the projection of the actual perturbation onto the sliding mode:
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We can define the projection onto the sliding mode to be the negative of the e�ective force law F
!
„P ≠ „A"

, to get

ds(u)
dt

= ≠‘F(„P ≠ „A)súÕ(u ≠ „A). [21]

¶We can show this by contradiction; if Jac
„A had any other non-negative modes, the family of steady states would be larger.
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Fig. 11. A) Schematic of how perturbation slides attractor state along manifold. There exists a one-dimensional manifold of steady attractor states sú(teal circle),
which is supported by the attractor dynamicsDA(Gray arrows). Any perturbation in the direction of ”s(u ≠ „P) will be projected to the sliding mode súÕ(u ≠ „A)
along the manifold. B) When the animal travels east, the resulting perturbation sú(u ≠ [„A ≠ �„PI]) rotates the attractor network clockwise at a rate that does not
depend on the attractor state. C) When the animal travels west, the resulting perturbation sú(u + [„A ≠ �„PI]) rotates the attractor network clockwise at a rate
that does not depend on the attractor state. D) Schematic of a landmark cell correcting the the attractor bump (Eq. ??). A single landmark cell will pull the peak of
the bump pattern towards the peak of its efferent synaptic strength profile.

Thus the connectivity of the conjunctive position velocity cells in Fig. 11B, C ensure that as the mouse moves east
(west) along a 1D track, the attractor phase moves clockwise (counterclockwise), at a speed proportional to velocity.
The collection of neurons in the attractor then trace out periodic firing patterns as a function of spatial position, all
with the same period but di�erent phases.

F. Anchoring of the attractor state to landmark states

When the animal is in a landmark field, there are additional inputs to the network from landmark cells. Each landmark
cell has Hebbian weights Wi(u) to neurons with position u. It is convenient to express these Hebbian weights in the
“attractor basis”, i.e., as a weighted superposition of attractor bumps with peaks at „L with weighting W̃i(„L):

Wi(u) =
⁄

„L
W̃i(„L)sú(u ≠ „L). [28]

When a single landmark cell i is firing, the dynamics become:

ds(u)/dt = DA[s] + ÊsL
i (t)

⁄

„L
W̃i(„L)sú(u ≠ „L).

First, we examine the e�ect on the attractor state from a single „L. When W̃i(„L) has only one non-zero component,
can define:

”s(u) = ÊsL
i (t)W̃i(„L)sú(u ≠ „L),

yielding the e�ective dynamics:

d„A/dt = ÊF(„L ≠ „A). [29]

Here, we note that the e�ects of multiple perturbations to the reduced attractor state are additive. When we treat
the force law F [”s] as a functional of a perturbation, both Eq. 21 Eq. 26 yield F

#
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s + ”B
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$
= F

#
”A
s

$
+ F

#
”B
s

$
. This is

because the e�ect of a perturbation involves a projection of that perturbation onto the sliding mode, and projections
are additive. Therefore, the e�ect of a landmark cell with arbitrary W̃i(„L) is:

d„A

dt
= Êis

L
i (t)

⁄

„L
W̃i(„L)F(„L ≠ „A). [30]

Combined neural and synaptic dynamics during exploration. Again, taking advantage again of the fact that perturbations
are additive, we combine the e�ect of path integration on the attractor phase „A described in Eq. (27) with the e�ect
of multiple landmark cells with arbitrary learned weights W̃i(„L), each acting on the phase through Eq. (30), we
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the neural ring centered at coordinate u = „A. For simplicity we set units such that the coordinate u along the neural
ring, and the coordinate „A along the ring of stable attractor patterns are both angles, defined modulo 2fi. Thus u
and „A are phase variables denoting position along the neural ring and ring of bump attractor patterns respectively.

D. Reducing perturbation to an effective force law in the one-variable “ring” representation

We can represent the dynamics of of Eq. 19 are:
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While we have solved for the stable dynamics of DA in the absence of landmark and self-motion cues, we have
not yet shown how the attractor network incorporates and combines this information. Assuming that the intrinsic
dynamics are much stronger than the inputs applied from landmark and conjunctive cells, we can treat these inputs as
perturbations to the intrinsic dynamics; to do so, we derive a reduced description for how a general external feedforward
input to the attractor network modifies its dynamics.

Attractor dynamics under small perturbations. Consider a steady-state firing rate pattern sú(u ≠ „A) under some
translation-invariant neural dynamics function DA[s] that is given some perturbation centered at „P having the same
periodicity as sú:

ds(u)
dt

= DA[s] + ‘”s(u ≠ „P).

In order to understand the e�ect of this perturbation, we need to understand the Jacobian of these dynamics around
the point sú
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u ≠ „A"

:

Jac„A = ”DA[s (u)]
”s (u)

----
s(u)=sú(u≠„A)

Modes of the Jacobian. Because sú
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is a stable one-dimensional family of solutions of DA, Jac„A must be a
negative semidefinite matrix. Because
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= 0 For all „A,

there is a single zero-eigenvector ¶, the sliding mode súÕ(u ≠ „A): [Sam-The sú works nicely everywhere but
here, where it conflicts with the prime symbol]
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Effect of small perturbations. When an external perturbation is small and Jac„A is symmetric, e.g. dDA[s(uÕ)]/ds(u) =
dDA[s(u)]/ds(uÕ), the e�ective perturbation will the the projection of the actual perturbation onto the sliding mode:
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We can define the projection onto the sliding mode to be the negative of the e�ective force law F
!
„P ≠ „A"

, to get

ds(u)
dt

= ≠‘F(„P ≠ „A)súÕ(u ≠ „A). [21]

¶We can show this by contradiction; if Jac
„A had any other non-negative modes, the family of steady states would be larger.
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While we have solved for the stable dynamics of DA in the absence of landmark and self-motion cues, we have
not yet shown how the attractor network incorporates and combines this information. Assuming that the intrinsic
dynamics are much stronger than the inputs applied from landmark and conjunctive cells, we can treat these inputs as
perturbations to the intrinsic dynamics; to do so, we derive a reduced description for how a general external feedforward
input to the attractor network modifies its dynamics.
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Effect of small perturbations. When an external perturbation is small and Jac„A is symmetric, e.g. dDA[s(uÕ)]/ds(u) =
dDA[s(u)]/ds(uÕ), the e�ective perturbation will the the projection of the actual perturbation onto the sliding mode:
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We can define the projection onto the sliding mode to be the negative of the e�ective force law F
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, to get
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= ≠‘F(„P ≠ „A)súÕ(u ≠ „A). [21]

¶We can show this by contradiction; if Jac
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While we have solved for the stable dynamics of DA in the absence of landmark and self-motion cues, we have
not yet shown how the attractor network incorporates and combines this information. Assuming that the intrinsic
dynamics are much stronger than the inputs applied from landmark and conjunctive cells, we can treat these inputs as
perturbations to the intrinsic dynamics; to do so, we derive a reduced description for how a general external feedforward
input to the attractor network modifies its dynamics.

Attractor dynamics under small perturbations. Consider a steady-state firing rate pattern sú(u ≠ „A) under some
translation-invariant neural dynamics function DA[s] that is given some perturbation centered at „P having the same
periodicity as sú:
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Effect of small perturbations. When an external perturbation is small and Jac„A is symmetric, e.g. dDA[s(uÕ)]/ds(u) =
dDA[s(u)]/ds(uÕ), the e�ective perturbation will the the projection of the actual perturbation onto the sliding mode:
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We can define the projection onto the sliding mode to be the negative of the e�ective force law F
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, to get
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= ≠‘F(„P ≠ „A)súÕ(u ≠ „A). [21]

¶We can show this by contradiction; if Jac
„A had any other non-negative modes, the family of steady states would be larger.
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While we have solved for the stable dynamics of DA in the absence of landmark and self-motion cues, we have
not yet shown how the attractor network incorporates and combines this information. Assuming that the intrinsic
dynamics are much stronger than the inputs applied from landmark and conjunctive cells, we can treat these inputs as
perturbations to the intrinsic dynamics; to do so, we derive a reduced description for how a general external feedforward
input to the attractor network modifies its dynamics.

Attractor dynamics under small perturbations. Consider a steady-state firing rate pattern sú(u ≠ „A) under some
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Fig. 11. A) Schematic of how perturbation slides attractor state along manifold. There exists a one-dimensional manifold of steady attractor states sú(teal circle),
which is supported by the attractor dynamicsDA(Gray arrows). Any perturbation in the direction of ”s(u ≠ „P) will be projected to the sliding mode súÕ(u ≠ „A)
along the manifold. B) When the animal travels east, the resulting perturbation sú(u ≠ [„A ≠ �„PI]) rotates the attractor network clockwise at a rate that does not
depend on the attractor state. C) When the animal travels west, the resulting perturbation sú(u + [„A ≠ �„PI]) rotates the attractor network clockwise at a rate
that does not depend on the attractor state. D) Schematic of a landmark cell correcting the the attractor bump (Eq. ??). A single landmark cell will pull the peak of
the bump pattern towards the peak of its efferent synaptic strength profile.

Thus the connectivity of the conjunctive position velocity cells in Fig. 11B, C ensure that as the mouse moves east
(west) along a 1D track, the attractor phase moves clockwise (counterclockwise), at a speed proportional to velocity.
The collection of neurons in the attractor then trace out periodic firing patterns as a function of spatial position, all
with the same period but di�erent phases.

F. Anchoring of the attractor state to landmark states

When the animal is in a landmark field, there are additional inputs to the network from landmark cells. Each landmark
cell has Hebbian weights Wi(u) to neurons with position u. It is convenient to express these Hebbian weights in the
“attractor basis”, i.e., as a weighted superposition of attractor bumps with peaks at „L with weighting W̃i(„L):

Wi(u) =
⁄

„L
W̃i(„L)sú(u ≠ „L). [28]

When a single landmark cell i is firing, the dynamics become:

ds(u)/dt = DA[s] + ÊsL
i (t)

⁄

„L
W̃i(„L)sú(u ≠ „L).

First, we examine the e�ect on the attractor state from a single „L. When W̃i(„L) has only one non-zero component,
can define:

”s(u) = ÊsL
i (t)W̃i(„L)sú(u ≠ „L),

yielding the e�ective dynamics:

d„A/dt = ÊF(„L ≠ „A). [29]

Here, we note that the e�ects of multiple perturbations to the reduced attractor state are additive. When we treat
the force law F [”s] as a functional of a perturbation, both Eq. 21 Eq. 26 yield F
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because the e�ect of a perturbation involves a projection of that perturbation onto the sliding mode, and projections
are additive. Therefore, the e�ect of a landmark cell with arbitrary W̃i(„L) is:

d„A

dt
= Êis

L
i (t)

⁄

„L
W̃i(„L)F(„L ≠ „A). [30]

Combined neural and synaptic dynamics during exploration. Again, taking advantage again of the fact that perturbations
are additive, we combine the e�ect of path integration on the attractor phase „A described in Eq. (27) with the e�ect
of multiple landmark cells with arbitrary learned weights W̃i(„L), each acting on the phase through Eq. (30), we
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Fig. 12. Schematic of the single-variable landmark representation
of Eq. 32. The entire distribution of synaptic weights W(u) can
be approximated concisely as the weighted average of synaptic
positions ◊L.

landmark state. Linearizing F(„L ≠ „A) ¥
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Linear approximation of learning rule . While the evolution of the learned hebbian weights W̃i(„L) (Eq. 30) depends
on the distribution of „A conditioned on a landmark cell firing, the evolution of the weighted average ◊L

i depends only
on the average attractor phase conditioned on landmark firing:

d◊L
i

dT =
+
„A|i Firing

,
≠ ◊L

i . [34]

This can be verified by combining the attractor basis dynamics for Hebbian learning and the linear approximation for
◊L:

d◊L
i

dT = d

dT

3⁄

„L
W̃i(„L)„L

4
=

⁄

„L

dW̃i(„L)
dT „L =

⁄

„L

!
Pr(„A = „L|i Firing) ≠ W̃i(„L)

"
„L

=
⁄

„L
Pr(„A = „L|i Firing)„L

¸ ˚˙ ˝
È„A|i FiringÍ

≠
⁄

„L
W̃i(„L)„L

¸ ˚˙ ˝
◊L
i

=
+
„A|i Firing

,
≠ ◊L

i .

[Sam-This text is recycled, not sure how important that is or not. I think it’s fine] In essence Eq. 33
and Eq. 34 constitute a significant model reduction of Eq. 19 and Eq. 20. In this reduction, the entire pattern of
neural activity of the attractor network is summarized by a single number „A, denoting a point, or phase, on the ring
manifold of stable attractor states. Similarly, the entire pattern of synaptic weights Wi(u) from landmark cell i into
the attractor network is summarized by a single number ◊L

i , denoting the learned attractor network phase associated
with the landmark cell’s synapses.

Intuitively, the reduced Eq. 33 describes both path integration and a dynamics whereby each landmark cell i
attempts to pin the attractor phase „A to the landmark cell’s learned phase ◊L

i , each time the physical position x(t) of
the animal is within the landmark’s firing field Hi. In turn, synaptic plasticity described in Eq. 34 aligns the learned
pinning phase ◊L

i of each landmark cell i to the average of the ensemble of attractor phases „A that occur when the
animal is in the firing field of the landmark.

As we will see below, as an animal explores its environment, this coupled dynamics between attractor phase „A and
landmark pinning phases ◊L

i settle into a self-consistent steady state such that the attractor phase yields an internal
estimate of the animal’s current position that is, to first order, largely independent of the history of the animal’s
previous trajectory. Moreover, each landmark cell learns a pinning phase ◊L

i , consistent with the location of its firing
field in physical space.

††Slope magnitude can be packed into a multiplier of F

20

FIG. SI.6:

Schematic of the scalar single variable representation of a landmark cell’s synaptic strength profile in Eq. SI.IV.30.
The entire distribution of synaptic weights W(u) can be approximated concisely as the weighted average of efferent
synaptic strengths onto the neural attractor ring, yielding a single phase variable θL description for a landmark cell’s
synapses. When the landmark cell fires, its effect on the attractor bump is to pull it towards θL along the neural ring.

2. Linear approximation of force law

After initial steps of learning, when the animal is within the localized firing field of a landmark cell, the bump
attractor peak tends to be close to the peak synaptic output of that landmark cell (this corresponds to navigational
errors that are much smaller than the spacing between firing fields). If, whenever a landmark cell i is firing, φA(t) is

close to all φL for which W̃i(φ
L) is significantly greater than zero, we may linearize the force law F(φL−φA) ≈ (φL−φA)

[17] to obtain a simple linear force proportional to the difference between the attractor phase and the mean position
of the landmark cell synapses onto the attractor ring. Therefore, we can simplify the force exerted by a single firing
landmark cell exerted on the attractor state:

∫

φL

W̃i

(
φL
)
F
(
φL − φA

)
≈
∫

φL

W̃i

(
φL
) (

φL − φA
)

=

∫

φL

W̃i(φ
L)φL

︸ ︷︷ ︸
θLi

−
∫

φL

W̃i(φ
L)φA

︸ ︷︷ ︸
φA

=
(
θL
i − φA

)
,
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yielding dynamics (Eq. 6(Main)) of:

dφA/dt = kv +
∑

i

ωiHi(x(t))
(
θL
i − φA

)
. (SI.IV.31)

3. Linear approximation of learning rule

While the evolution of the learned Hebbian weights W̃i(φ
L) (Eq. SI.III.24) depends on the distribution of φA

conditioned on a landmark cell firing, the evolution of the weighted average θL
i depends only on the average attractor

phase conditioned on landmark firing:

dθL
i

dT
=
〈
φA|i Firing

〉
− θL

i . (SI.IV.32)

Eq. SI.IV.32 (Eq. 7(Main)) can be verified by combining the attractor basis dynamics for Hebbian learning and the
linear approximation for θL:

dθL
i

dT
=

d

dT

(∫

φL

W̃i(φ
L)φL

)
=

∫

φL

(
dW̃i(φ

L)

dT

)
φL =

∫

φL

(
Pr(φA = φL|i Firing)− W̃i(φ

L)
)
φL

=

∫

φL

Pr(φA = φL|i Firing)φL

︸ ︷︷ ︸
〈φA|i Firing〉

−
∫

φL

W̃i(φ
L)φL

︸ ︷︷ ︸
θLi

=
〈
φA|i Firing

〉
− θL

i .

In essence Eq. SI.IV.31 and Eq. SI.IV.32 constitute a significant model reduction of Eq. SI.II.2 and Eq. SI.II.3. In
this reduction, the entire pattern of neural activity of the attractor network is summarized by a single number φA,
denoting a point, or phase, on the ring manifold of stable attractor states. Similarly, the entire pattern of synaptic
weights Wi(u) from landmark cell i into the attractor network is summarized by a single number θL

i , which denotes
the mean position of landmark cell synaptic inputs onto the attractor ring (Fig. SI.6).

Intuitively, the reduced Eq. SI.IV.31 describes both path integration and a dynamics whereby each landmark cell
i attempts to pin the attractor phase φA to the landmark cell’s learned synaptic phase θL

i , each time the physical
position x(t) of the animal is within the landmark’s firing field Hi(x). In turn, synaptic plasticity described in Eq.
SI.IV.32 aligns the learned pinning phase θL

i of each landmark cell i to the average of the ensemble of attractor phases
φA that occur when the animal is in the firing field of the landmark.

As we will see below, as an animal explores its environment, this coupled dynamics between attractor phase φA and
landmark pinning phases θL

i settle into a self-consistent steady state such that the attractor phase yields an internal
estimate of the animal’s current position that is, to first order, largely independent of the history of the animal’s
previous trajectory. Moreover, each landmark cell learns a pinning phase θL

i , consistent with the location of its firing
field in physical space.

V. LEARNING A SIMPLE ENVIRONMENTAL GEOMETRY

To keep the supplementary material self-contained, we largely repeat a section of the main paper describing and
illustrating how the above equations yield a self-consistent neural representation of space in a simple 1D environment.
A relevant list of symbols and units can be found in Table III.

Consider the linearized dynamics of Eqs. SI.IV.31, SI.IV.32 for the simple case of an animal moving back and forth
between the walls of a 1D box of length L, at a constant speed v0 = L/τ , yielding a total time of 2τ to complete a
full cycle (Fig. 4A). In this environment we assume two landmark cells corresponding to the east (west) walls, with
firing fields extending a distance LWall into the environment leaving an empty space LInt = L− 2LWall between (Fig.
SI.7). Their pinning phases θL

E (θL
W) encode the peak position of their outgoing synaptic weights. How does circuit

plasticity yield a consistent environmental representation through exploration?
We will build intuition in the limit where LWall → 0, ω → ∞; in this regime, landmark cells only act at the very

edge, yet fully anchor the attractor state when the animal touches the edge. At t = 0, the animal starts at the west
wall at physical position x(0) = −L/2. Through Eq. 6, the west border cell pins the initial attractor phase so that
φA(0) = θL

W. At t = τ , the animal travels to the east wall at physical position x(τ) = +L/2, and the attractor phase
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FIG. SI.7:

Schematic of an animal moving between two landmark fields in a simple 1D geometry, along with attractor phase as
a function of position and path history

(
φA(0), φA(τ/2), φA(τ), φA(3τ/2)

)
. The landmark fields extend a distance of

LWall into the environment leaving an empty space LInt = L− 2LWall between.

advances due to path integration to become φA(τ−) = θL
W + kL. However, upon encountering the east wall, the east

border cell pins the attractor phase to θL
E.

Before any learning, there is no guarantee that the east border cell pinning phase θL
E equals the attractor phase

θL
W + kL, obtained by starting at the west wall and moving to the east wall; sensation and path integration might

disagree (Fig. 4B). However, plasticity described in Eq. 7 will act so as to move θL
E closer to θL

W + kL. Then as the
animal returns to the left wall at time t = 2τ , path integration will retard the attractor phase φA(2τ) = θL

E − kL,
and an encounter with the west wall leads the west border cell to pin the attractor phase to θL

W. Again, there is no
guarantee that the west border cell pinning phase θL

W agrees with the attractor phase θL
E− kL obtained by starting at

the east wall and traveling to the west wall, but circuit plasticity will change θL
W to reduce this discrepancy. Overall,

plasticity over multiple cycles of exploration yields the iterative dynamics

θL
E → θL

W + kL, θL
W → θL

E − kL.

1. Learning as an elastic relaxation between landmarks.

To gain further insight into the learning dynamics, it is useful to interpret the periodic attractor phase φA(t) as an
internal estimate of position through the “unrolled” coordinate variable

XA = φA/k. (SI.V.33)

Likewise, we can replace the landmark phase θL
i with another linear variable

XL
i = θL

i /k, (SI.V.34)

denoting the internal representation of the position of landmark i (Fig. 4D). This enables us to associate physical
positions to landmark cells, or more precisely their pinning phases, although these assigned positions are defined only
up to shifts of the grid period. Plasticity over the long timescale T of exploration then yields the following learning
dynamics for the physical positions in unrolled phase for the landmark cells:

dXL
E /dT = −MEW

[
XL

E −
(
XL

W + ∆XA
W→E

)]
(SI.V.35)

dXL
W/dT = −MWE

[
XL

W −
(
XL

E + ∆XA
E→W

)]
, (SI.V.36)

where ∆XA
W→E = −∆XA

E→W = L, and MEW = MWE.
These dynamics for the two landmark cell synapses in unrolled phase are equivalent to those of two particles at

physical positions XL
W and XL

E , connected by an overdamped spring with rest length L, and spring constant MWE

which sets the learning rate (Fig. 4E). If the separation XL
E−XL

W between the particles is less (greater) than L, then the
spring is compressed (extended) yielding a repulsive (attractive) force between the two particles. Learning stabilizes
the two particle positions when their separation equals the spring rest length, so that XL

E − XL
W = L. This condition

in unrolled phase is equivalent to the fundamental consistency condition for a well defined spatial map, namely that
the phase advance due to path integration equals the phase difference between the pinning phases of landmark cells
(Fig. 4C). However the utility of the unrolled phase representation lies in revealing a compelling picture for how a
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spatially consistent map arises from the combined neuronal and synaptic dynamics, through a simple, emergent first
order relaxational dynamics of landmark particles connected by damped springs. As we see below, this simple effective
particle-spring description of synaptic plasticity in response to spatial exploration generalizes to arbitrary landmarks
in arbitrary two dimensional environments.

We note that if the environment has not been fully learned or has been recently deformed, the internal representation
of landmarks in unrolled phase will lag behind the true geometry for a time, leading to “boundary-tethered” firing
fields seen in [18, 19]. Additionally, we have solved the dynamics when the firing fields of the border cells have a finite
extent LWall and the landmark cells have a finite strength ω, and we find the dynamics obeys that of Eq. SI.V.35 and
Eq. SI.V.36 (Eq. 8(Main) and Eq. 9(Main)). One notable difference is that the internal map will be contracted, and
the rest length will be ∆XA

W→E = LInt + 2v0 tanh (ωLWall/2v0)/ω < L (See Sec. XI 2). We note that this still produces
a consistent, path-independent representation in the center of the track, far from the firing fields of either border cell.

VI. AN EXAMPLE OF AN EXACTLY SOLVABLE RING ATTRACTOR MODEL

To build intuition, and to derive explicit equations in a concrete setting, we turn to a modified and simplified
version of the model of Ben-Yishai et al. [20] which is exactly solvable and yields analytic, effective force laws in the
model reduced description.

Without external inputs, the model follows the dynamics:

ds (u)

dt
= −s(u) + G

(∫

u′
J(u− u′)s(u′)

)
, (SI.VI.37)

where J(∆u) = J0 cos(∆u), and the nonlinearity is defined by:

G(h) =




−1 h ≤ −1
h −1 < h < 1
1 h ≥ 1.

1. Steady state solution

Any steady state solution will have the form

s∗(u) = G(h(u)),

where

h(u) =

∫

u′
J(u− u′)s∗(u′) = J0

(∫

u′
cos(u− u′)s∗(u′)

)

To solve these equations, we note that regardless of s∗(u), h(u) will have the form h0 cos(u− φA). Thus any attractor
solution must have the form s∗(u) = G(h0 cos(u − φA)). When J0 < 1/π, the only steady state is the uniform state
s∗(u) = 0; however, when J0 approaches 1/π from above, the uniform state becomes unstable, and there is now a
stable steady state solution of

s∗(u) = cos(u),

and the nonlinearity G is barely triggered (Fig. SI.8).

2. Effective force function

When J0 approaches 1/π from above, the non-linearity is barely in effect, i.e. G(s∗(u)) = s∗(u) for nearly all u [21].
Defining the dynamics Eq. SI.VI.37 by the functional DA[s] we see that the Jacobian around any steady state, JacφA ,
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is nearly symmetric, i.e.

JacφA(u′, u) =
d (DA[s](u′))

ds(u)
=
d (DA[s](u))

ds(u′)
= JacφA(u, u′) ≈ J0 cos(u′ − u),

and so the eigenvectors of the Jacobian are orthogonal. Therefore, any perturbation applied will be projected along
the sliding mode in the manner of Eq. SI.III.14. For example, if we apply a perturbation of ε cos(u−φP), the effective
sliding dynamics of the attractor bump will be given by,

ds(u)

dt
= εF(φP − φA)s∗′(u− φA),

where the attractor force law is F(φP − φA) = sin(φP − φA).
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FIG. SI.8:

Steady attractor state s∗(u − φA) for Eq. SI.VI.37 J0 = 1.01/π, 1% above the threshold value. The network is in
the linear regime in almost all parts of the neural sheet, except for the very top and bottom, which are truncated at
±1. As J0 approaches 1/π from above, these nonlinear regions become infinitely small, and the Jacobian becomes
symmetric.

Adding velocity conjunctive cells and landmark cells in the same manner as Sec. II, we obtain the explicit, effective
reduced dynamics:

dφA

dt
= εPI sin(∆φPI)v︸ ︷︷ ︸

kv

+εLM

∑
i
Hi (x(t)) W̃(φL) sin(φL − φA),

dW̃i(φ
L)

dT
= Pr(φL|i Firing)− W̃i(φ

L). (SI.VI.38)

VII. GENERALIZATION TO TWO-DIMENSIONAL GRID CELLS

In order to make contact with experiments, we generalize all of the above to two dimensional space, and two-
dimensional attractor models yielding grid cells. See Table V for a list of symbols and units.

Now attractor network grid cells live on a periodic two-dimensional neural sheet, where each neuron has position
u = (u1, u2).

1. Velocity-conjunctive cells

When we generalize to 2D, there are now four kinds of velocity conjunctive cells: east-conjunctive, west conjunctive,
north-conjunctive and south-conjunctive. Each one of these four cell-types live on their own distinct neural sheet with
the same coordinate u = (u1, u2) as the sheet corresponding to the attractor network sheet that contains pure,
non-conjunctive grid cells. The firing rates of these conjunctive cells at their own neural sheet position u depend
instantaneously on the firing rate s(u) of the non-conjunctive grid cells at their corresponding position u, as well as
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J. Generalization to 2D Grid Cells

[Sam-Need to merge periodicity with the rest of this section]

Table 3. Table of Symbols for 2D Case

Variable Name Symbol Type Units
2D Neural Sheet Position u Position on periodic rhombus, defined

modulo (0, 2fi), (
Ô

3fi, fi)
Dimensionless

Firing Non Linearity G One-variable function ??/
Pairwise cellular interactions J(|u ≠ uÕ|) Function of neural sheet distance Synaptic Activa-

tion/Time
Synaptic activation s(u) Scalar function of 2D neural sheet posi-

tion
Synaptic Activation

Steady bump pattern sú(u ≠ „A) Scalar function of 2D Neural Sheet Posi-
tion

Synaptic Activation

2D Attractor State(Location of
firing bump)

„A Position on periodic rhombus, defined
modulo (0, 2fi), (

Ô
3fi, fi)

Synaptic Activation

Attractor Force Law F(„P ≠ „A) 2D vector function of neural sheet sepa-
ration

??

Attractor Dynamics DA[s(u)] Functional of synaptic activation; both
inputs and outputs a function of neural
sheet position

Time derivative of
synaptic activation

2D running velocity v(t) 2D Vector Distance/Time
Two dimensional path integra-
tion constant

K 2 ◊ 2 Matrix (Transforms 2D animal ve-
locity to 2D neural sheet velocity)

Angle/Distance

2D Position r(t) 2D Vector Distance
Landmark Cell Index i Integer Label Dimensionless
Landmark Cell Firing Rate sL

i(t) Scalar (Dimensionless or
1/Time)

Landmark Cell Firing Field Hi(r) Scalar function of 2D position (Dimensionless or
1/Time)

Synaptic weights (Neural Sheet
Basis)

Wi(u) Scalar function of neural sheet position ??

Synaptic weights (Attractor Ba-
sis)

W̃i(„L) Scalar function of angle ??

Synaptic weight component in
attractor basis

„L Position on periodic rhombus, defined
modulo (0, 2fi), (

Ô
3fi, fi)

??

Training time T Scalar Training Sessions
Landmark Strength Ê Scalar 1/Time??
Position Self-Estimate RS 2D Vector Distance
Landmark Position Estimate RL

i 2D Vector Distance
Average Landmark Position Es-
timate at a Position

RL(r) 2D Vector Function of Space Distance
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In order to make contact with experiments, we generalize all of the above to two dimensional space. Now grid cells
live on a periodic two-dimensional neural sheet, where each neuron has position u = (u1, u2). There are now four kinds
of velocity conjunctive cells. East-conjunctive, west conjunctive, as well as north-conjunctive and south-conjunctive.
The synaptic activations of these cells at position depend instantaneously on the firing rate s(u) and the animal
running velocity.

sNC(u) = vNorths(u), sEC(u) = vEasts(u), sSC(u) = vSouths(u), sWC(u) = vWests(u),
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Therefore, the coordinate �„ specifying a point on the
manifold of stable attractor patterns is a periodic variable
defined modulo the periodicity of the steady state pattern:

(„u, „v) © („u, „v) + (2fi, 0) © („u, „v) + (fi,
Ô

3fi)

Applying the same machinery developed for the 1D case,

Fig. 6. a) A 2D neural sheet with short-range excitation and long-range inhi-
bition, analogous to Fig. 1. Each neuron on the continuous sheet now has
coordinates (u, v). b) A 2D analogue of the reduced dimension attractor state
representation of Fig. 1. Now, instead of an angle, w is a position on the
periodic rhombus(periodicity shown through equivalent states). Lines drawn on
top represent the “unit cell” to guide the eye. c) A 2D analogue of the landmark
cell representation of Fig. 5, where the learned state W̃i(wÕ) is a distribution
over that rhombus. c) A 2D analogue of the force law. The state of an attractor
network w will be pulled towards the distribution W̃i(�„L).

we may arrive at the master equations for short-term
orientation of the attractor state �„A(t):

d

dt
�„A(t) =

�
K · d

dt
r

¸ ˚˙ ˝
Path Integration

+ [17]

ÿ

i

Hi(r(t))
⁄

�„L
W̃i

!
�„L"

ForceA
!

�„A ≠ �„L"

¸ ˚˙ ˝
Landmark Cells

, [18]

Where we have replaced k with
�
K, a matrix that translates

animal movement into path integration in the attractor
network, encoding both grid spacing and orientation. The
analogous equations for learning are:

dW̃i(�„L)
dT = Pr(�„A(t) = �„L|Firing)¸ ˚˙ ˝

Hebbian

≠W̃i(�„L)¸ ˚˙ ˝
Forgetting

. [19]

In an analogous manner to 2 to map two dimensional
space, we replace the attractor phase „A(t) with a 2D
attractor coordinate variable RS, reflecting an internal
estimate of instantaneous position in physical space, and
we replace the landmark phase W̃i

!
�„L"

with another 2D
attractor coordinate variable RL

i reflecting the internal
estimate of landmark position, yielding D = 2 dimen-
sional dynamics for position self-estimates and landmark
position estimates.

Fig. 7. Schematic an animal moving between two landmark fields with position
self-estimate at every part of the cycle.

4. Learning a simple environmental geometry
We now examine solutions to these equations to under-
stand how neuronal dynamics and synaptic plasticity
conspire to yield a consistent map of the environment. To
build intuition, we consider the simple case of an animal
moving back and forth between the walls of a 1D box of
length L, at a constant speed v = L/2· , yielding a total
time of 4· to complete a full cycle (Fig. 7). What inter-
nal environmental representation will the animal learn
through this exploration process? We define four key
events underlying this exploration: at t = 0, the animal
starts at the left wall at physical position r(0) = ≠L

2 ,
but with an internal position estimate RS(0) © RS

0 . At
t = · , the animal travels through the center of the box
at physical position r(·) = 0, but with internal estimate
RS(·) © RS

1 . At t = 2· , the animal touches the right
wall at physical position r(2·) = +L

2 with internal esti-
mate RS

2 . And at t = 3· , the animal travels back to the
center of the box at physical position r(3·) = 0, with
internal estimate RS

3 . The animal then runs back to the
starting point at 4· . In addition to these internal esti-
mates, corresponding to the time-dependent phase of the
attractor network, we imagine two landmark cells A (B)
corresponding to the right (left) walls, with phases RL

East
(RL

West) encoding their out-going synaptic weights. The
firing fields of these cells extend a distance LWall into the
environment leaving an empty space LInt = L ≠ 2LWall
between.

After several exploration cycles, under the learning
dynamics in Eq. 12, the internal position estimates
RS

0 , . . . ,RS
3 and learned landmark position estimates

RL
East and RL

West will reach steady state values reflecting
the environmental and exploratory parameters. Indeed,
we find, after the learning process is completed, the ani-
mal will learn the self-consistent constraints (Proof:App.
??):

RL
East = ≠RL

West = [[LInt/2] + tanh (ÊLWall/2v) v/Ê.]

In the limit of Ê æ 0, we have RL
East ≠ RL

West =
LInt + LWall. Thus the di�erence in the learned internal
positions of the two landmarks is simply the physical dis-
tance between the center of mass of their firing fields. For
larger Ê, this di�erence is smaller due to pinning e�ects
which we discuss in the next section. Nevertheless, for
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Fig. 4. A) A 2D neural sheet with short-range excitation and long-range inhibition, analogous to Fig. 1. Each neuron on the continuous sheet now has coordinates
u = (u1, u2). B) A 2D analogue of a single attractor pattern on the neural sheet, with high firing rates in red (compare to Fig. 1). The set all unique stable
attractor patterns is now indexed not by a single phase variable as in 1D, but a 2D phase variable „A ranging over a rhombus, or unit cell. Copies of the unit cell
are shown via white lines. C) The landmark cell Hebbian weights will be a combination of 2D attractor states (Eq. 15). As the animal travels along the south wall,
the average firing rates will form a “streak” across the neural sheet. This leads the Hebbian weights on the neural sheet to form the same streak; this learned
state can be represented as a distribution over the periodic rhombus. Analogously, there is a force law, where the state of an attractor network „A will be pulled
towards this distribution W̃i(„L) (Eq. 14). D) Similarly to Fig. 3D, we can unroll the two-dimensional attractor phase into a two-dimensional position variable,
thereby associating landmark pinning phases to points in physical space. Given landmarks in all four corners, the landmark pinning phases correspond to different
points on the phase rhombus, but through unrolling this rhombus, each can be associated to a physical corner of the environment.

average change in unrolled attractor phase as the animal
moves from firing field j to field i, roughly related to
the distance between the landmark firing fields. Precise
expressions for the spring constants and rest lengths are
derived from the statistics of exploration in (App. K).

Overall, this elastic relaxation process converges to-
wards an internal map where all pairs of landmark cell
synapses, viewed as particles in unrolled phase, or phys-
ical space, become separated by the physical distance
between their firing fields. This convergence ensures a
consistent internal environmental map of external space in
which velocity based path integration of attractor phase
starting at the pinning phase of landmark i and ending at
landmark j will yield an integrated phase consistent with
the pinning phase of landmark j itself. This relaxation
dynamics explains path-dependent shifts in firing patterns
observed in recently deformed environments (22). Also,
the experimental observation that in multi-compartment
environments, consistent maps within compartments form
before consistent maps between compartments are also
explained (10) by this relaxation dynamics. In essence,
the longest-lived learning mode of the relaxation dynamics
corresponds to di�erences in maps between compartments.

Furthermore, as we explain in the next three sections,
these relaxation dynamics yields several novel experimen-
tal predictions: (1) systematic path-dependent shifts in
fully learned 2D environments, (2) mechanical deforma-
tions in complex environments, and (3) the novel predic-
tion of creation of topological defects in grid cell firing
patterns through specific environmental manipulations.
Path-dependence in 2D environments

We saw above that exploration in a simple 1D geometry
lead to a consistent internal map in which the attractor
network phase was mapped onto the current physical

position alone, independent of path history (Fig. 3C). This
consistency arises through the elastic relaxation process
in Eq. 36 and Eq. 37, which makes the distance between
the landmark cells in unrolled phase XL

E ≠ XL
W equal to

the physical distance between their firing fields L, just
like two particles connected by a spring with rest length L
(Fig. 3E). This situation will generalize to two dimensions
if there are only two landmarks, namely a west and east
border cell (Fig. 5A1). However, it becomes more complex
with the addition of a third landmark cell, for example a
south border cell (Fig. 5A2).

In this case, east and west landmark particles will
be connected by a spring of rest length �RS

EæW = Lx̂,
as before, but they will each also be connected to the
south landmark particle with springs. Intuitively, as the
mouse travels from the east or west walls to the south
walls, the landmark pinning phases of each of these three
border cells will be attracted towards each other†. The
combined three particle elastic system will settle into
an equilibrium configuration in which the di�erence in
unrolled phase between east and west landmarks will
be less than the physical separation Lx̂, or equivalently
the rest length �RS

EæW of the spring connecting them.
This in turn implies that the attractor phase assigned
to any physical position in the interior will be relatively
phase advanced (retarded) if the mouse is on a trajectory
leaving the west (east) wall. This path dependence in
the attractor phase is entirely analogous to that seen in
Fig. 3B. However, the reason is completely di�erent. In
Fig. 3B, the landmark particles are not separated by the
rest length of the spring connecting them because the
environment is not fully learned and so the particles are
out of equilibrium, whereas in Fig. 5A2, the particles are

†More complex, non-overlapping distributions yield the same deformations.
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2 ,
but with an internal position estimate RS(0) © RS

0 . At
t = · , the animal travels through the center of the box
at physical position r(·) = 0, but with internal estimate
RS(·) © RS

1 . At t = 2· , the animal touches the right
wall at physical position r(2·) = +L

2 with internal esti-
mate RS

2 . And at t = 3· , the animal travels back to the
center of the box at physical position r(3·) = 0, with
internal estimate RS

3 . The animal then runs back to the
starting point at 4· . In addition to these internal esti-
mates, corresponding to the time-dependent phase of the
attractor network, we imagine two landmark cells A (B)
corresponding to the right (left) walls, with phases RL

East
(RL

West) encoding their out-going synaptic weights. The
firing fields of these cells extend a distance LWall into the
environment leaving an empty space LInt = L ≠ 2LWall
between.

After several exploration cycles, under the learning
dynamics in Eq. 12, the internal position estimates
RS

0 , . . . ,RS
3 and learned landmark position estimates

RL
East and RL

West will reach steady state values reflecting
the environmental and exploratory parameters. Indeed,
we find, after the learning process is completed, the ani-
mal will learn the self-consistent constraints (Proof:App.
??):

RL
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larger Ê, this di�erence is smaller due to pinning e�ects
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coordinates (u, v). b) A 2D analogue of the reduced dimension attractor state
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periodic rhombus(periodicity shown through equivalent states). Lines drawn on
top represent the “unit cell” to guide the eye. c) A 2D analogue of the landmark
cell representation of Fig. 5, where the learned state W̃i(wÕ) is a distribution
over that rhombus. c) A 2D analogue of the force law. The state of an attractor
network w will be pulled towards the distribution W̃i(�„L).
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d

dt
�„A(t) =

�
K · d

dt
r

¸ ˚˙ ˝
Path Integration

+ [17]

ÿ

i

Hi(r(t))
⁄

�„L
W̃i

!
�„L"

ForceA
!

�„A ≠ �„L"

¸ ˚˙ ˝
Landmark Cells

, [18]

Where we have replaced k with
�
K, a matrix that translates

animal movement into path integration in the attractor
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dW̃i(�„L)
dT = Pr(�„A(t) = �„L|Firing)¸ ˚˙ ˝

Hebbian

≠W̃i(�„L)¸ ˚˙ ˝
Forgetting

. [19]
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we replace the landmark phase W̃i

!
�„L"
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attractor coordinate variable RL

i reflecting the internal
estimate of landmark position, yielding D = 2 dimen-
sional dynamics for position self-estimates and landmark
position estimates.

Fig. 7. Schematic an animal moving between two landmark fields with position
self-estimate at every part of the cycle.
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through this exploration process? We define four key
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starts at the left wall at physical position r(0) = ≠L
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t = · , the animal travels through the center of the box
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mate RS

2 . And at t = 3· , the animal travels back to the
center of the box at physical position r(3·) = 0, with
internal estimate RS
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starting point at 4· . In addition to these internal esti-
mates, corresponding to the time-dependent phase of the
attractor network, we imagine two landmark cells A (B)
corresponding to the right (left) walls, with phases RL

East
(RL

West) encoding their out-going synaptic weights. The
firing fields of these cells extend a distance LWall into the
environment leaving an empty space LInt = L ≠ 2LWall
between.

After several exploration cycles, under the learning
dynamics in Eq. 12, the internal position estimates
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0 , . . . ,RS
3 and learned landmark position estimates

RL
East and RL

West will reach steady state values reflecting
the environmental and exploratory parameters. Indeed,
we find, after the learning process is completed, the ani-
mal will learn the self-consistent constraints (Proof:App.
??):

RL
East = ≠RL

West = [[LInt/2] + tanh (ÊLWall/2v) v/Ê.]

In the limit of Ê æ 0, we have RL
East ≠ RL

West =
LInt + LWall. Thus the di�erence in the learned internal
positions of the two landmarks is simply the physical dis-
tance between the center of mass of their firing fields. For
larger Ê, this di�erence is smaller due to pinning e�ects
which we discuss in the next section. Nevertheless, for
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Fig. 4. A) A 2D neural sheet with short-range excitation and long-range inhibition, analogous to Fig. 1. Each neuron on the continuous sheet now has coordinates
u = (u1, u2). B) A 2D analogue of a single attractor pattern on the neural sheet, with high firing rates in red (compare to Fig. 1). The set all unique stable
attractor patterns is now indexed not by a single phase variable as in 1D, but a 2D phase variable „A ranging over a rhombus, or unit cell. Copies of the unit cell
are shown via white lines. C) The landmark cell Hebbian weights will be a combination of 2D attractor states (Eq. 15). As the animal travels along the south wall,
the average firing rates will form a “streak” across the neural sheet. This leads the Hebbian weights on the neural sheet to form the same streak; this learned
state can be represented as a distribution over the periodic rhombus. Analogously, there is a force law, where the state of an attractor network „A will be pulled
towards this distribution W̃i(„L) (Eq. 14). D) Similarly to Fig. 3D, we can unroll the two-dimensional attractor phase into a two-dimensional position variable,
thereby associating landmark pinning phases to points in physical space. Given landmarks in all four corners, the landmark pinning phases correspond to different
points on the phase rhombus, but through unrolling this rhombus, each can be associated to a physical corner of the environment.

average change in unrolled attractor phase as the animal
moves from firing field j to field i, roughly related to
the distance between the landmark firing fields. Precise
expressions for the spring constants and rest lengths are
derived from the statistics of exploration in (App. K).

Overall, this elastic relaxation process converges to-
wards an internal map where all pairs of landmark cell
synapses, viewed as particles in unrolled phase, or phys-
ical space, become separated by the physical distance
between their firing fields. This convergence ensures a
consistent internal environmental map of external space in
which velocity based path integration of attractor phase
starting at the pinning phase of landmark i and ending at
landmark j will yield an integrated phase consistent with
the pinning phase of landmark j itself. This relaxation
dynamics explains path-dependent shifts in firing patterns
observed in recently deformed environments (22). Also,
the experimental observation that in multi-compartment
environments, consistent maps within compartments form
before consistent maps between compartments are also
explained (10) by this relaxation dynamics. In essence,
the longest-lived learning mode of the relaxation dynamics
corresponds to di�erences in maps between compartments.

Furthermore, as we explain in the next three sections,
these relaxation dynamics yields several novel experimen-
tal predictions: (1) systematic path-dependent shifts in
fully learned 2D environments, (2) mechanical deforma-
tions in complex environments, and (3) the novel predic-
tion of creation of topological defects in grid cell firing
patterns through specific environmental manipulations.
Path-dependence in 2D environments

We saw above that exploration in a simple 1D geometry
lead to a consistent internal map in which the attractor
network phase was mapped onto the current physical

position alone, independent of path history (Fig. 3C). This
consistency arises through the elastic relaxation process
in Eq. 36 and Eq. 37, which makes the distance between
the landmark cells in unrolled phase XL

E ≠ XL
W equal to

the physical distance between their firing fields L, just
like two particles connected by a spring with rest length L
(Fig. 3E). This situation will generalize to two dimensions
if there are only two landmarks, namely a west and east
border cell (Fig. 5A1). However, it becomes more complex
with the addition of a third landmark cell, for example a
south border cell (Fig. 5A2).

In this case, east and west landmark particles will
be connected by a spring of rest length �RS

EæW = Lx̂,
as before, but they will each also be connected to the
south landmark particle with springs. Intuitively, as the
mouse travels from the east or west walls to the south
walls, the landmark pinning phases of each of these three
border cells will be attracted towards each other†. The
combined three particle elastic system will settle into
an equilibrium configuration in which the di�erence in
unrolled phase between east and west landmarks will
be less than the physical separation Lx̂, or equivalently
the rest length �RS

EæW of the spring connecting them.
This in turn implies that the attractor phase assigned
to any physical position in the interior will be relatively
phase advanced (retarded) if the mouse is on a trajectory
leaving the west (east) wall. This path dependence in
the attractor phase is entirely analogous to that seen in
Fig. 3B. However, the reason is completely di�erent. In
Fig. 3B, the landmark particles are not separated by the
rest length of the spring connecting them because the
environment is not fully learned and so the particles are
out of equilibrium, whereas in Fig. 5A2, the particles are

†More complex, non-overlapping distributions yield the same deformations.
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FIG. SI.9:

A) A 2D neural sheet with short-range excitation and long-range inhibition, analogous to Fig. 1. Each neuron on
the continuous sheet now has coordinates u = (u1, u2). B1) A 2D analogue of a single attractor pattern on the
neural sheet, with high firing rates in red (compare to Fig. SI.1A). The set all unique stable attractor patterns is
now indexed not by a single phase variable as in 1D, but a 2D phase variable φA ranging over a rhombus, the
unit cell of the attractor bump pattern. Copies of the unit cell are shown via white lines. B2) Schematic of the
discrete translational symmetry of the bump attractor state Eq. SI.VII.41. C1) Schematic of outgoing weights for
east-conjunctive cell (while Eq. SI.VII.39 uses one-to-one conjunctive weights, this can be easily extended). North,
south, and west-conjunctive weights can be constructed in the same way. C2) As the animal travels along the south
wall, the average firing rates will form a “streak” across the neural sheet. C3) The landmark cell Hebbian weights
will be a combination of 2D attractor states (Eq. SI.VII.43).This leads the Hebbian weights on the neural sheet to
form the same streak; this learned state can be represented as a distribution over the periodic rhombus. Analogously,
there is a force law, where the state of an attractor network φA will be pulled towards this distribution W̃i(φ

L) (Eq.
SI.VII.42). D) Here, we can unroll the two-dimensional attractor phase into a two-dimensional position variable,
thereby associating landmark pinning phases to points in physical space. Given landmarks in all four corners, the
landmark pinning phases correspond to different points on the phase rhombus, but through unrolling this rhombus,
each can be associated to a physical corner of the environment.

on the animal running velocity through the formulas:

sNC(u) = (vNorth/vC0)s(u), sEC(u) = (vEast/vC0)s(u), sSC(u) = (vSouth/vC0)s(u), sWC(u) = (vWest/vC0)s(u).

Here vC0 is some characteristic speed at which the velocity-conjunctive cells fire at the same rate as the non-conjunctive
attractor cells, and vNorth, vEast, vSouth, vWest are the north, east, south and west components of animal velocity
respectively:

vNorth = [v · ŷ]+, vEast = [v · x̂]+, vSouth = [−v · ŷ]+, vWest = [−v · x̂]+, v = (vNorth − vSouth) ŷ + (vEast − vWest) x̂,

where x̂, ŷ are unit vectors in the x and y directions respectively.
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2. Full two-dimensional neural dynamics

The full dynamics of the attractor network (extended version of Eq. 10(Main)), analogous to Eq. SI.II.2, are

ds (u)

dt
= −s(u)

τm
+ G

(∫

u′
J(|u− u′|)s(u′)

)
+ εLM

∑

i

(
Wi(u)sL

i (t)
)

︸ ︷︷ ︸
Landmark cell inputs

+

εPI (sNC (u− |∆φPI| û2))︸ ︷︷ ︸
Input from north cells

+ εPI (sEC (u− |∆φPI| û1))︸ ︷︷ ︸
Input from east cells

+ εPI (sSC (u + |∆φPI| û2))︸ ︷︷ ︸
Input from south cells

+ εPI (sWC (u + |∆φPI| û1))︸ ︷︷ ︸
Input from west cells

,

(SI.VII.39)

where the firing rates of the landmark cells are a function of 2D animal position:

sL
i (t) = Hi(r(t)).

3. Hebbian learning of landmark cells in two-dimensions

The long term learning is mediated by the updates of the Hebbian weights Wi(u) from the landmark cells to the
attractor network in a manner analogous to Eq. SI.II.3:

dWi(u)

dT
= 〈s(u)|i Firing〉 −Wi(u) =

∫
t
s(u, t)sL

i (t)∫
t
sL
i (t)

−Wi(u). (SI.VII.40)

4. Two-dimensional model reduction

A. Reduced two-dimensional attractor state

Applying the same techniques as before, we see that attractor dynamics on a two-dimensional neural sheet can
now yield a two-dimensional family of stable, or steady state, localized bump activity patterns s∗(u − φA). When
2D attractor dynamics yield a family of steady hexagonal bump patterns, this periodicity on the neural sheet has
hexagonal symmetry(Fig. SI.9B2), and can be represented mathematically on the neural sheet as:

s∗(u1, u2) = s∗(u1 + 2π, u2) = s∗(u1 + π, u2 +
√

3π),

where we have defined units on the neural sheet in terms of this periodicity. Therefore, the coordinate φA specifying
a point on the manifold of stable attractor patterns is a periodic variable defined modulo the periodicity of the steady
state pattern:

φA ≡ φA + (2π, 0) ≡ φA + (π,
√

3π). (SI.VII.41)

The attractor state is now a 2D phase φA on the periodic rhombus (Fig. SI.9B2).

B. Reduced short-timescale exploration dynamics

Likewise, we may obtain a 2D analogue (Eq. 15(Main)) to the dynamics of the attractor state:

dφA/dt = K dr/dt +
∑

i

ωiHi(r(t))

∫

φL

W̃i

(
φL
) F (φL − φA

)
. (SI.VII.42)

Here we have replaced the 1D gain scalar, k, with K, a 2 × 2 matrix that translates 2D animal velocity into phase
advance in the 2D attractor network; K determines both grid spacing and orientation. When (north, east, south,
west) cells have outgoing connections in the û2, û1,−û2,−û1 directions, K is a multiple of the identity and yields
NESW oriented grid fields. When grid fields are at an angle, K will be some multiple of a rotation matrix.
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C. Two-dimensional learning dynamics

We may likewise obtain the analogue (Eq. 13(Main)) of the learning dynamics of Eq. SI.III.26:

dW̃i(φ
L)/dT = Pr(φA(t) = φL|i Firing)− W̃i(φ

L), (SI.VII.43)

where W̃i(φ
L) is now a distribution over the periodic rhombus (Fig. SI.9C).

D. Two-dimensional linearized dynamics

Continuing further, we may make a small-angle approximation (Analogous to Eq. SI.V.33 but now using 2D variables
with periodicity over the rhombus) to replace the attractor phase φA(t) with a two-dimensional unrolled linear
variable:

RA(t) ≡ K−1 φA(t), (SI.VII.44)

reflecting an internal estimate of instantaneous position in 2D physical space.

Likewise we may replace the distribution of Hebbian landmark weights W̃i(φ
L) with a single 2D phase variable θL

i

on the rhombus representing the weighted average (Analogous to Eq. SI.IV.30) of its synaptic weight distribution:

θL
i =

∫∫
W̃i(φ

L)φL. (SI.VII.45)

Analogously to Eq. SI.V.34, we can unroll the phase variable θL
i into a linear variable,

RL
i = K−1θL

i (SI.VII.46)

associated with a physical position in real space (Fig. SI.9D) up to the grid periodicity.

This reduction yields two-dimensional dynamics (Eq. 16(Main), Eq. 17(Main)) for internal estimates of position
(i.e. unrolled attractor phase) and internal estimates of landmark position (i.e. unrolled mean phase of landmark cell
synapses), given in analogy to Eqs. SI.IV.31, SI.IV.32 by:

dRA/dt = dr/dt+
∑

ωi Hi(r(t))
(RL

i −RA
)
, (SI.VII.47)

dRL
i /dT =

〈RA(t)|Cell i Firing
〉
−RL

i . (SI.VII.48)

VIII. REDUCING THE JOINT EXPLORATION AND LEARNING DYNAMICS TO A MECHANICAL
MASS, SPRING SYSTEM.

A list of symbols and units can be found in Table IV.

We showed in Eq. SI.V.35 and Eq. SI.V.36, that the emergence of spatial consistency between path integration and
landmarks through Hebbian learning dynamics, during exploration of a simple 1D environment, could be understood
as the outcome of an elastic relaxation process between landmark cell synapses, viewed as particles in physical space
connected by damped springs. Remarkably, this result generalizes far beyond this simple environment. As long as the
exploration dynamics are time-reversible [22], the learning dynamics of any set of landmark cells in any geometry in
2D (and 1D) yields this particle-spring interpretation (Eq. 18(Main)):

dRL
i /dT = −

∑

j

Mij

(RL
i −

[RL
j + ∆RA

j→i
])
. (SI.VIII.49)

The spring constant Mij is related to the frequency with which the animal moves between each pair of landmark
firing fields i, j, while the rest displacement ∆RA

j→i is the average change in unrolled attractor phase as the animal
moves from firing field j to field i, roughly related to the distance between the landmark firing fields. Below, we show
how this is derived, as well as how precise expressions for the spring constants and rest lengths are determined by the
statistics of exploration.
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1. Animal position self-estimate as a function of position and path history

We first need to solve for an animal’s internal estimate of position (i.e. its unrolled attractor phase) as a function
of its path history. To do so we first make the bookkeeping substitution:

dRA/dt = dr/dt︸ ︷︷ ︸
Path Integration

+ ω(r(t))
[RL(r(t))−RA

]
︸ ︷︷ ︸

Landmark Cells

(SI.VIII.50)

where ω(r) =
∑
ωHi (r) is the combined strength of all landmark cells that fire at r, and RL(r) =

∑[
Hi (r)RL

i

]
/ω(r)

is the average position estimate being reinforced at position r. As the animal moves around the environment, the
position self-estimate will get pushed to the learned reinforcing positions of landmarks the animal visits, path inte-
grated as the animal moves, and eventually forgotten as the animal encounters new landmarks. We can take this
basic intuition and turn it into a closed-form equation (Verified in Sec. XI 3); given any path history r(t) the solution
for Eq. SI.VIII.50 is:

RA[r(t), t] =

∫ t

−∞

[RL (r(t′)) + (r(t)− r(t′))
]

︸ ︷︷ ︸
Landmark Position Estimate + Path Integration from t’

×
(
ω(r(t′))e−

∫ t
t′ ω(r(t′′))dt′′

)

︸ ︷︷ ︸
Memory of time t′

dt′.(SI.VIII.51)

a. Solving for learned position estimates as a function of current landmark position estimates. We now need to
compute the mean position-self estimate seen by each landmark cell. We note that for any individual path, RA[r(t), t]
is linear with respect to RL(r′). Therefore, defining rA and rB as the starting and ending positions of a path, we can
show that the average R̄A(rB) is also linear with RL(rA) by averaging over all paths starting at rA and ending at
rB. Therefore, we can construct a matrix equation:

R̄A(rB) =

∫

rA

S(rB, rA)
[
ω(rA)

(RL(rA) + (rB − rA)
)]
,

where our matrix entries S(rB, rA) represent all possible ways the landmark position-estimates at position rA con-
tribute to the mean position self-estimate at rB. As long as the exploration dynamics are reversible, i.e., for any r(t),
the reverse path r(−t) is equally likely, S is symmetric (S(rA, rB) = S(rB, rA), proof in Sec. XI 4).

To solve for the learning dynamics, we expand ω(r),RL(r) to understand the average position self-estimate as a
function of position and the landmark position estimates of all landmark cells j:

R̄A(rB) =
∑

j

∫

rA

S(rB, rA)Hj(rA)
(RL

j + (rB − rA)
)
dr′.

The mean position self-estimate seen by each landmark cell i is then:

R̄A
i =

∑

j

∫∫

rB,rA

Hi(rB)S(rB, rA)Hj (rA)
(RL

j + (rB − rA)
)
.

Combining this with the landmark learning rule gives:

dRL
i

dT
= R̄A

i −RL
i =

∑

j

∫∫

rB,rA

Hi(rB)S(rB, rA)Hj (rA)
[RL

j + (rB − rA)
]
−RL

i .

=
∑

j

[∫∫

rB,rA

Hi(rB)S(rB, rA)Hj (rA)

]

︸ ︷︷ ︸
Mij(Definition)

RL
j +

∑

j

[∫∫

rB,rA

Hi(rB)S(rB, rA)Hj (rA) (rB − rA)

]

︸ ︷︷ ︸
Mij∆RA

j→i (Definition)

−RL
i .

Where we have divided the contributions into symmetric components Mij that depend on the landmark states RL
i

and antisymmetric components Mij∆RA
j→i which depend on path integration. We note that

∑
j Mij = 1 For all i

[23]; therefore, we can rewrite the above equation as:

dRL
i

dT
=
∑

j

Mij

([RL
j + ∆RA

j→i
]
−RL

i

)
.
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Because S(rA, rB) = S(rB, rA), we can see that Mij = Mji and ∆RA
j→i = −∆RA

i→j . Therefore, the long term dynamics
of mapping are equivalent to the first-order dynamics of a set of particles i, attached by damped springs of strength
Mij , each having a rest displacement vector of ∆RA

j→i. The spring constant is Mij related to the frequency with

which the animal moves between each landmark field, while the rest displacement ∆RA
j→i is a weighted average of

the distances between pairs of points in the two landmark fields.

While we have presented the 2D proof for convenience, this proof also works for navigation in one-dimensional
geometries with one-dimensional attractor networks, where the rest displacement ∆XA

j→i is a scalar.

IX. CONNECTION TO EXPERIMENTS

We saw above that exploration in a simple 1D geometry lead to a consistent internal map in which the attractor
network phase was mapped onto the current physical position alone, independent of path history (Fig. 4C). This
consistency arises through the elastic relaxation process in Eq. 8(Main) and Eq. 9(Main), which makes the distance
between the landmark cells in unrolled phase XL

E − XL
W equal to the physical distance between their firing fields L,

just like two particles connected by a spring with rest length L (Fig. 4E). Likewise, we have showed that navigation of
an arbitrary environment will yield a “particles on springs” elastic relaxation process in 2D. While the 1D situation
generalizes to two dimensions if there are only two landmarks, namely a west and east border cell (Fig. 6A1), yielding
a rest length of Lx̂, adding more landmarks yields a more complex elastic relaxation process that we will build
intuition about.

Consider the addition of a south-border landmark cell, in a 2D environment. How will the addition of this third
landmark field affect the internal map?

In this case, east and west landmark particles will be connected by a spring of rest length ∆RA
E→W = Lx̂, as before,

but they will each also be connected to the south landmark particle with springs. These springs have a rest length
vector which is smaller than Lx̂/2, as contributions from the overlap between firing fields dominate the rest length.
We may build some intuition about this process (See Sec. XI 2 C for more detail) by approximating:

MWE = MSE = MSW, ∆RA
W→E = Lx̂, ∆RA

S→W = ∆RA
E→S = 0,

which will yield a learned internal map of:

RL
E = RL

S + Lx̂/3, RL
W = RL

S − Lx̂/3, RL
E −RL

W = 2Lx̂/3 < ∆RA
W→E.

Intuitively, as the animal travels from the east or west walls to the south walls, the landmark pinning phases of each
of these three border cells will be attracted towards each other. In general, the combined three particle elastic system
will settle into an equilibrium configuration in which the difference in unrolled phase between east and west landmarks
will be less than the physical separation Lx̂, or equivalently the rest length ∆RA

E→W of the spring connecting them.
While we have presented a very simple case, we emphasize that more complex, non-overlapping distributions yield
the same deformations.

This deformation and contraction of the internal map implies that the attractor phase assigned to any physical
position in the interior will be relatively phase advanced (retarded) if the animal is on a trajectory leaving the west
(east) wall. This path dependence in the attractor phase is entirely analogous to that seen in Fig. 4B. However, the
reason is completely different. In Fig. 4B, the landmark particles are not separated by the rest length of the spring
connecting them because the environment is not fully learned and so the particles are out of equilibrium, whereas in
Fig. 6A2, the particles are not separated by the rest length, even in a fully learned environment, because additional
springs from the south landmark create excess compression.

This theory makes a striking experimentally testable prediction, namely that even in a fully learned 2D environment,
grid cell firing fields, when computed on subsets of animal trajectories conditioned on leaving a particular border,
will be shifted towards that border (Fig. 6B). This shift occurs because at any given position, the attractor phase
depends on the most recently encountered landmark. In particular, on a west to east (east to west) trajectory, the
attractor phase will be advanced (retarded) relative to a east to west (west to east) trajectory. Thus on a west to
east trajectory, the advanced phase will cause grid cells to fire earlier, yielding west shifted grid cell firing fields as a
function of position. Similarly on an east to west trajectory, grid fields will be east shifted. In summary, the theory
predicts grid cell firing patterns conditioned on trajectories leaving the west (east) border will be shifted west (east).

While we have derived this prediction qualitatively using the conceptual mass-spring picture in Fig. 6A2, we confirm
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A. Pre-processing of trajectories

To control for the e↵ect of head direction and running speed, we preprocessed the data by translating

r(t) ! r(t) + 1cm ⇥ ĤD(t),

where ĤD(t) is a unit vector representing the animal’s head direction as a function of time. This is to avoid artifacts
related to tracking; a purely position-dependent firing rate model depends on some part of the animal’s body, which
unlikely to be exactly the position of the tracking diode. Because head direction is correlated with the last border
touched, head direction-depdendent shifts from this artifact would yield path-dependent shifts; our preprocessing
removes this possibility.

B. Subtraction of average animal position for shifts in patterns around firing fields

We define the path conditioned shift (Eq. SI.X.48) as the di↵erence between the average spike position within a
firing field and the mean animal position within that firing field.

SC,GC,↵ = hrSpk � r↵|C, rSpk 2 ↵ i � hr(t) � r↵|C, r(t) 2 ↵ i

The animal’s position within the firing field is subtracted to eliminate any systematic biases that might come from
the animal trajectory rather than the actual neural activity (Fig. SI.15).

FIG. SI.15:

Schematic of the motivation for subtracting mouse position in Eq. SI.X.48. An animal is most likely to be closest to
the last wall it touched; if the mean animal position was not subtracted from the mean spike position, this would
yield a path-dependent shift in spike positions purely dependent on animal trajectory rather than neural activity.
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[1] G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear, and K. Friston, PLOS Computational Biology 4, 1 (2008).
[2] We have chosen for the path integration and landmark inputs to not be fed into the nonlinearity for mathematical simplicity;

these can be fed in arbitrarily, although doing so yields di↵erent force functions for path integration and landmark input.
[3] sEC(u), sWC(u) could follow their own di↵erential equations [7, 24]; as long as they yield a perturbation which is linear

with animal velocity the mathematical techniques developed would still hold. We choose not to do so here for simplicity.
[4] A training session is roughly the same as a learning epoch.
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where ĤD(t) is a unit vector representing the animal’s head direction as a function of time. This is to avoid artifacts
related to tracking; a purely position-dependent firing rate model depends on some part of the animal’s body, which
unlikely to be exactly the position of the tracking diode. Because head direction is correlated with the last border
touched, head direction-depdendent shifts from this artifact would yield path-dependent shifts; our preprocessing
removes this possibility.

B. Subtraction of average animal position for shifts in patterns around firing fields

We define the path conditioned shift (Eq. SI.X.48) as the di↵erence between the average spike position within a
firing field and the mean animal position within that firing field.

SC,GC,↵ = hrSpk � r↵|C, rSpk 2 ↵ i � hr(t) � r↵|C, r(t) 2 ↵ i

The animal’s position within the firing field is subtracted to eliminate any systematic biases that might come from
the animal trajectory rather than the actual neural activity (Fig. SI.15).

FIG. SI.15:

Schematic of the motivation for subtracting mouse position in Eq. SI.X.48. An animal is most likely to be closest to
the last wall it touched; if the mean animal position was not subtracted from the mean spike position, this would
yield a path-dependent shift in spike positions purely dependent on animal trajectory rather than neural activity.

XIII. STUFF FOR FIGURES

RL
W+�RA

W!E, RL
E+�RA

E!W

�RA
W!E �RA

E!W

[1] G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear, and K. Friston, PLOS Computational Biology 4, 1 (2008).
[2] We have chosen for the path integration and landmark inputs to not be fed into the nonlinearity for mathematical simplicity;

these can be fed in arbitrarily, although doing so yields di↵erent force functions for path integration and landmark input.
[3] sEC(u), sWC(u) could follow their own di↵erential equations [7, 24]; as long as they yield a perturbation which is linear

with animal velocity the mathematical techniques developed would still hold. We choose not to do so here for simplicity.
[4] A training session is roughly the same as a learning epoch.

45

A. Pre-processing of trajectories

To control for the e↵ect of head direction and running speed, we preprocessed the data by translating

r(t) ! r(t) + 1cm ⇥ ĤD(t),
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A. Pre-processing of trajectories

To control for the e↵ect of head direction and running speed, we preprocessed the data by translating

r(t) ! r(t) + 1cm ⇥ ĤD(t),

where ĤD(t) is a unit vector representing the animal’s head direction as a function of time. This is to avoid artifacts
related to tracking; a purely position-dependent firing rate model depends on some part of the animal’s body, which
unlikely to be exactly the position of the tracking diode. Because head direction is correlated with the last border
touched, head direction-depdendent shifts from this artifact would yield path-dependent shifts; our preprocessing
removes this possibility.

B. Subtraction of average animal position for shifts in patterns around firing fields

We define the path conditioned shift (Eq. ??) as the di↵erence between the average spike position within a firing
field and the mean animal position within that firing field.

SC,GC,↵ = hrSpk � r↵|C, rSpk 2 ↵ i � hr(t) � r↵|C, r(t) 2 ↵ i

The animal’s position within the firing field is subtracted to eliminate any systematic biases that might come from
the animal trajectory rather than the actual neural activity (Fig. ??).

FIG. SI.15:

Schematic of the motivation for subtracting mouse position in Eq. ??. An animal is most likely to be closest to the
last wall it touched; if the mean animal position was not subtracted from the mean spike position, this would yield a
path-dependent shift in spike positions purely dependent on animal trajectory rather than neural activity.

XIII. STUFF FOR FIGURES
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[] G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear, and K. Friston, PLOS Computational Biology 4, 1 (2008).
[] We have chosen for the path integration and landmark inputs to not be fed into the nonlinearity for mathematical simplicity;

these can be fed in arbitrarily, although doing so yields di↵erent force functions for path integration and landmark input.
[] sEC(u), sWC(u) could follow their own di↵erential equations [? ? ]; as long as they yield a perturbation which is linear

with animal velocity the mathematical techniques developed would still hold. We choose not to do so here for simplicity.
[] A training session is roughly the same as a learning epoch.
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FIG. SI.10:

A1) For two landmark cells, the rest length ∆RA
W→E of the spring connecting them equals the physical width L of

the environment, and so the two landmark particles learn unrolled pinning phases RL
E and RL

W obeying the spatial
consistency condition (RL

E −RL
W)Eq = ∆RA

W→E = Lx̂ as in Fig. 4(Main) C. Blue and red arrows represent animal

trajectories between the west and east walls, having equal and opposite path integration distance ∆RA
W→E, ∆RA

E→W.

A2) The addition of a southern landmark cell will cause a pinning effect which pulls RL
W,RL

E closer together. The
animal can travel from the east and west landmark field to the southern landmark field with little path integration at
all (blue/black and black/red arrow pairs), yielding ∆RA

W→S ≈ 0, ∆RA
S→E ≈ 0. B) If the attractor phase is advanced

on a west to east trajectory (blue) relative to an east to west trajectory (red), then any particular grid cell (in this
case the shaded grey cell) will fire earlier (later) on west-to-east (east-to-west) trajectory. Thus grid fields computed
from trajectories leaving the west (east) border will shifted west (east). C1) When landmark pinning phases are
pulled together closer than the path integration distance between them, then the attractor phase will shift away from
whichever wall the animal last encountered. Therefore it will phase advance on west-to-east trajectories relative to
east-to-west trajectories, as in Fig. 4B and Fig. 6B. C2) Thus simulations of Eq. 15 and Eq. 13 lead to grid cell firing
patterns shifted towards whichever wall the animal last encountered. D) Schematic of the distribution of landmark
cells for simulations of squares environments. To model a heterogeneous distribution of landmark cell degrees of
localization, we include both landmark cells which fire uniformly along a boundary, as well as semi-elliptical landmark
cells which are localized to a section of a boundary.

this intuition through direct numerical simulations of the full circuit dynamics in Eq. 15 and Eq. 13 (Fig. 6C2, D).
Under reasonable parameters, our simulations can yield path-dependent shifts of up to ∼2 cm towards whichever wall
the animal last touched (Sec. XII).
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2 · R̄S(rB) =
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drA

⁄ 0
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dtÕ

⁄
Dr(t)Pr(r(t)) · [32]

Mem(r, 0, tÕ)[◊(rA) + k · (rB ≠ rA)] · Ê(rA)
#
”(r(0) ≠ rB)”(r(tÕ) ≠ rA) + ”(r(0) ≠ rA)”(r(tÕ) ≠ rB)

$
= [33]

2
⁄

drAS(rA, rB)[◊(rA) + k · (rB ≠ rA)] · Ê(rA) [34]

Where our matrix entries:

2S(rA, rB) =
⁄ 0

≠Œ
dtÕ

⁄
Dr(t)Pr(r(t)) Mem(r, 0, tÕ)

#
”(r(0) ≠ rB)”(r(tÕ) ≠ rA) + ”(r(0) ≠ rA)”(r(tÕ) ≠ rB)

$

are symmetric with respect to the swapping of rB, rA.

This proof assumes uniform density of animal positions with uniform areas and strengths of each landmark cell.
The proof can be generalized beyond these constraints by making e�ective particles corresponding to certain landmarks
more “massive”, but here we present the simpler proof in the interest of clarity.

G. Simulations

In our simulations, we discretize space onto a grid. For simplicity, we have the animal follow di�usive dynamics,
implemented through a random walk; at every time step, the animal moves to one of four neighboring cell; any
move which would take the animal outside the box is prohibited. The animal has a position self-estimate RS

t , which
undergoes discrete path-integration at every time step:

RS
t+1 æ RS

t + �rt.

Afterwards, the position self-estimate is pulled towards the position estimates of any landmark cells which are firing:

RS
t+1 æ e≠Ê(r)�tRS

t+1 +
!
1 ≠ e≠Ê(r)�t

"
RL(r).

At every learning epoch T, the simulated animal is placed in the box with an initial position and position self-estimate
and explores to get good statistics. R̄S(r) is logged, and at the end of each learning epoch, the position estimate of
each landmark cell i is updated to be the average position self-estimate when the landmark cell is firing.

RL
i,T+1 æ R̄S

i,T

RL
i,T will converge after a handful of learning epochs. The learned states are initialized to their firing field center of

masses.
The Grid Cell pattern is visualized by using a truncated parabolic firing rate max(1 ≠

1
„̨A≠„̨0

D

22
, 0), where the field

width D is chosen to be 2fi/5.

H. Shear

One geometric e�ect observed is the shearing grid cell firing fields due to landmark cells. Starting o� with a gain
matrix

¡
K with a rotation component leads to shearing by the walls (Fig. 14). Because the periodicity of the attractor

pattern along the East-West walls is
Ô

3/2 longer than the periodicity along the North-South walls, the shearing is
dominated by that of the North-South walls. This leads to a Y-Sheared Rotated pattern; this correlation between
rotation and shear is the opposite of what is observed in (7), raising more questions about the underlying mechanisms
behind the shearing of these patterns.
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DRAFT
Fig. 14. a) Setting the gain matrix

¡
K to have a rotation component will lead to a rotated grid pattern. b)The south wall will give a positive „v force on the attractor

network when the animal is in the southwest corner and a negative „v force when the animal is in the south-east corner. The west will give a negative „u force on
the attractor network when the animal is in the southwest corner and a positive „u force when the animal is in the northwest corner. Due to the periodicity, the
distribution W̃South(„̨L) repeats itself more times, is more concentrated, and has a stronger effect than W̃West(„̨L). c)The NS walls give the pattern a Y-Shear, and
the EW walls give the pattern an X-shear, but the effect from the NS walls is stronger. This leads to a Y-sheared rotated pattern.

ShiftE,GC · x̂, ShiftW,GC · x̂ ShiftN,GC · ŷ ShiftS,GC · ŷ
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FIG. SI.11:

A) Schematic of observed shifts. An
animal traveling from the east wall will
have its firing patterns east-shifted; an
animal traveling from the west wall
will have its firing patterns west-shifted.
Likewise, an animal traveling from the
north (south) wall will have its fir-
ing patterns north (south) shifted. B)
Path-dependent shifts demonstrated by
Cross-Correlograms of individual grid
cells. Most cells fall on the upper left
of the plots, showing that the patterns
tend to be shifted towards whichever
wall the animal last touched for both
the EW Walls (P = 1.5 · 10−5, Bino-
mial Test, P = 1.5 · 10−5, Sign-Flip
Test), and the NS walls (P = 10−7,
Binomial Test, P = 10−7, Sign-Flip
Test). B) The path-dependent shifts
is best visualized through the Cross-
Correlogram averaged over all grid cells.
C) Path-dependent shifts demonstrated
by Cross-Correlograms of individual grid
cells. Most cells fall on the upper left of
the plots, showing that the patterns are
shifted towards whichever wall the ani-
mal last touched for both the EW Walls
(P = 3 ·10−4 Binomial Test, P = 2 ·10−2

Sign-Flip Test), and the NS walls (P =
10−5 Binomial Test, P = 10−5 Sign-Flip
Test). D) The path-dependent shifts is
best visualized through a histogram of
individual spike displacements.

1. Experimental observation of path-dependent shifts

We searched for such subtle shifts in a population of 143 grid cells from 14 different mice that had been exploring
a familiar, well-learned, 1-meter open field (Sec. XII 2), using two separate analyses, based on cross-correlations and
spike shifts with respect to field centers.
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A. Path conditioned rate maps

One method for detecting a systematic firing field shift across many grid fields is to cross-correlate firing rate maps
conditioned on trajectories leaving two different borders (Sec. IX 1 A). For example, for each cell, we can ask how
much and in what direction we must shift its west border conditioned firing field to match, or correlate as much as
possible with, the same cell’s east conditioned firing field. We constructed maps of firing rate as a function of spatial
position conditioned on the animal having last touched the north wall more recently than it touched the south wall,
etc. An animal was defined to have “touched” a wall when the head-tracking diodes came within 10 cm of the wall
(varying this distance did not significantly effect our results).

A type of cross-correlation was taken, using the cosine-angle between two path-conditioned rate maps.

CC1C2GC (∆rC) =

∣∣sC1GC(r + ∆rC)sC2GC(r)
∣∣

∣∣sC1GC(r + ∆rC)
∣∣ ∣∣sC2GC(r)

∣∣ ,

where the mean firing rate is subtracted, and the inner product is only calculated using bins where there is data. To
show significance, we calculate

CEW
GC (5cmx̂)−CEW

GC (−5cmx̂), CNS
GC(5cmŷ)−CNS

GC(−5cmŷ)

And show that the patterns are shifted towards whichever wall the animal last touched for both the EW Walls
(CEW

GC (5cm x̂)−CEW
GC (−5cm x̂) > 0, P = 1.5 · 10−5, Binomial Test, P = 1.5 · 10−5, Sign-Flip Test), and the NS walls

(CNS
GC(5cm ŷ)−CNS

GC(−5cm ŷ), P = 10−7, Binomial Test, P = 10−7, Sign-Flip Test), in agreement with the theory.
Overall, this analysis shows that grid patterns are shifted towards the most recently encountered wall, both for the

NS walls (3 cm, P = 1.5 · 10−5, Binomial Test, P = 1.5 · 10−5, Sign-Flip Test) and the EW Walls (1.5 cm, P = 10−7,
Binomial Test, P = 10−7, Sign-Flip Test), matching the sign and magnitude seen in simulations. We avoid any
sort of smoothing to prevent artifacts which might show up an experimental signature; as such, the bin size of the
computed sCGC(r) is 5cm× 5cm, and each individual trial leaves many bins for which sCGC(r) is not defined; we create
finer-grained cross-correlelograms with fewer undefined bins by choosing bin sizes of 5/3 cm, and smoothing in the
manner of [24], but these maps are not used for showing statistical significance.

B. Spike displacement

Our results in path-conditioned rate maps can be corroborated by computing shifts in spikes relative to firing field
centers, when conditioning spikes on the path history (Sec. IX 1 B). We used an adaptive smoothed rate map to
identify firing fields [25]. Fields were detected as connected regions with a total area greater than 5 bins (∼ 10 cm2),
where each bin had a firing rate above a threshold of binned firing rates for that rate map. For each firing field center,
we gather spikes recorded in that neighborhood. Then, for each path condition C and each firing field center rff, we
calculate the average spike position rSpk within that firing field, and subtract the average mouse position r(t) within
that firing field (See Sec. XII 2 B for explanation).

SC,GC,ff = 〈rSpk − rff|C, rSpk ∈ ff 〉 − 〈r(t)− rff|C, r(t) ∈ ff 〉 (SI.IX.52)

We calculate the path-dependent shift of an individual grid cell as the average shift of all firing fields in the center:

SC,GC =
∑

ff

SC,GC,ff

and examine how the shifts depend on which wall the animal last touched. To test for statistical significance, we
calculate the relative shifts between path conditions for each cell:

∆SEW,GC = (SE,GC − SW,GC) · x̂, ∆SNS,GC = (SN,GC − SS,GC) · ŷ.

We test whether ∆SEW,GC, ∆SNS,GC are significantly different from zero; for completeness, we perform both binomial
tests, which only depend on the sign of ∆SEW,GC, ∆SNS,GC, as well as magnitude-weighted sign-flip tests.

Again, the patterns are shifted towards whichever wall the animal last touched (Fig. 7 C) for both the NS walls
(.5 cm, P = 10−5 Binomial Test, P = 10−5 Sign-Flip Test) and the EW Walls (.5 cm, P = 3 · 10−4 Binomial Test,
P = 2 ·10−2 Sign-Flip Test). The discrepancy in the estimated magnitude of the shift between the methods of analysis
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is likely due to poorly defined firing fields; a method based on firing field centers will give a lower signal-to-noise ratio,
and thus a lower shift magnitude, than the cross-correlogram method.

2. Mechanical deformations in complex environments

Another experimental observation that can be reproduced by our theory is the distortion [26, 27] of grid cell patterns
seen in an irregular environment (Fig. 8A). In our model, landmark cells with firing fields distributed across an entire
wall will pull the attractor phase to its associated landmark pinning phases regardless of where along the wall the
animal is. Here, we simulate Eq. SI.VII.42 , Eq. SI.VII.43 by discretizing the learning dynamics and using a random
walk model for animal trajectories (Sec. XII). Experimental landmark cell firing fields associated with borders are
heterogeneous; some are localized along a border, while others are distributed across an entire border. To replicate
this distribution, we have two types of landmark cells in our model. (1) Landmark cells having uniform wall-length
firing field, with a width of 10cm. (2) More localized, overlapping, firing fields along each wall.

The presence of a diagonal wall then causes the average attractor phase as a function of position to curve towards
the wall, yielding spatial grid cell patterns that curve away from the wall (Fig. 8B, C). Previous theoretical accounts
of this grid cell deformation have relied on purely phenomenological models that treated individual grid cell firing
fields as particles with mostly repulsive interactions [28], without a clear mechanistic basis underlying this interaction.
Here we provide, to our knowledge for the first time, a model with a clear mechanistic basis for such deformations,
grounded in the interaction between attractor based path integration and landmark cells with plastic synapses. Such
dynamics yields an emergent elasticity where the particles are landmark cell synapses rather than individual firing
field centers.
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latter, we divided the trapezoid and square into two equal parts (Fig. 4a;

area of half-trapezoid 0.51 m 2, half-square 0.41 m 2) and compared firing

on either side. Figure 4b, c shows that the local spatial structure (defined

by the spatial autocorrelogram) differs more strongly between the two

sides of the trapezoid than between the sides of the square (r 5 0.11 6

0.07 versus 0.50 6 0.06, trapezoid and square, respectively, P , 0.001,

t 5 24.0, df 5 18, two-sample t-test, 10 grid modules, 32 grid cells).

Moreover, gridness was lower in the left of the trapezoid than the right

(Fig. 4d, 20.35 6 0.07 and 0.23 6 0.17, respectively, P 5 0.006, t 5

23.11, df 5 18, two-sample t-test) but not in the square (0.71 6 0.09

and 0.68 6 0.11, P 5 0.87, t 5 0.17, df 5 18, two-sample t-test). Grid-

ness was lower on the right of the trapezoid compared to both parts of

the square even though they are of comparable shape and area (P 5

0.009; F 5 6.18; two-way ANOVA), suggesting an influence from the

left side of the trapezoid. Additionally, the diameters of the individual

fields were larger on the left of the trapezoid than the right (Fig. 4e,

P , 0.001, t 5 4.1, df 5 18, two-sample t-test) but not in the square

(P 5 0.39, t 5 0.88, df 5 18, two-sample t-test). Notably, the field sizes

on the right of the trapezoid were not different from those on either side

of the square (P 5 0.15; F 5 2.07; two-way ANOVA).

We also examined how the orientations and wavelengths of the three

grid components computed from the spatial autocorrelogram differed

between sides of the two environments (Fig. 4f, g). The orientation of

the first component (closest to the horizontal axis; Extended Data Fig. 6)

was no more variable between the sides of the trapezoid than the sides

of the square (mean orientation change of 11.6u6 2.5u and 8.0u6 0.8u,

trapezoid and square, respectively, P 5 0.19, t 5 21.36, df 5 16, two-

sample t-test). However, the other two components differed more in

the trapezoid than in the square (second: 19.2u6 4.9u and 4.7u6 0.3u

P 5 0.004, t 5 23.41, df 5 14; third: 21.4u6 4.6u and 7.9u6 0.8u, P 5

0.005, t 5 -3.3, df 5 14, two-sample t-test). Similarly, the first wavelength

was no more variable in the trapezoid than the square (mean wavelength

change: 4.4 6 1.2 versus 2.3 6 0.4 cm, trapezoid and square, respect-

ively, P 5 0.12, t 5 21.6, df 5 16, two-sample t-test), while the differ-

ences for the second (6.1 6 1.0 versus 1.9 6 0.5 cm, P 5 0.001, t 5 24.1,

df 5 14) and third wavelengths (10.1 6 2.8 cm versus 3.8 6 0.7 cm,

P 5 0.02, t 5 22.7, df 5 14) were more pronounced in the trapezoid.

These localized changes in grid components manifest as a rotation and

stretching of the grid pattern across the trapezoid (Fig. 4h–k). Indeed

the spatial correlation between the two halves of the trapezoid at the

optimal rotation angle (that is, the one maximising the correlation be-

tween left and right sides) was still lower compared to the square (Fig. 4h, j;

r 5 0.30 6 0.05 trapezoid and 0.63 6 0.05 square, P 5 0.0002, t 5 24.6,

df 5 18, two-sample t-test), indicating rescaling as well as rotation

(Fig. 4k).To eliminate the possibility that these observations arose from under-

sampling of the grid pattern in the trapezoid, we generated idealized

grid firing (scale and orientation matched to the data) for a square and

trapezoid environment (Extended Data Fig. 7). This control data exhib-

ited neither an increase in ellipticity nor in inhomogeneity. Further-

more, although the animals’ behaviour was polarized between the two

halves of the trapezoid (Extended Data Fig. 4), there was no correlation

between the extent of polarization and differences in grid properties be-

tween the sides, ruling out a behavioural explanation. Indeed it is known

that stereotypical behaviour in the open field does not significantly de-

grade the hexagonal grid structure 21.

Our results show that most assumptions about the invariant nature

of grid cell firing are invalid. In particular the role of environmental

boundaries has been underestimated. Our findings reveal that grid pat-

terns are permanently shaped by environmental geometry as well as by

internal network processes (Extended Data Figs 8 and 9). Notably, we

have shown that grid patterns can be inhomogeneous even within a con-

tinuous two-dimensional space, due to the influence of non-parallel

boundaries (probably signalled by boundary cells). A differential influ-

ence from the boundaries probably also accounts for the ellipticity of

different grid modules 10, as well as the non-hexagonal symmetry of spa-

tially periodic non-grid cells 8. The results challenge the idea that the grid

cell system can act as a universal spatial metric for the cognitive map as

grid patterns change markedly between enclosures and even within the

same enclosure. An intriguing alternative is that grid cells provide a spa-

tial metric but that the asymmetries induced by highly polarized envir-

onments such as trapezoids produce distortions in the perception of space.

c

d

e

f

g
h

a

–20
0

20

–0.3

0

0.3

0.6

Rotation (deg)

C
or

re
la

tio
n

–20
0

20

–0.5

0

0.5

1

Rotation (deg)

C
or

re
la

tio
n

0.5 m

b

C
ha

ng
e 

in
 

or
ie

nt
at

io
n 

(d
eg

)

0

10

20

30

1
2

3

0

10

20

1
2

3

C
ha

ng
e 

in
 

w
av

el
en

gt
h 

(c
m

)

i

j

k

0.5 m

Si
m

ila
rit

y

tr
sq

0

0.3

0.6

–0.47
0.55

0.83
0.75

Left
Right

tr

sq

G
rid

ne
ss

–0.5

0

0.5

1

Trapezoid

Square

0

10

20

30 Trapezoid

Square

Correlation

0
0.4

0.8

0

10

20

30

Rotation (deg)

–20
0

20

0

10

20

30

M
od

ul
es

 (%
)

Left

Right

Left
Right

Left
Right

Fi
el

d 
di

am
et

er
 (c

m
)

Left
Right

Left
Right

M
od

ul
es

 (%
)

Figure 4 | Grid pattern is inhomogeneous in

trapezoids. a, Grid cell rate maps for the same cell

in trapezoid and square. Dashed line divides

enclosures into equal areas. b, c, Autocorrelograms

for each side of the trapezoid (tr) and square (sq)

are significantly more similar in the square than

the trapezoid (c). d, Gridness on two sides of the

trapezoid and square. Dashed line represents

gridness threshold 9. e, Field diameter is larger on

the left than the right of the trapezoid (P , 0.001,

t 5 4.1, df 5 18, two-sample t-test) but not

different in the square (P 5 0.39, t 5 0.88, df 5 18,

two-sample t-test). f, g, Change in orientations (f)

and wavelengths (g) of left/right parts of

trapezoid (black) and square (blue). h, j, Rotation

of right part of autocorrelogram relative to left

optimizes correlation in trapezoid but not

square (h) but still leaves a lower similarity (j)

(P 5 0.0002, t 5 24.6, df 5 18, two-sample t-test,

32 grid cells, 8 rats, 10 different grid modules).

i, Average grid rotation between two sides of

trapezoid (solid line) and square (dashed line).

k, Another example of right-to-left grid expansion

and rotation in trapezoid. All means 6 s.e.m.,

except for f, g, which shows means 6 s.d.

RESEARCH LETTER

2 3 4 | N A T U R E | V O L 5 1 8 | 1 2 F E B R U A R Y 2 0 1 5
Macmillan Publishers Limited. All rights reserved

©2015

Ea
st

-S
hi

fte
d 

O
bs

er
ve

d 
 F

iri
ng

 P
at

te
rn

W
es

t-S
hi

fte
d 

 
N

eu
ra

l A
ct

iv
ity

F
ir
in

g
F
ie

ld
� �
� �

F
ir
in

g
F
ie

ld
� �
� �

W
es

t-S
hi

fte
d 

O
bs

er
ve

d 

 F
iri

ng
 P

at
te

rn

Ea
st

-S
hi

fte
d 

 
N

eu
ra

l A
ct

iv
ity

la
tte

r,
w

e d
iv

id
ed

th
e t

ra
pe

zo
id

an
d

sq
ua

re
in

to
tw

o
eq

ua
l p

ar
ts

(F
ig

. 4
a;

ar
ea

of
ha

lf-
tr

ap
ez

oi
d

0.
51

m
2 , h

al
f-

sq
ua

re
0.

41
m

2 ) a
nd

co
m

pa
re

d
fir

in
g

on
ei

th
er

sid
e.

Fi
gu

re
4b

, c
sh

ow
s t

ha
t t

he
lo

ca
l s

pa
tia

l s
tr

uc
tu

re
(d

ef
in

ed

by
th

e s
pa

tia
l a

ut
oc

or
re

lo
gr

am
) d

iff
er

s m
or

e s
tr

on
gl

y
be

tw
ee

n
th

e t
w

o

si
de

s o
f t

he
tr

ap
ez

oi
d

th
an

be
tw

ee
n

th
e s

id
es

of
th

e s
qu

ar
e (

r5
0.

11
6

0.
07

ve
rs

us
0.

50
6

0.
06

, t
ra

pe
zo

id
an

d
sq

ua
re

, r
es

pe
ct

iv
el

y,
P

,
0.

00
1,

t5
2

4.
0,

df
5

18
, t

w
o-

sa
m

pl
e

t-
te

st
, 1

0
gr

id
m

od
ul

es
, 3

2
gr

id
ce

lls
).

M
or

eo
ve

r,
gr

id
ne

ss
w

as
lo

w
er

in
th

e l
ef

t o
f t

he
tr

ap
ez

oi
d

th
an

th
e r

ig
ht

(F
ig

. 4
d,

2
0.

35
6

0.
07

an
d

0.
23

6
0.

17
, r

es
pe

ct
iv

el
y,

P
5

0.
00

6,
t5

2
3.

11
, d

f5
18

, t
w

o-
sa

m
pl

e
t-

te
st

) b
ut

no
t i

n
th

e
sq

ua
re

(0
.7

1
6

0.
09

an
d

0.
68

6
0.

11
, P

5
0.

87
, t

5
0.

17
, d

f5
18

, t
w

o-
sa

m
pl

e
t-

te
st

).
G

ri
d-

ne
ss

w
as

lo
w

er
on

th
e

ri
gh

t o
f t

he
tr

ap
ez

oi
d

co
m

pa
re

d
to

bo
th

pa
rt

s o
f

th
e

sq
ua

re
ev

en
th

ou
gh

th
ey

ar
e

of
co

m
pa

ra
bl

e
sh

ap
e

an
d

ar
ea

(P
5

0.
00

9;
F

5
6.

18
; t

w
o-

w
ay

A
N

O
V

A
),

su
gg

es
tin

g
an

in
flu

en
ce

fr
om

th
e

le
ft

si
de

of
th

e
tr

ap
ez

oi
d.

A
dd

iti
on

al
ly

, t
he

di
am

et
er

s o
f t

he
in

di
vi

du
al

fie
ld

s
w

er
e

la
rg

er
on

th
e

le
ft

of
th

e
tr

ap
ez

oi
d

th
an

th
e

rig
ht

(F
ig

. 4
e,

P
,

0.
00

1,
t5

4.
1,

df
5

18
, t

w
o-

sa
m

pl
e

t-
te

st
)

bu
t

no
t

in
th

e
sq

ua
re

(P
5

0.
39

, t
5

0.
88

, d
f5

18
, t

w
o-

sa
m

pl
e t

-t
es

t)
. N

ot
ab

ly
, t

he
fie

ld
si

ze
s

on
th

e r
ig

ht
of

th
e t

ra
pe

zo
id

w
er

e n
ot

di
ffe

re
nt

fr
om

th
os

e o
n

ei
th

er
sid

e

of
th

e
sq

ua
re

(P
5

0.
15

; F
5

2.
07

; t
w

o-
w

ay
A

N
O

V
A

).

W
ea

lso
ex

am
in

ed
ho

w
th

eo
rie

nt
at

io
ns

an
d

w
av

el
en

gt
hs

of
th

e t
hr

ee

gr
id

co
m

po
ne

nt
s c

om
pu

te
d

fr
om

th
e

sp
at

ia
l a

ut
oc

or
re

lo
gr

am
di

ffe
re

d

be
tw

ee
n

sid
es

of
th

e
tw

o
en

vi
ro

nm
en

ts
(F

ig
. 4

f,
g)

. T
he

or
ie

nt
at

io
n

of

th
e f

irs
t c

om
po

ne
nt

(c
lo

se
st

to
th

eh
or

iz
on

ta
l a

xi
s;

Ex
te

nd
ed

D
at

aF
ig

. 6
)

w
as

no
m

or
e

va
ria

bl
e

be
tw

ee
n

th
e

si
de

s o
f t

he
tr

ap
ez

oi
d

th
an

th
e

si
de

s

of
th

e s
qu

ar
e (

m
ea

n
or

ie
nt

at
io

n
ch

an
ge

of
11

.6
u6

2.
5u

an
d

8.
0u

6
0.

8u
,

tr
ap

ez
oi

d
an

d
sq

ua
re

, r
es

pe
ct

iv
el

y,
P

5
0.

19
, t

5
2

1.
36

, d
f5

16
, t

w
o-

sa
m

pl
e

t-
te

st
).

H
ow

ev
er

, t
he

ot
he

r t
w

o
co

m
po

ne
nt

s d
iff

er
ed

m
or

e
in

th
e

tr
ap

ez
oi

d
th

an
in

th
e

sq
ua

re
(s

ec
on

d:
19

.2
u6

4.
9u

an
d

4.
7u

6
0.

3u

P
5

0.
00

4,
t5

2
3.

41
, d

f5
14

; t
hi

rd
: 2

1.
4u

6
4.

6u
an

d
7.

9u
6

0.
8u

, P
5

0.
00

5,
t5

-3
.3

, d
f5

14
, t

w
o-

sa
m

pl
e t

-t
es

t).
Si

m
ila

rly
, t

he
fir

st
w

av
el

en
gt

h

w
as

no
m

or
e v

ar
ia

bl
e i

n
th

e t
ra

pe
zo

id
th

an
th

e s
qu

ar
e (

m
ea

n
w

av
el

en
gt

h

ch
an

ge
: 4

.4
6

1.
2

ve
rs

us
2.

3
6

0.
4

cm
, t

ra
pe

zo
id

an
d

sq
ua

re
, r

es
pe

ct
-

iv
el

y,
P

5
0.

12
, t

5
2

1.
6,

df
5

16
, t

w
o-

sa
m

pl
e t

-t
es

t)
, w

hi
le

th
e d

iff
er

-

en
ce

s f
or

th
e s

ec
on

d
(6

.1
6

1.
0 v

er
su

s 1
.9

6
0.

5
cm

,P
5

0.
00

1,
t5

2
4.

1,

df
5

14
)

an
d

th
ir

d
w

av
el

en
gt

hs
(1

0.
1

6
2.

8
cm

ve
rs

us
3.

8
6

0.
7

cm
,

P
5

0.
02

, t
5

2
2.

7,
df

5
14

) w
er

e
m

or
e

pr
on

ou
nc

ed
in

th
e

tr
ap

ez
oi

d.

Th
es

e l
oc

al
iz

ed
ch

an
ge

s i
n

gr
id

co
m

po
ne

nt
sm

an
ife

st
as

a r
ot

at
io

n
an

d

st
re

tc
hi

ng
of

th
e

gr
id

pa
tte

rn
ac

ro
ss

th
e

tr
ap

ez
oi

d
(F

ig
. 4

h–
k)

. I
nd

ee
d

th
e

sp
at

ia
l c

or
re

la
tio

n
be

tw
ee

n
th

e
tw

o
ha

lv
es

of
th

e
tr

ap
ez

oi
d

at
th

e

op
tim

al
ro

ta
tio

n
an

gl
e (

th
at

is
, t

he
on

em
ax

im
is

in
g

th
e c

or
re

la
tio

n
be

-

tw
ee

n
lef

t a
nd

rig
ht

sid
es

)w
as

st
ill

lo
w

er
co

m
pa

re
d

to
th

e s
qu

ar
e (

Fi
g.

4h
, j;

r5
0.

30
6

0.
05

tr
ap

ez
oi

d
an

d
0.

63
6

0.
05

sq
ua

re
,P

5
0.

00
02

, t
5

2
4.

6,

df
5

18
, t

w
o-

sa
m

pl
e

t-
te

st
),

in
di

ca
tin

g
re

sc
al

in
g

as
w

el
l a

s
ro

ta
tio

n

(F
ig

. 4
k)

.
To

el
im

in
at

e t
he

po
ss

ib
ili

ty
th

at
th

es
e o

bs
er

va
tio

ns
ar

os
e f

ro
m

un
de

r-

sa
m

pl
in

g
of

th
e

gr
id

pa
tte

rn
in

th
e

tr
ap

ez
oi

d,
w

e
ge

ne
ra

te
d

id
ea

liz
ed

gr
id

fir
in

g
(s

ca
le

an
d

or
ie

nt
at

io
n

m
at

ch
ed

to
th

e d
at

a)
fo

r a
sq

ua
re

an
d

tr
ap

ez
oi

d
en

vi
ro

nm
en

t (
Ex

te
nd

ed
D

at
a F

ig
. 7

).
Th

is
co

nt
ro

l d
at

a e
xh

ib
-

ite
d

ne
ith

er
an

in
cr

ea
se

in
el

lip
tic

ity
no

r
in

in
ho

m
og

en
ei

ty
. F

ur
th

er
-

m
or

e,
al

th
ou

gh
th

e a
ni

m
al

s’
be

ha
vi

ou
r w

as
po

la
ri

ze
d

be
tw

ee
n

th
e

tw
o

ha
lv

es
of

th
e t

ra
pe

zo
id

(E
xt

en
de

d
D

at
a F

ig
. 4

),
th

er
e w

as
no

co
rr

el
at

io
n

be
tw

ee
n

th
e e

xt
en

t o
f p

ol
ar

iz
at

io
n

an
d

di
ffe

re
nc

es
in

gr
id

pr
op

er
tie

s b
e-

tw
ee

n
th

e s
id

es
, r

ul
in

go
ut

a b
eh

av
io

ur
al

ex
pl

an
at

io
n.

In
de

ed
it

is
kn

ow
n

th
at

st
er

eo
ty

pi
ca

l b
eh

av
io

ur
in

th
e o

pe
n

fie
ld

do
es

no
t s

ig
ni

fic
an

tly
de

-

gr
ad

e
th

e
he

xa
go

na
l g

ri
d

st
ru

ct
ur

e2
1 .

O
ur

re
su

lts
sh

ow
th

at
m

os
t a

ss
um

pt
io

ns
ab

ou
t t

he
in

va
ri

an
t n

at
ur

e

of
gr

id
ce

ll
fir

in
g

ar
e

in
va

lid
. I

n
pa

rt
ic

ul
ar

th
e

ro
le

of
en

vi
ro

nm
en

ta
l

bo
un

da
rie

s h
as

be
en

un
de

re
st

im
at

ed
.O

ur
fin

di
ng

s r
ev

ea
l t

ha
t g

rid
pa

t-

te
rn

s a
re

pe
rm

an
en

tly
sh

ap
ed

by
en

vi
ro

nm
en

ta
l g

eo
m

et
ry

as
w

el
l a

s b
y

in
te

rn
al

ne
tw

or
k

pr
oc

es
se

s (
Ex

te
nd

ed
D

at
a

Fi
gs

8
an

d
9)

. N
ot

ab
ly

, w
e

ha
ve

sh
ow

n
th

at
gr

id
pa

tte
rn

s c
an

be
in

ho
m

og
en

eo
us

ev
en

w
ith

in
a c

on
-

tin
uo

us
tw

o-
di

m
en

sio
na

l s
pa

ce
, d

ue
to

th
e

in
flu

en
ce

of
no

n-
pa

ra
lle

l

bo
un

da
rie

s (
pr

ob
ab

ly
si

gn
al

le
d

by
bo

un
da

ry
ce

lls
).

A
di

ffe
re

nt
ia

l i
nf

lu
-

en
ce

fr
om

th
e

bo
un

da
ri

es
pr

ob
ab

ly
al

so
ac

co
un

ts
fo

r t
he

el
lip

tic
ity

of

di
ffe

re
nt

gr
id

m
od

ul
es

10
, a

sw
el

l a
s t

he
no

n-
he

xa
go

na
l s

ym
m

et
ry

of
sp

a-

tia
lly

pe
rio

di
cn

on
-g

rid
ce

lls
8 . T

he
re

su
lts

ch
al

le
ng

e t
he

id
ea

th
at

th
e g

rid

ce
ll

sy
st

em
ca

n
ac

t a
s a

un
iv

er
sa

l s
pa

tia
lm

et
ri

c f
or

th
e c

og
ni

tiv
em

ap
as

gr
id

pa
tte

rn
s c

ha
ng

em
ar

ke
dl

y b
et

w
ee

n
en

cl
os

ur
es

an
d

ev
en

w
ith

in
th

e

sa
m

e e
nc

lo
su

re
.A

n
in

tr
ig

ui
ng

al
te

rn
at

iv
e i

s t
ha

t g
rid

ce
lls

pr
ov

id
e a

sp
a-

tia
l m

et
ric

bu
t t

ha
t t

he
as

ym
m

et
rie

s i
nd

uc
ed

by
hi

gh
ly

po
la

riz
ed

en
vi

r-

on
m

en
ts

su
ch

as
tra

pe
zo

id
sp

ro
du

ce
di

sto
rti

on
s i

n
th

ep
er

ce
pt

io
n

of
sp

ac
e.

c

d

e

f

g
h

a

–2
0

0
20

–0
.3

00.
30.

6

R
ot

at
io

n 
(d

eg
)

Correlation

–2
0

0
20

–0
.5

00.
51

R
ot

at
io

n 
(d

eg
)

Correlation

0.
5 

m

b

Change in 
orientation (deg)

010

20

30 1
2

3

0

10

20

1
2

3

Change in 
wavelength (cm)

i

j

k

0.
5 

m

Similarity

tr
sq

00.
30.

6

–0
.4

7
0.

55

0.
83

0.
75

Le
ft

R
ig

ht
tr

sq

Gridness

–0
.5

00.
5

1 Tr
ap

ez
oi

d

Sq
ua

re

010

20

30
Tr

ap
ez

oi
d

Sq
ua

re

C
or

re
la

tio
n

0
0.

4
0.

8

010

20

30

R
ot

at
io

n 
(d

eg
)

–2
0

0
20

010

20

30

Modules (%)

Le
ft

R
ig

ht

Le
ft R
ig

ht Le
ft R
ig

ht

Field diameter (cm)

Le
ft R

ig
ht

Le
ft R

ig
ht

Modules (%)

Fi
gu

re
4

| G
ri

d
pa

tt
er

n
is

in
ho

m
og

en
eo

us
in

tr
ap

ez
oi

ds
.

a,
G

rid
ce

ll
ra

te
m

ap
s f

or
th

e s
am

e
ce

ll

in
tr

ap
ez

oi
d

an
d

sq
ua

re
. D

as
he

d
lin

e
di

vi
de

s

en
cl

os
ur

es
in

to
eq

ua
l a

re
as

. b
, c

, A
ut

oc
or

re
lo

gr
am

s

fo
r e

ac
h

sid
e

of
th

e
tr

ap
ez

oi
d

(t
r)

an
d

sq
ua

re
(s

q)

ar
e

sig
ni

fic
an

tly
m

or
e

sim
ila

r i
n

th
e

sq
ua

re
th

an

th
e

tr
ap

ez
oi

d
(c

).
d,

G
rid

ne
ss

on
tw

o
sid

es
of

th
e

tr
ap

ez
oi

d
an

d
sq

ua
re

. D
as

he
d

lin
e

re
pr

es
en

ts

gr
id

ne
ss

th
re

sh
ol

d
9 . e

, F
ie

ld
di

am
et

er
is

la
rg

er
on

th
e

le
ft

th
an

th
e

rig
ht

of
th

e
tr

ap
ez

oi
d

(P
,

0.
00

1,

t5
4.

1,
df

5
18

, t
w

o-
sa

m
pl

e
t-

te
st

) b
ut

no
t

di
ffe

re
nt

in
th

e
sq

ua
re

(P
5

0.
39

, t
5

0.
88

, d
f5

18
,

tw
o-

sa
m

pl
e

t-
te

st
).

f,
g,

C
ha

ng
e

in
or

ie
nt

at
io

ns
(f

)

an
d

w
av

el
en

gt
hs

(g
) o

f l
ef

t/r
ig

ht
pa

rt
s o

f

tr
ap

ez
oi

d
(b

la
ck

) a
nd

sq
ua

re
(b

lu
e)

. h
, j

, R
ot

at
io

n

of
ri

gh
t p

ar
t o

f a
ut

oc
or

re
lo

gr
am

re
la

tiv
e

to
le

ft

op
tim

iz
es

co
rr

el
at

io
n

in
tr

ap
ez

oi
d

bu
t n

ot

sq
ua

re
(h

) b
ut

st
ill

le
av

es
a

lo
w

er
si

m
ila

ri
ty

(j)

(P
5

0.
00

02
, t

5
2

4.
6,

df
5

18
, t

w
o-

sa
m

pl
e

t-
te

st
,

32
gr

id
ce

lls
, 8

ra
ts

, 1
0

di
ffe

re
nt

gr
id

m
od

ul
es

).

i,
A

ve
ra

ge
gr

id
ro

ta
tio

n
be

tw
ee

n
tw

o
sid

es
of

tr
ap

ez
oi

d
(s

ol
id

lin
e)

an
d

sq
ua

re
(d

as
he

d
lin

e)
.

k,
A

no
th

er
ex

am
pl

e
of

rig
ht

-t
o-

le
ft

gr
id

ex
pa

ns
io

n

an
d

ro
ta

tio
n

in
tr

ap
ez

oi
d.

A
ll

m
ea

ns
6

s.e
.m

.,

ex
ce

pt
fo

r f
, g

, w
hi

ch
sh

ow
s m

ea
ns

6
s.d

.

RE
SE

AR
CH

LE
TT

ER

2
3

4
|

N
A

T
U

R
E

|
V

O
L

5
1

8
|

1
2

F
E

B
R

U
A

R
Y

2
0

1
5

M
ac

m
ill

an
 P

ub
lis

he
rs

 L
im

ite
d.

 A
ll 

rig
ht

s 
re

se
rv

ed

©
20
15

Fi
gu

re
8:

a)
Si

m
pl

e
ex

am
pl

e
of

sy
st

em
at

ic
er

ro
rs

in
th

e
po

si
tio

n-
se

lf
es

tim
at

e
as

a
fu

nc
tio

n
of

gr
ou

nd
-tr

ut
h

po
st

iio
n

R̄
(r

).
C

ue
s n

ea
r t

he
w

al
l “

pu
ll”

th
e

po
si

tio
n

se
lf-

es
tim

at
e

to
w

ar
ds

th
e

le
ar

ne
d

st
at

e
R

re
ga

rd
le

ss
of

th
e

lo
ca

tio
n

of
th

e
an

im
al

w
ith

in
th

e
cu

e
fie

ld
, r

es
ul

tin
g

in
an

in
w

ar
ds

pu
ll

of
th

e

sp
at

ia
l r

ep
re

se
nt

at
io

n.
Th

is
pr

ed
ic

ts
pa

th
-d

ep
en

de
nt

sh
ift

s
in

th
e

ce
nt

er
of

th
e

ar
en

a,
w

hi
ch

de
pe

nd

on
w

hi
ch

w
al

l t
he

an
im

al
la

st
to

uc
he

d.
b)

A
ea

st
-s

hi
ft

in
po

si
tio

n
se

lf-
es

tim
at

e
yi

el
ds

a
w

es
t-s

hi
ft

in
th

e
ob

se
rv

ed
fir

in
g

ra
te

, a
nd

vi
ce

ve
rs

a.
Th

e
sh

ift
pr

ed
ic

te
d

in
th

e
m

od
el

is
th

us
co

ns
is

te
nt

w
ith

th
e

ex
pe

rim
en

ta
lly

ob
se

rv
ed

sh
ift

s.
c)

A
di

st
or

te
d

bo
x

w
ith

on
e

cu
e

fo
r e

ac
h

w
al

l.
Th

e
po

si
tio

n
se

lf-

es
tim

at
e

w
ill

be
pu

lle
d

up
to

th
e

di
ag

on
al

w
al

l,
w

hi
ch

on
ly

en
co

de
s f

or
a

si
ng

le
po

si
tio

n.
Th

er
ef

or
e,

th
e

ob
se

rv
ed

fir
in

g
pa

tte
rn

is
sh

ift
ed

do
w

nw
ar

ds
fr

om
th

e
w

al
l,

as
w

e
se

e
in

c2
. T

hi
s i

s q
ua

lit
at

iv
el

y

co
ns

is
te

nt
w

ith
ex

pe
rim

en
ta

l d
at

a
(c

3)
.

St
at

e 
of

 
la

nd
m

ar
k 

ce
lls

Ph
as

e 
as

 a
 

fu
nc

tio
n 

of
 p

at
h 

hi
st

or
y

Ph
as

es
 

ob
se

rv
ed

 b
y 

la
nd

m
ar

k 
ce

lls

d�
i
/d

T
=
�̄

i
�
� i

Le
ar

ni
ng

  
Ru

le

Ph
as

es
 

le
ar

ne
d 

by
 

la
nd

m
ar

k 
ce

lls

Fe
ed

ba
ck

� i
�

�
(r

),
�(

r)
�

�
(r

(t
),

t)
�

�̄
(r

)
�

�̄ ī�
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latter, we divided the trapezoid and square into two equal parts (Fig. 4a;

area of half-trapezoid 0.51 m 2, half-square 0.41 m 2) and compared firing

on either side. Figure 4b, c shows that the local spatial structure (defined

by the spatial autocorrelogram) differs more strongly between the two

sides of the trapezoid than between the sides of the square (r 5 0.11 6

0.07 versus 0.50 6 0.06, trapezoid and square, respectively, P , 0.001,

t 5 24.0, df 5 18, two-sample t-test, 10 grid modules, 32 grid cells).

Moreover, gridness was lower in the left of the trapezoid than the right

(Fig. 4d, 20.35 6 0.07 and 0.23 6 0.17, respectively, P 5 0.006, t 5

23.11, df 5 18, two-sample t-test) but not in the square (0.71 6 0.09

and 0.68 6 0.11, P 5 0.87, t 5 0.17, df 5 18, two-sample t-test). Grid-

ness was lower on the right of the trapezoid compared to both parts of

the square even though they are of comparable shape and area (P 5

0.009; F 5 6.18; two-way ANOVA), suggesting an influence from the

left side of the trapezoid. Additionally, the diameters of the individual

fields were larger on the left of the trapezoid than the right (Fig. 4e,

P , 0.001, t 5 4.1, df 5 18, two-sample t-test) but not in the square

(P 5 0.39, t 5 0.88, df 5 18, two-sample t-test). Notably, the field sizes

on the right of the trapezoid were not different from those on either side

of the square (P 5 0.15; F 5 2.07; two-way ANOVA).

We also examined how the orientations and wavelengths of the three

grid components computed from the spatial autocorrelogram differed

between sides of the two environments (Fig. 4f, g). The orientation of

the first component (closest to the horizontal axis; Extended Data Fig. 6)

was no more variable between the sides of the trapezoid than the sides

of the square (mean orientation change of 11.6u6 2.5u and 8.0u6 0.8u,

trapezoid and square, respectively, P 5 0.19, t 5 21.36, df 5 16, two-

sample t-test). However, the other two components differed more in

the trapezoid than in the square (second: 19.2u6 4.9u and 4.7u6 0.3u

P 5 0.004, t 5 23.41, df 5 14; third: 21.4u6 4.6u and 7.9u6 0.8u, P 5

0.005, t 5 -3.3, df 5 14, two-sample t-test). Similarly, the first wavelength

was no more variable in the trapezoid than the square (mean wavelength

change: 4.4 6 1.2 versus 2.3 6 0.4 cm, trapezoid and square, respect-

ively, P 5 0.12, t 5 21.6, df 5 16, two-sample t-test), while the differ-

ences for the second (6.1 6 1.0 versus 1.9 6 0.5 cm, P 5 0.001, t 5 24.1,

df 5 14) and third wavelengths (10.1 6 2.8 cm versus 3.8 6 0.7 cm,

P 5 0.02, t 5 22.7, df 5 14) were more pronounced in the trapezoid.

These localized changes in grid components manifest as a rotation and

stretching of the grid pattern across the trapezoid (Fig. 4h–k). Indeed

the spatial correlation between the two halves of the trapezoid at the

optimal rotation angle (that is, the one maximising the correlation be-

tween left and right sides) was still lower compared to the square (Fig. 4h, j;

r 5 0.30 6 0.05 trapezoid and 0.63 6 0.05 square, P 5 0.0002, t 5 24.6,

df 5 18, two-sample t-test), indicating rescaling as well as rotation

(Fig. 4k).To eliminate the possibility that these observations arose from under-

sampling of the grid pattern in the trapezoid, we generated idealized

grid firing (scale and orientation matched to the data) for a square and

trapezoid environment (Extended Data Fig. 7). This control data exhib-

ited neither an increase in ellipticity nor in inhomogeneity. Further-

more, although the animals’ behaviour was polarized between the two

halves of the trapezoid (Extended Data Fig. 4), there was no correlation

between the extent of polarization and differences in grid properties be-

tween the sides, ruling out a behavioural explanation. Indeed it is known

that stereotypical behaviour in the open field does not significantly de-

grade the hexagonal grid structure 21.

Our results show that most assumptions about the invariant nature

of grid cell firing are invalid. In particular the role of environmental

boundaries has been underestimated. Our findings reveal that grid pat-

terns are permanently shaped by environmental geometry as well as by

internal network processes (Extended Data Figs 8 and 9). Notably, we

have shown that grid patterns can be inhomogeneous even within a con-

tinuous two-dimensional space, due to the influence of non-parallel

boundaries (probably signalled by boundary cells). A differential influ-

ence from the boundaries probably also accounts for the ellipticity of

different grid modules 10, as well as the non-hexagonal symmetry of spa-

tially periodic non-grid cells 8. The results challenge the idea that the grid

cell system can act as a universal spatial metric for the cognitive map as

grid patterns change markedly between enclosures and even within the

same enclosure. An intriguing alternative is that grid cells provide a spa-

tial metric but that the asymmetries induced by highly polarized envir-

onments such as trapezoids produce distortions in the perception of space.
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Figure 4 | Grid pattern is inhomogeneous in

trapezoids. a, Grid cell rate maps for the same cell

in trapezoid and square. Dashed line divides

enclosures into equal areas. b, c, Autocorrelograms

for each side of the trapezoid (tr) and square (sq)

are significantly more similar in the square than

the trapezoid (c). d, Gridness on two sides of the

trapezoid and square. Dashed line represents

gridness threshold 9. e, Field diameter is larger on

the left than the right of the trapezoid (P , 0.001,

t 5 4.1, df 5 18, two-sample t-test) but not

different in the square (P 5 0.39, t 5 0.88, df 5 18,

two-sample t-test). f, g, Change in orientations (f)

and wavelengths (g) of left/right parts of

trapezoid (black) and square (blue). h, j, Rotation

of right part of autocorrelogram relative to left

optimizes correlation in trapezoid but not

square (h) but still leaves a lower similarity (j)

(P 5 0.0002, t 5 24.6, df 5 18, two-sample t-test,

32 grid cells, 8 rats, 10 different grid modules).

i, Average grid rotation between two sides of

trapezoid (solid line) and square (dashed line).

k, Another example of right-to-left grid expansion

and rotation in trapezoid. All means 6 s.e.m.,

except for f, g, which shows means 6 s.d.
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latter, we divided the trapezoid and square into two equal parts (Fig. 4a;

area of half-trapezoid 0.51 m 2, half-square 0.41 m 2) and compared firing

on either side. Figure 4b, c shows that the local spatial structure (defined

by the spatial autocorrelogram) differs more strongly between the two

sides of the trapezoid than between the sides of the square (r 5 0.11 6

0.07 versus 0.50 6 0.06, trapezoid and square, respectively, P , 0.001,

t 5 24.0, df 5 18, two-sample t-test, 10 grid modules, 32 grid cells).

Moreover, gridness was lower in the left of the trapezoid than the right

(Fig. 4d, 20.35 6 0.07 and 0.23 6 0.17, respectively, P 5 0.006, t 5

23.11, df 5 18, two-sample t-test) but not in the square (0.71 6 0.09

and 0.68 6 0.11, P 5 0.87, t 5 0.17, df 5 18, two-sample t-test). Grid-

ness was lower on the right of the trapezoid compared to both parts of

the square even though they are of comparable shape and area (P 5

0.009; F 5 6.18; two-way ANOVA), suggesting an influence from the

left side of the trapezoid. Additionally, the diameters of the individual

fields were larger on the left of the trapezoid than the right (Fig. 4e,

P , 0.001, t 5 4.1, df 5 18, two-sample t-test) but not in the square

(P 5 0.39, t 5 0.88, df 5 18, two-sample t-test). Notably, the field sizes

on the right of the trapezoid were not different from those on either side

of the square (P 5 0.15; F 5 2.07; two-way ANOVA).

We also examined how the orientations and wavelengths of the three

grid components computed from the spatial autocorrelogram differed

between sides of the two environments (Fig. 4f, g). The orientation of

the first component (closest to the horizontal axis; Extended Data Fig. 6)

was no more variable between the sides of the trapezoid than the sides

of the square (mean orientation change of 11.6u6 2.5u and 8.0u6 0.8u,

trapezoid and square, respectively, P 5 0.19, t 5 21.36, df 5 16, two-

sample t-test). However, the other two components differed more in

the trapezoid than in the square (second: 19.2u6 4.9u and 4.7u6 0.3u

P 5 0.004, t 5 23.41, df 5 14; third: 21.4u6 4.6u and 7.9u6 0.8u, P 5

0.005, t 5 -3.3, df 5 14, two-sample t-test). Similarly, the first wavelength

was no more variable in the trapezoid than the square (mean wavelength

change: 4.4 6 1.2 versus 2.3 6 0.4 cm, trapezoid and square, respect-

ively, P 5 0.12, t 5 21.6, df 5 16, two-sample t-test), while the differ-

ences for the second (6.1 6 1.0 versus 1.9 6 0.5 cm, P 5 0.001, t 5 24.1,

df 5 14) and third wavelengths (10.1 6 2.8 cm versus 3.8 6 0.7 cm,

P 5 0.02, t 5 22.7, df 5 14) were more pronounced in the trapezoid.

These localized changes in grid components manifest as a rotation and

stretching of the grid pattern across the trapezoid (Fig. 4h–k). Indeed

the spatial correlation between the two halves of the trapezoid at the

optimal rotation angle (that is, the one maximising the correlation be-

tween left and right sides) was still lower compared to the square (Fig. 4h, j;

r 5 0.30 6 0.05 trapezoid and 0.63 6 0.05 square, P 5 0.0002, t 5 24.6,

df 5 18, two-sample t-test), indicating rescaling as well as rotation

(Fig. 4k).To eliminate the possibility that these observations arose from under-

sampling of the grid pattern in the trapezoid, we generated idealized

grid firing (scale and orientation matched to the data) for a square and

trapezoid environment (Extended Data Fig. 7). This control data exhib-

ited neither an increase in ellipticity nor in inhomogeneity. Further-

more, although the animals’ behaviour was polarized between the two

halves of the trapezoid (Extended Data Fig. 4), there was no correlation

between the extent of polarization and differences in grid properties be-

tween the sides, ruling out a behavioural explanation. Indeed it is known

that stereotypical behaviour in the open field does not significantly de-

grade the hexagonal grid structure 21.

Our results show that most assumptions about the invariant nature

of grid cell firing are invalid. In particular the role of environmental

boundaries has been underestimated. Our findings reveal that grid pat-

terns are permanently shaped by environmental geometry as well as by

internal network processes (Extended Data Figs 8 and 9). Notably, we

have shown that grid patterns can be inhomogeneous even within a con-

tinuous two-dimensional space, due to the influence of non-parallel

boundaries (probably signalled by boundary cells). A differential influ-

ence from the boundaries probably also accounts for the ellipticity of

different grid modules 10, as well as the non-hexagonal symmetry of spa-

tially periodic non-grid cells 8. The results challenge the idea that the grid

cell system can act as a universal spatial metric for the cognitive map as

grid patterns change markedly between enclosures and even within the

same enclosure. An intriguing alternative is that grid cells provide a spa-

tial metric but that the asymmetries induced by highly polarized envir-

onments such as trapezoids produce distortions in the perception of space.
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Figure 4 | Grid pattern is inhomogeneous in

trapezoids. a, Grid cell rate maps for the same cell

in trapezoid and square. Dashed line divides

enclosures into equal areas. b, c, Autocorrelograms

for each side of the trapezoid (tr) and square (sq)

are significantly more similar in the square than

the trapezoid (c). d, Gridness on two sides of the

trapezoid and square. Dashed line represents

gridness threshold 9. e, Field diameter is larger on

the left than the right of the trapezoid (P , 0.001,

t 5 4.1, df 5 18, two-sample t-test) but not

different in the square (P 5 0.39, t 5 0.88, df 5 18,

two-sample t-test). f, g, Change in orientations (f)

and wavelengths (g) of left/right parts of

trapezoid (black) and square (blue). h, j, Rotation

of right part of autocorrelogram relative to left

optimizes correlation in trapezoid but not

square (h) but still leaves a lower similarity (j)

(P 5 0.0002, t 5 24.6, df 5 18, two-sample t-test,

32 grid cells, 8 rats, 10 different grid modules).

i, Average grid rotation between two sides of

trapezoid (solid line) and square (dashed line).

k, Another example of right-to-left grid expansion

and rotation in trapezoid. All means 6 s.e.m.,

except for f, g, which shows means 6 s.d.
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latter, we divided the trapezoid and square into two equal parts (Fig. 4a;

area of half-trapezoid 0.51 m 2, half-square 0.41 m 2) and compared firing

on either side. Figure 4b, c shows that the local spatial structure (defined

by the spatial autocorrelogram) differs more strongly between the two

sides of the trapezoid than between the sides of the square (r 5 0.11 6

0.07 versus 0.50 6 0.06, trapezoid and square, respectively, P , 0.001,

t 5 24.0, df 5 18, two-sample t-test, 10 grid modules, 32 grid cells).

Moreover, gridness was lower in the left of the trapezoid than the right

(Fig. 4d, 20.35 6 0.07 and 0.23 6 0.17, respectively, P 5 0.006, t 5

23.11, df 5 18, two-sample t-test) but not in the square (0.71 6 0.09

and 0.68 6 0.11, P 5 0.87, t 5 0.17, df 5 18, two-sample t-test). Grid-

ness was lower on the right of the trapezoid compared to both parts of

the square even though they are of comparable shape and area (P 5

0.009; F 5 6.18; two-way ANOVA), suggesting an influence from the

left side of the trapezoid. Additionally, the diameters of the individual

fields were larger on the left of the trapezoid than the right (Fig. 4e,

P , 0.001, t 5 4.1, df 5 18, two-sample t-test) but not in the square

(P 5 0.39, t 5 0.88, df 5 18, two-sample t-test). Notably, the field sizes

on the right of the trapezoid were not different from those on either side

of the square (P 5 0.15; F 5 2.07; two-way ANOVA).

We also examined how the orientations and wavelengths of the three

grid components computed from the spatial autocorrelogram differed

between sides of the two environments (Fig. 4f, g). The orientation of

the first component (closest to the horizontal axis; Extended Data Fig. 6)

was no more variable between the sides of the trapezoid than the sides

of the square (mean orientation change of 11.6u6 2.5u and 8.0u6 0.8u,

trapezoid and square, respectively, P 5 0.19, t 5 21.36, df 5 16, two-

sample t-test). However, the other two components differed more in

the trapezoid than in the square (second: 19.2u6 4.9u and 4.7u6 0.3u

P 5 0.004, t 5 23.41, df 5 14; third: 21.4u6 4.6u and 7.9u6 0.8u, P 5

0.005, t 5 -3.3, df 5 14, two-sample t-test). Similarly, the first wavelength

was no more variable in the trapezoid than the square (mean wavelength

change: 4.4 6 1.2 versus 2.3 6 0.4 cm, trapezoid and square, respect-

ively, P 5 0.12, t 5 21.6, df 5 16, two-sample t-test), while the differ-

ences for the second (6.1 6 1.0 versus 1.9 6 0.5 cm, P 5 0.001, t 5 24.1,

df 5 14) and third wavelengths (10.1 6 2.8 cm versus 3.8 6 0.7 cm,

P 5 0.02, t 5 22.7, df 5 14) were more pronounced in the trapezoid.

These localized changes in grid components manifest as a rotation and

stretching of the grid pattern across the trapezoid (Fig. 4h–k). Indeed

the spatial correlation between the two halves of the trapezoid at the

optimal rotation angle (that is, the one maximising the correlation be-

tween left and right sides) was still lower compared to the square (Fig. 4h, j;

r 5 0.30 6 0.05 trapezoid and 0.63 6 0.05 square, P 5 0.0002, t 5 24.6,

df 5 18, two-sample t-test), indicating rescaling as well as rotation

(Fig. 4k).To eliminate the possibility that these observations arose from under-

sampling of the grid pattern in the trapezoid, we generated idealized

grid firing (scale and orientation matched to the data) for a square and

trapezoid environment (Extended Data Fig. 7). This control data exhib-

ited neither an increase in ellipticity nor in inhomogeneity. Further-

more, although the animals’ behaviour was polarized between the two

halves of the trapezoid (Extended Data Fig. 4), there was no correlation

between the extent of polarization and differences in grid properties be-

tween the sides, ruling out a behavioural explanation. Indeed it is known

that stereotypical behaviour in the open field does not significantly de-

grade the hexagonal grid structure 21.

Our results show that most assumptions about the invariant nature

of grid cell firing are invalid. In particular the role of environmental

boundaries has been underestimated. Our findings reveal that grid pat-

terns are permanently shaped by environmental geometry as well as by

internal network processes (Extended Data Figs 8 and 9). Notably, we

have shown that grid patterns can be inhomogeneous even within a con-

tinuous two-dimensional space, due to the influence of non-parallel

boundaries (probably signalled by boundary cells). A differential influ-

ence from the boundaries probably also accounts for the ellipticity of

different grid modules 10, as well as the non-hexagonal symmetry of spa-

tially periodic non-grid cells 8. The results challenge the idea that the grid

cell system can act as a universal spatial metric for the cognitive map as

grid patterns change markedly between enclosures and even within the

same enclosure. An intriguing alternative is that grid cells provide a spa-

tial metric but that the asymmetries induced by highly polarized envir-

onments such as trapezoids produce distortions in the perception of space.
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Figure 4 | Grid pattern is inhomogeneous in

trapezoids. a, Grid cell rate maps for the same cell

in trapezoid and square. Dashed line divides

enclosures into equal areas. b, c, Autocorrelograms

for each side of the trapezoid (tr) and square (sq)

are significantly more similar in the square than

the trapezoid (c). d, Gridness on two sides of the

trapezoid and square. Dashed line represents

gridness threshold 9. e, Field diameter is larger on

the left than the right of the trapezoid (P , 0.001,

t 5 4.1, df 5 18, two-sample t-test) but not

different in the square (P 5 0.39, t 5 0.88, df 5 18,

two-sample t-test). f, g, Change in orientations (f)

and wavelengths (g) of left/right parts of

trapezoid (black) and square (blue). h, j, Rotation

of right part of autocorrelogram relative to left

optimizes correlation in trapezoid but not

square (h) but still leaves a lower similarity (j)

(P 5 0.0002, t 5 24.6, df 5 18, two-sample t-test,

32 grid cells, 8 rats, 10 different grid modules).

i, Average grid rotation between two sides of

trapezoid (solid line) and square (dashed line).

k, Another example of right-to-left grid expansion

and rotation in trapezoid. All means 6 s.e.m.,

except for f, g, which shows means 6 s.d.
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i

d�
i

dT
=
�̄

i
�
� i

�

�

�
�

�
�

cute inductor

americ
an

inductor

1

cu
te

in
du

ct
or

am
er
ic
an

in
du

ct
or

1

cu
te

in
du

ct
or

am
er
ic
an

in
du

ct
or

1

cu
te

in
d
u
ct

o
r

a
m

er
ic

a
n

in
d
u
ct

o
r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
ct

o
r

a
m

er
ic

a
n

in
d
u
ct

o
r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
ct

o
r

a
m

er
ic

a
n

in
d
u
ct

o
r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
ct

o
r

a
m

er
ic

a
n

in
d
u
ct

o
r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
cto

r

a
m
erica

n
in
d
u
cto

r

1

cu
te

in
d
u
ct

o
r

a
m

er
ic

a
n

in
d
u
ct

o
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

cu
te
in
d
u
cto
r

a
m
erica
n
in
d
u
cto
r

1

Ex
pl

or
at

io
n

Ex
p
lo
ra
ti
o
n

Lo
w

 S
pr

in
g 

C
on

st
an

t 

H
ig

h 
Re

st
 L

en
gt

h

H
ig

h 
Sp

rin
g 

C
on

st
an

t 

Lo
w

 R
es

t L
en

gt
h

Le
ar

ni
ng

 D
yn

am
ic

s

Fi
gu

re
9:

R
oa

dm
ap

of
Se

c.
5.

Th
e

le
ar

ne
d

st
at

e
of

la
nd

m
ar

k
ce

lls
gi

ve
ris

e
to

a
po

si
tio

n
se

lf-
es

tim
at

e

as
a

fu
nc

tio
n

of
pa

th
-h

is
to

ry
. T

hi
s

ch
an

ge
s

th
e

av
er

ag
e

po
si

tio
n

se
lf-

es
tia

m
at

e
as

si
ci

at
ed

w
ith

ea
ch

la
nd

m
ar

k
ce

ll,
w

hi
ch

th
en

fe
ed

ba
ck

to
th

e
le

ar
ni

ng
dy

na
m

ic
s.

. B
el

ow
: S

ch
em

at
ic

of
ho

w
ex

pl
or

at
io

n

dy
na

m
ic

s r
ed

uc
e

to
pa

rti
cl

es
on

sp
rin

gs
.

W
he

re
�
(r

)
is

th
e

co
m

bi
ne

d
st

re
ng

th
of

al
l l

an
dm

ar
k

ce
lls

th
at

fir
e

at
r,

an
d

R
(r

)
is

th
e

av
er

ag
e

18
6

po
si

tio
n

es
tim

at
e

be
in

g
re

in
fo

rc
ed

at
po

si
tio

n
r.

18
7

�
(r

)
=
�

H
i
(r

),
R

(r
)
=
�

[H
i
(r

)
R

i
]/
�
(r

).

(1
3)

A
s

th
e

m
ou

se
m

ov
es

ar
ou

nd
th

e
en

vi
ro

nm
en

t,
th

e
ph

as
e

of
th

e
at

tra
ct

or
ne

tw
or

k
w

ill
ge

t p
us

he
d

to

18
8

th
e

le
ar

ne
d

ph
as

es
of

la
nd

m
ar

ks
th

e
m

ou
se

vi
si

ts
, p

at
h

in
te

gr
at

ed
as

th
e

m
ou

se
m

ov
es

, a
nd

ev
en

tu
al

ly

18
9

fo
rg

ot
te

n
as

th
e

m
ou

se
or

ie
nt

s i
ts

el
f t

o
ne

w
la

nd
m

ar
ks

. W
e

ca
n

ta
ke

th
is

ba
si

c
in

tu
iti

on
an

d
tu

rn
it

in
to

19
0

a
cl

os
ed

-f
or

m
eq

ua
tio

n(
Ve

rifi
ed

in
A

pp
. ?

?)
; g

iv
en

an
y

pa
th

r(
t)

th
at

th
e

m
ou

se
ta

ke
s,

th
e

so
lu

tio
n

19
1

7

R̄ y
(r

)

Lo
w

  
Fi

rin
g

H
ig

h 
 

Fi
rin

g 

N
ow

 H
as

 B
ot

h

-1
4.
25

14
.2
5

-4
.5

4.
5

-1
4.
25

14
.2
5

-4
.5

4.
5

Low  Firing

High  Firing 

A

B1

C
1

B2

C
2

� �
A

(r
)

� �
A

(r
)

Fi
g.

7.
A

) E
xp

er
im

en
ta

l d
at

a
of

gr
id

ce
ll

fir
in

g
pa

tte
rn

s
de

fo
rm

ed
, c

ur
vi

ng
aw

ay

fro
m

a
w

al
l i

n
an

irr
eg

ul
ar

ge
om

et
ry

.
B

1)
A

fu
ll

si
m

ul
at

io
n

of
E

q.
14

, E
q.

15

al
so

yi
el

ds
gr

id
fir

in
g

pa
tte

rn
s

be
nt

aw
ay

fro
m

th
e

w
al

l.
B

2)
V

is
ua

liz
at

io
n

of

th
e

av
er

ag
e

at
tra

ct
or

st
at

e
as

a
fu

nc
tio

n
of

po
si

tio
n

„
A (r

)(
pe

rio
di

ci
ty

re
m

ov
ed

fo
r v

is
ua

liz
at

io
n

pu
rp

os
es

).
Th

e
re

ve
rs

al
be

tw
ee

n
th

e
be

nd
in

g
of

th
e

in
te

rn
al

at
tra

ct
or

ph
as

e
an

d
th

e
be

nd
in

g
of

fir
in

g
ra

te
m

ap
s

is
si

m
ila

r t
o

th
e

re
ve

rs
al

se
en

in
Fi

g.
15

B.
C

1)
, C

2)
S

am
e

as
B

1)
, B

2)
, b

ut
fo

r a
sl

ig
ht

ly
di

ffe
re

nt
ge

om
et

ry
.

To
po

lo
gi

ca
l d

ef
ec

ts
in

gr
id

ce
lls

:
a

pr
ed

ic
tio

n

W
hi

le
th

e
dy

na
m

ic
s o

f t
he

lin
ea

riz
ed

Eq
. 1

7
w

ill
al

wa
ys

flo
w

to
th

e
sa

m
e

re
la

tiv
e

la
nd

m
ar

k
re

pr
es

en
ta

tio
ns

R
L i
,

th
is

is
no

t
th

e
ca

se
fo

r
th

e
fu

ll
dy

na
m

ic
s

of
Eq

. 1
4,

Eq
.

15
, w

hi
ch

ca
n

le
ar

n
m

ul
tip

le
di

�e
re

nt
st

ab
le

la
nd

m
ar

k

ce
ll

sy
na

pt
ic

co
nfi

gu
ra

tio
ns

.
O

ne
st

rik
in

g
ex

am
pl

e
of

th
is

is
th

e
ab

ili
ty

of
th

e
le

ar
ni

ng
dy

na
m

ic
s

to
ge

ne
ra

te

“t
op

ol
og

ic
al

de
fe

ct
s”

, w
he

re
th

e
nu

m
be

r
of

fir
in

g
fie

ld
s

tr
av

er
se

d
is

no
t

th
e

sa
m

e
fo

r
tw

o
di

�e
re

nt
pa

th
s

(F
ig

.

20
A,

B
an

d
A

pp
. M

).
An

en
vi

ro
nm

en
ta

l g
eo

m
et

ry
ca

pa
bl

e

of
su

pp
or

tin
g t

he
se

de
fe

ct
s w

ill
yi

eld
a s

et
of

fir
in

g p
at

te
rn

s

th
at

de
pe

nd
s n

ot
on

ly
on

th
e

fin
al

ge
om

et
ry

, b
ut

al
so

on

th
e

hi
sto

ry
of

ho
w

th
is

ge
om

et
ry

wa
s c

re
at

ed
(F

ig
. 2

0C
).

D
is

cu
ss

io
n

O
ve

ra
ll,

we
ha

ve
pr

ov
id

ed
a

th
eo

re
tic

al
fra

m
ew

or
k

fo
r e

x-

pl
or

in
g

ho
w

se
ns

or
y

cu
es

an
d

pa
th

in
te

gr
at

io
n

m
ay

wo
rk

to
ge

th
er

to
cr

ea
te

a
co

ns
ist

en
t i

nt
er

na
l r

ep
re

se
nt

at
io

n
of

sp
ac

e.
O

ur
fra

m
ew

or
k

is
gr

ou
nd

ed
in

bi
ol

og
ica

lly
pl

au
sib

le

m
ec

ha
ni

sm
s i

nv
ol

vi
ng

at
tr

ac
to

r b
as

ed
pa

th
in

te
gr

at
io

n
of

ve
lo

cit
y

an
d

H
eb

bi
an

pl
as

tic
ity

of
la

nd
m

ar
k

ce
lls

. M
or

e-

ov
er

, s
ys

te
m

at
ic

m
od

el
re

du
ct

io
n

of
th

is
co

m
bi

ne
d

ne
ur

al

an
d

sy
na

pt
ic

dy
na

m
ics

yi
eld

s a
sim

pl
e

an
d

in
tu

iti
ve

em
er

-

ge
nt

el
as

tic
ity

m
od

el
in

w
hi

ch
la

nd
m

ar
k

ce
ll

sy
na

ps
es

ac
t

lik
e

pa
rt

ic
le

s
sit

tin
g

in
ph

ys
ic

al
sp

ac
e

co
nn

ec
te

d
by

da
m

pe
d

sp
rin

gs
w

ho
se

re
st

le
ng

th
is

eq
ua

l t
o

th
e

ph
ys

i-

ca
l d

ist
an

ce
be

tw
ee

n
la

nd
m

ar
k

fir
in

g
fie

ld
s.

Th
is

sim
pl

e

em
er

ge
nt

el
as

tic
ity

m
od

el
no

t
on

ly
pr

ov
id

es
a

co
nc

ep
-

tu
al

ex
pl

an
at

io
n

of
ho

w
ne

ur
on

al
dy

na
m

ics
an

d
sy

na
pt

ic

pl
as

tic
ity

ca
n

co
ns

pi
re

to
se

lf-
or

ga
ni

ze
a

co
ns

ist
en

t m
ap

of
sp

ac
e

in
w

hi
ch

se
ns

or
y

cu
es

an
d

pa
th

-in
te

gr
at

io
n

ar
e

in
re

gi
st

er
, b

ut
al

so
pr

ov
id

es
no

ve
l p

re
di

ct
io

ns
in

vo
lv

in
g

9

¯

C1 C2 C3 C4

FIG. SI.12:

A) Experimental data of grid cell firing patterns deformed, curving away from a wall in an irregular geometry. B1)
A full simulation of Eq. 15, Eq. 13 also yields grid firing patterns bent away from the wall. B2) Visualization of
the average attractor state as a function of position (periodicity removed for visualization purposes). The reversal
between the bending of the internal attractor phase and the bending of firing rate maps is similar to the reversal seen
in Fig. 6B. B3), B4) Schematic of the distribution of landmark cells for simulations of trapezoidal environments. To
model a heterogeneous distribution of landmark cell degrees of localization, we include both landmark cells which fire
uniformly along a boundary, as well as semi-elliptical landmark cells which are localized to a section of a boundary.
C1-4) Same as B1-4), but for a slightly different geometry.
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3. Topological defects in grid cells: a prediction

While the dynamics of the linearized Eq. SI.VII.48 will always flow to the same relative landmark representations
RL
i , this is not the case for the full dynamics of Eq. SI.VII.42, Eq. SI.VII.43, which can learn multiple different stable

landmark cell synaptic configurations. One striking example of this is the ability of the learning dynamics to generate
“topological defects”, where the number of firing fields traversed is not the same for two different paths (Fig. SI.13A,
B and Sec. XII). An environmental geometry capable of supporting these defects will yield a set of firing patterns
that depends not only on the final geometry, but also on the history of how this geometry was created (Fig. SI.13C).

Essential components to creation of topological defects are: (1) A “donut-shaped” environment, which can support
the topological defect. (2) An environment rich in localized, strong landmark cues. (3) The larger the environment
is, the less deformation it has to support per unit distance, i.e. if an environment is 3 firing fields wide, a topological
defect must modify the grid spacing by 33%; if the environment was 5 firing fields wide, the grid spacing would only
need to be modified by 20%. Therefore it is easier to create topological defects in a larger environment. (4) During
the “winding” procedure, the animal cannot acclimate to the intermediate environment for too long; if the animal
fully learns the intermediate environment, the winding procedure will not work (Fig. SI.13 E).

X. DETAILS OF THEORY

1. Path integration using a more realistic conjunctive model

In Eq. SI.II.2, we use a simplified model where we assume each velocity conjunctive cell at u has only one outgoing
connection to u±∆φPI.

ds (u)

dt
= −s(u)

τm
+ G

(∫

u′
J(u− u′)s(u′)

)
+ εPI sEC (u−∆φPI)︸ ︷︷ ︸

Input from east cells

+ εPI sWC (u+ ∆φPI)︸ ︷︷ ︸
Input from west cells

+
∑

i

εLM

(
Wi(u)sL

i (t)
)

︸ ︷︷ ︸
Landmark cell inputs

It might be more realistic to have a model where the outgoing conjunctive weights have the same form as that of the
non-conjunctive cells and the landmark weights are also fed into the nonlinearity. Here, we show how to relax the
assumption used in Eq. SI.II.2.

ds (u)

dt
= −s(u)

τm
+

G



∫

u′
J(u− u′)×


s(u′) + εPI (sEC (u′ −∆φPI))︸ ︷︷ ︸

Input from east cells

+ εPIsWC (u′ + ∆φPI)︸ ︷︷ ︸
Input from west cells


+ εLM

∑

i

(
Wi(u)sL

i (t)
)

︸ ︷︷ ︸
Landmark cell inputs




(SI.X.53)

XI. EFFECT OF PERTURBATION SHAPE ON EFFECTIVE FORCE FUNCTION

Switching to the dynamics of Eq. SI.X.53 changes the shape of perturbations caused by landmark and velocity-
conjuctive cells, such that we must use different perturbation functions for the force function and the landmark
function. For example, when the attractor state is s∗(u− φA), the perturbation function for landmark cells will be:

δLM
s (u) = G′

(∫

u′
J(u− u′)s∗(u′ − φA)

)
εLMW(u)sL

i (t),

and the perturbation for east-conjunctive cells will be:

δEast
s (u) = εPIG′

(∫

u′
J(u− u′)s∗(u′ − φA)

)∫

u′
J(u− u′)sEC (u′ −∆φPI) ,

and we can construct a similar perturbation for west-conjunctive cells.
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FIG. SI.13:

A) Schematic of the distribution of landmark cells for simulations the topological environment; cues are densely and
uniformly localized throughout the arena. B) Two steady state grid cell patterns emerging from the same cue-rich
environment. In the first firing pattern, the combination of landmark pinning and path integration yields a phase
advance of four firing fields in traveling from west to east along either corridor. The second pattern has a topological
defect; traveling from the west to east through the north corridor yields a phase increase of ∼ 1.5 firing fields;
traveling east to west through the south corridor yields a phase decrease of ∼ 2.5 firing fields. This second pattern is
stable nonetheless. C) Schematic of 1D underlying attractor state as a function of space. The two patterns in (A)
correspond to two different landmark pinning phase patterns learned by the many landmarks. Both landmark pinning
patterns are stable under Eq. 15, Eq. SI.VII.43. In the first pattern, the combination of landmark pinning and path
integration yields the same phase advance in both the north and south corridors. The second pattern has a topological
defect; the phase advance in the north corridor is one full rotation less than the phase advance through the south
corridor. This is possible because many landmark cues (colored arrows) can yield many landmark cells with multiple
stable synaptic configurations, or pinning phases under Eq. SI.VII.42, Eq. SI.VII.43. D) Schematic of proposed
“deformation schedule” that could yield a topological defect in grid cell firing patterns. By separating/truncating
the northern corridor, stretching it (along with spatial cues, denoted by colored arrows), then reconnecting it, it may
be possible introduce one of these defects. Even though the initial geometry is identical to the final geometry, the
deformation schedule has lead to a firing pattern which is three fields wide in the north and four fields wide in the
south. E) Example of topological defect failing to form due to learning. If the winding procedure is done too slowly,
the animal will learn the deformed geometry (Third box → Fourth Box), removing the topological effect.

Because the perturbations from path integration and landmarks have different functional forms, the force laws
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that we calculate (Sec. III 2) will have different functional forms. Before, when there was a single functional for
perturbations, we were able to map:

δs→ F(φP − φA).

Now we must do this separately for landmark and self-motion input, where:

δEast
s → FE(φP − φA), δLM

s → FLM(φP − φA).

Once this complication is taken into account, the rest of the calculation can proceed verbatim.

1. Verifying the Hebbian learning rule in the attractor basis

We can verify that in the attractor basis:

Wi(u) =

∫

φL

W̃i(φ
L)s∗(u− φL) (SI.XI.54)

the learning rule of Eq. SI.III.26:

dW̃i(φ
L)

dT
= Pr(φL|i Firing)− W̃i(φ

L)

gives us the learning rule in the neural basis (Eq. SI.III.25):

dWi(u)

dT
= 〈s(u)|i Firing〉 −Wi(u) =

∫

φ

s∗(u− φL)Pr(φL|i Firing)−Wi(u)

by inspection:

dWi(u)

dT
=︸︷︷︸

Basis Switch

d

dT

[∫

φL

W̃i(φ
L)s∗(u− φ)

]
=

∫

φL

dW̃i(φ
L)

dT
s∗(u− φL)

=︸︷︷︸
Eq.SI.III.26

∫

φL

[
Pr(φL|i Firing)− W̃i(φ

L)
]
s∗(u− φL) =

∫

φL

Pr(φL|i Firing)s∗(u− φ)−
∫

φL

W̃i(φ
L)s∗(u− φL)

︸ ︷︷ ︸
W(u)

=

∫

φL

s∗(u− φL)Pr(φL|i Firing)−Wi(u)

︸ ︷︷ ︸
Eq.SI.III.25

.

2. Detailed calculations for learning a simple environmental geometry

This section is a more detailed version of Sec. V containing full calculations for the orientation and learning dynamics
given arbitrary landmark strength (ω), animal running speed (v0), and landmark field width (LWall). First, we solve
for the steady-state position self-estimate given a set of landmarks, and use that to solve for equilibrium internal
map. We then examine the path-dependent shifts that come from an unlearned environment, as well as the effects
landmark strength and animal speed on the learning rate.

The position self-estimate will reach a steady cycle, so we start with the animal at x(t = 0) = −L/2, having
position self-estimate XA

0 . The position self-estimate will follow the linearized dynamics, which include terms for path
integration as well as the east and west landmarks.

dXA

dt
=
dx

dt
+ ωHE(x)

(
XL

E −XA
)

+ ωHW(x)
(
XL

W −XA
)

HE(x) = [x− (L/2− LWall)]+, HW(x) = [(−L/2 + LWall)− x]+
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We can assume the position self-estimate will reach a steady cycle such that XA(t = 2τ) = XA(t = 0). Defining
XA

1 = XA(τ/2), XA
2 = XA(τ), XA

3 = XA(3τ/2), we can solve for the position self-estimate as a piecewise function:

XA(t) =





XA
1 + v0t τWall < t < τ − τWall(
XA

1 + [LInt/2]
)
e−ω(t−τWall) +

[
XL

E + v0
ω

]
(1− e−ωt) τ − τWall ≤ t ≤ τ

XA
2 e
−ω(t−τWall) +

[
XL

E − v0
ω

]
(1− e−ωt) τ < t ≤ τ + τWall

. . .

(SI.XI.55)

Where τWall = LWall/v0. This yields a set of linear equations:

XA
1 = e−ωτWallXA

0 +
(
1− e−ωτWall

) [
XL

W +
v0

ω

]
+ [LInt/2]

XA
2 = e−ωτWall

(
XA

1 + [LInt/2]
)

+
(
1− e−ωτWall

) [
XL

E +
v0

ω

]

XA
3 = e−ωτWallXA

2 +
(
1− e−ωτWall

) [
XL

E −
v0

ω

]
− [LInt/2]

XA
4 = XA

0 = e−ωτWall
(
XA

3 − [LInt/2]
)

+
(
1− e−ωτWall

) [
XL

W −
v0

ω

]
.

The average position self-estimate seen by the east landmark comes from two components of piecewise function
XA(t). The first is τ − τWall < t < τ , the second is τ < t < τ + τWall:

X̄A
E =

〈
XA(t)|East Landmark Cell Firing

〉
=

∫ 2τ

0
HE(x(t))XA(t)∫ 2τ

0
HE(x(t))

=
1

2τWall

∫ τ+τWall

τ−τWall

XA(t) =

X̄A
E =

1

2τWall
×


∫ τWall

0

(
XA

1 + [LInt/2]
)
e−ωt +

[
XL

E + v0
] (

1− e−ωt
)

︸ ︷︷ ︸
τ−τWall<t<τ

+

∫ τWall

0

XA
2 e
−ωt +

[
XL

E − v0
] (

1− e−ωt
)

︸ ︷︷ ︸
τ<t<τ+τWall


 =

1

2τWall
×

(XA
1 + [LInt/2]

)(1− e−ωτWall

ω

)
+

XL
E +

Cancels︷︸︸︷
��v0

(τWall −
1− e−ωτWall

ω

)+

1

2τWall

XA
2

(
1− e−ωτWall

ω

)
+

XL
E −

Cancels︷︸︸︷
��v0

(τWall −
(

1− e−ωτWall

ω

))

=
1

2τWall
×
[(
XA

1 + [LInt/2]
)(1− e−ωτWall

ω

)
+ XL

E

(
τWall −

1− e−ωτWall

ω

)
+ XA

2

(
1− e−ωτWall

ω

)
+ XL

E

[
τWall −

1− e−ωτWall

ω

]]

= XL
E +

(1− e−ωτWall)

2ωτWall

[(
XA

1 + [LInt/2]−XL
E

)
+
(
XA

2 −XL
E

)]

Therefore, at equilibrium:

XL
E = X̄A

E =

(
XA

1 + [LInt/2]
)

+ XA
2

2

There is a translational symmetry to this problem, such that any shifted version of a solution is also a solution.
We center around zero for simplicity, such that XA

1 = −XA
3 , XA

2 = −XA
4 , and XL

E = −XL
W. Combining the above

equations and this symmetry gives the steady state solution:

XA
1 = XA

3 = 0,

XA
2 =

(
[LInt/2] +

2[1− e−ωτWall ]

1 + e−ωτWall

(v0

ω

))
=
(

[LInt/2] + 2 tanh (ωτWall/2)
(v0

ω

))
= −XA

0

XL
E =

(
[LInt/2] +

[1− e−ωτWall ]

1 + e−ωτWall

(v0

ω

))
=
(

[LInt/2] + tanh (ωτWall/2)
(v0

ω

))
= −XL

W.
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A. Out of equilibrium path-dependent shifts and learning dynamics

When the system is out of equilibrium it is convenient to refer to the landmark representations in terms of their
deviation from the equilibrium state.

XL
E = ∆XL

E +
(
XL

E

)
Eq
, XL

W = ∆XL
W +

(
XL

W

)
Eq

We have the set of linear equations for how much the position self-estimates vary with the landmark position
estimates, where we use the shorthand XA

i = ∆XA
i +

(
XA
i

)
Eq.

:

∆XA
1 = e−ωτWall∆XA

0 +
(
1− e−ωτWall

)
∆XL

W

∆XA
2 = e−ωτWall∆XA

1 +
(
1− e−ωτWall

)
∆XL

E

∆XA
3 = e−ωτWall∆XA

2 +
(
1− e−ωτWall

)
∆XL

E

∆XA
4 = ∆XA

0 = e−ωτWall∆XA
3 +

(
1− e−ωτWall

)
∆XL

W

We can combine the equations for ∆XA
3 ,∆XA

2 to get:

∆XA
3 = e−ωτWall∆XA

2 +
(
1− e−ωτWall

)
∆XL

E

= e−ωτWall
[
e−ωτWall∆XA

1 +
(
1− e−ωτWall

)
∆XL

E

]
+
(
1− e−ωτWall

)
∆XL

E

= e−2ωτWall∆XA
1 + ∆XL

E

(
1− e−2ωτWall

)

We can express through XA
1 in terms of XA

3 through symmetry:

∆XA
3 = e−2ωτWall∆XA

1 + ∆XL
E

(
1− e−2ωτWall

)

∆XA
1 = e−2ωτWall∆XA

3 + ∆XL
W

(
1− e−2ωτWall

)

Plugging one into the other:

∆XA
1 = e−2ωτWall

[
e−2ωτWall∆XA

1 + ∆XL
E

(
1− e−2ωτWall

)]
+ ∆XL

W

(
1− e−2ωτWall

)
⇒

∆XA
1 =

(
e−4ωτWall

)
∆XA

1 + e−2ωτWall
(
1− e−2ωτWall

)
∆XL

E + ∆XL
W

(
1− e−2ωτWall

)
⇒

(
1− e−4ωτWall

)
∆XA

1 = e−2ωτWall
(
1− e−2ωτWall

)
∆XL

E + ∆XL
W

(
1− e−2ωτWall

)
⇒

(
1− e−4ωτWall

)
∆XA

1 =
(
1− e−2ωτWall

) [
e−2ωτWall∆XL

E + ∆XL
W

]

This yields the change in position self-estimate:

∆XA
1 =

[
e−2ωτWall∆XL

E + ∆XL
W

]

1 + e−2ωτWall
= ∆XL

E +

(
∆XL

W −∆XL
E

)

1 + e−2ωτWall

This allows us to recover the first coefficient related to path-dependent shift. When ∆XL
E = −∆XL

W,

∆XA
1 = ∆XL

E +
(∆XL

W−∆XL
E )

1+e−2ωτWall
= ∆XL

E

[
1+e−2ωτWall−2

1+e−2ωτWall

]
= −∆XL

E

[
1−e−2ωτWall

1+e−2ωτWall

]
= −∆XL

E tanh (ωτWall) . (SI.XI.56)

We note that when ωτWall →∞, the path-dependent shift is exactly the shift in the estimated position of the landmark
last touched XL

W. When ωτWall → 0, the shift goes to 0, as the memory of XL
E is nearly the same as that of XL

W.
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B. Learning timescale coefficient

In order to understand the learning dynamics, we must calculate the effect of the estimated landmark position on
the estimated position self-estimate that becomes associated with each landmark:

∆X̄A
E = XL

E +

[
∆XA

1 + ∆XA
2

2
−XL

E

]
(1− e−ωτWall)

ωτWall
.

Plugging in:

∆XA
2 = ∆XL

E +
(
∆XA

1 −XL
E

)
e−ωτWall

gives ∆X̄A
E in terms of XA

1 :

∆X̄A
E = XL

E +
(
XA

1 −XL
E

) [1 + e−ωτWall

2

][
(1− e−ωτWall)

ωτWall

]
= XL

E +
(
XA

1 −XL
E

) [1− e−2ωτWall

2ωτWall

]
.

Plugging in the value of XA
1 :

∆XL
E +

(
∆XL

W −∆XL
E

)

1 + e−2ωτWall

gives:

∆X̄A
E = XL

E +
(
XL

W −XL
E

) [ 1− e−ωτWall

2ωτWall (1 + e−2ωτWall)

]

yielding a learning time of:

TLearning =
2ωτWall

(
1 + e−2ωτWall

)

1− e−ωτWall
. (SI.XI.57)

From Eq. SI.XI.56, we can see that as the landmark cells become stronger, the shifts become stronger, as the
animals position self-estimate becomes more heavily weighted toward whichever landmark it most recently saw. From
Eq. SI.XI.57 we see that, as landmark cells become stronger, the learning rate slows down, as landmark cells mostly
see their own self-estimates; the contribution to position self-estimate from spatially disjoint landmarks decays quickly
after the animal moves into the landmark firing field.

C. Simple case of internal map contraction

The learning rule for landmark landmark position estimates will be

d

dT




RL
E

RL
W

RL
S


 =




MWE

(RL
W + ∆RA

W→E

)
+MSE

(RL
S + ∆RA

S→E

)

MEW

(RL
E −∆RA

W→E

)
+MSW

(RL
S + ∆RA

S→W

)

MES

(RL
E −∆RA

E→S

)
+MWS

(RL
W −∆RA

W→S

)


 (SI.XI.58)

For simplicity, we approximate:

MWE = MSE = MSW, ∆RA
W→E = Lx̂, ∆RA

S→W = ∆RA
E→S = 0

and solve for the equilibrium state Eq. SI.XI.58 to find the learned landmark position estimates:

RL
E = RL

S + x̂L/3, RL
W = RL

S − x̂L/3, RL
E −RL

W = 2Lx̂/3 < ∆RA
W→E.
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3. Proof of convolutional integral for position self-estimate as a functional of path history

We can check that the solution for the position self-estimate Eq. SI.VIII.51:

RA[r(t), t] =

∫ t

−∞

[RL (r(t′)) + (r(t)− r(t′))
]
ω(r(t′))

[
e−

∫ t
t′ ω(r(t′′))dt′′

]
dt′

satisfies the dynamics of Eq. SI.VIII.50 :

dRA(t)

dt
=
dr(t)

dt
+ ω(r)

[RL(r(t))−RA
]

by inspection. We plug Eq. SI.VIII.51 into Eq. SI.VIII.50 to get:

dRA

dt
=
[RL (r(t)) + (r(t)− r(t))

][
ω(r(t))e−

∫ t
t
ω(r(t′′))dt′′

]

︸ ︷︷ ︸
ωRL

+

∫ t

−∞

dr(t)

dt
ω(r(t′))e−

∫ t
t′ ω(r(t′′))dt′′dt′

︸ ︷︷ ︸
dr/dt

+

∫ t

−∞

[RL (r(t′)) + (r(t)− r(t′))
]
×
[
−ω(r(t′))ω(r(t))e−

∫ t
t′ ω(r(t′′))dt′′

]
dt′

︸ ︷︷ ︸
−ωRA

The underbraced identities are more easily seen by simplifying terms:

d

dt
RA =


RL (r(t))

0︷ ︸︸ ︷
((((

(((+ (r(t)− r(t))





ω(r(t))

1︷ ︸︸ ︷
((((

(((
e−

∫ t
t
ω(r(t′′))dt′′




︸ ︷︷ ︸
ωRL

+ dr/dt

1︷ ︸︸ ︷

((((
((((

((((
((∫ t

−∞
ω(r(t′))e−

∫ t
t′ ω(r(t′′))dt′′dt′

︸ ︷︷ ︸
dr/dt

−ω(r(t))

∫ t

−∞

[RL (r(t′)) + (r(t)− r(t′))
]
×
[
ω(r(t′)) · e−

∫ t
t′ ω(r(t′′))dt′′

]
dt′

︸ ︷︷ ︸
RA

4. Proof that S(rA, rB) is symmetric for time-symmetric path distributions

Here we prove that, as long as the distribution of animal trajectories is time-reversal symmetric (given any
path, the reverse path rrev(t) = r(t) is equally likely), S(rA, rB), i.e., the effect of landmark forcing at one position
on the mean position self-estimate at another position, will be symmetric. See Table IV for a list of symbols and units.

The mean position self-estimate of the animal at position rB is the average self-estimate of all paths that pass rB at
time t = 0. (We pick t = 0 for mathematical convenience). R̄A(rB) is defined using a path integral over all possible
r(t):

R̄A(rB) =

∫
Dr(t)Pr[r(t)] δ(r(0)− rB)RA[r(0), t = 0].

To avoid clutter, use the shorthand:

RA[r(0), t = 0)] =

∫

t′

[RL (r(t′)) + (r(t)− r(t′))
]
ω(r(t′))e−

∫ t
t′ ω(r(t′′))dt′′ =

∫

t′
F[r, t, t′]Mem[r, t, t′]

Where:

F[r, t, t′] =
[RL (r(t′)) + (r(t)− r(t′))

]
ω(r(t′)), Mem[r, t, t′] = e−

∫ t
t′ ω(r(t′′))dt′′ .

Intuitively, F[r, t, t′] is the contribution of landmark forcing at t′ to the position self-estimate at t, and Mem[r, t, t′]
is the weighting, i.e., the “memory” of time t′ at time t. We decompose this into contributions from different past
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FIG. SI.14:

Sketch of proof in Sec. XI 4 that S is symmetric for time-symmetric path distributions. Our proof relies on two factors.
(1) The probability of the reverse path is equal(time-reversal symmetry). (2) The contribution of the mean landmark
state at position A to the mean attractor state at position B from the forward path is equal to the contribution of the
mean landmark state at position B to the mean attractor state at position A from the reverse path (Eq. SI.XI.64).

times t′:

R̄A(rB) =

∫
Dr(t)Pr[r(t)] δ(r(0)− rB)

(∫ 0

−∞
F[r, t = 0, t′]Mem[r, t = 0, t′]dt′

)
.

Reshuffling the order of integration and breaking terms down further into contributions of rA = r(t′)

R̄A(rB) =

∫ 0

−∞
dt′
∫
drA

∫
Dr(t)Pr[r(t)] × δ(r(0)− rB)δ(r(t′)− rA)︸ ︷︷ ︸

Ensures path from A to B

× (F[r, t = 0, t′]Mem[r, t = 0, t′]).

Because we have assumed the statistics of the animal trajectories r(t) will be time-reversal symmetric, the reverse,
time shifted path rrev(t) = r(t′ − t) is equally likely. We therefore apply the symmetrization procedure:

2R̄A(rB) =

∫ 0

−∞
dt′
∫
drA

∫
Dr(t)Pr[r(t)] ×


δ(r(0)− rB)δ(r(t′)− rA)︸ ︷︷ ︸

Ensures path from A to B

F[r, 0, t′]Mem[r, 0, t′]


+


δ(rrev(t′)− rA)δ(rrev(0)− rB)︸ ︷︷ ︸

Ensures rev. path from A to B

F[rrev, 0, t
′]Mem[rrev, 0, t

′]


 .

(SI.XI.59)

We note that the total forgetting of the forward path from time t′ to time 0 is the same as the degree along the reverse
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path, i.e. Mem[rrev, 0, t
′] = Mem[r, 0, t′] (Eq. SI.XI.64) Therefore, we can simplify Eq. SI.XI.59:

2R̄A(rB) =

∫ 0

−∞
dt′
∫
drA

∫
Dr(t)Pr[r(t)] ×

Mem[r, 0, t′]


δ(r(0)− rB)δ(r(t′)− rA)︸ ︷︷ ︸

Ensures path from A to B

F[r, 0, t′] + δ(rrev(t′)− rA)δ(rrev(0)− rB)︸ ︷︷ ︸
Ensures rev. path from A to B

F[rrev, 0, t
′]


 .

(SI.XI.60)

We now expand and simplify the contribution of landmark forcing from rA to the position self-estimate at rB for
both the forward and reverse paths (Eq. SI.XI.65, Eq. SI.XI.66):

δ(r(t′)− rA)δ(r(0)− rB)︸ ︷︷ ︸
Ensures path from A to B

F[r, 0, t′] = δ(r(t′)− rA)δ(r(0)− rB)︸ ︷︷ ︸
Ensures path from A to B

(RL(rA) + rB − rA

)
ω(rA), (SI.XI.61)

δ(rrev(t′)− rA)δ(rrev(0)− rB)︸ ︷︷ ︸
Ensures reverse path from A to B

F[rrev, 0, t
′] = δ(r(t′)− rB)δ(r(0)− rA)︸ ︷︷ ︸

Ensures path from B to A

(RL(rA) + rB − rA

)
ω(rA)(SI.XI.62)

Taking advantage of this shared structure in Eq. SI.XI.61, Eq. SI.XI.62, we simplify Eq. SI.XI.60 to:

2R̄A(rB) =

∫
drA

∫ 0

−∞
dt′
∫
Dr(t)Pr[r(t)] ×

Mem[r, 0, t′]
[RL(rA) + (rB − rA)

]
ω(rA)


δ(r(0)− rB)δ(r(t′)− rA)︸ ︷︷ ︸

Ensures path from A to B

+ δ(r(0)− rA)δ(r(t′)− rB)︸ ︷︷ ︸
Ensures path from B to A


 =

2

∫
drAS(rB, rA)

[RL(rA) + (rB − rA)
]
ω(rA)

(SI.XI.63)

Where our matrix entries:

S(rB, rA) =
1

2
×
∫ 0

−∞
dt′
∫
Dr(t)Pr[r(t)] Mem[r, 0, t′]


δ(r(0)− rB)δ(r(t′)− rA)︸ ︷︷ ︸

Ensures path from A to B

+ δ(r(0)− rA)δ(r(t′)− rB)︸ ︷︷ ︸
Ensures path from B to A




are symmetric with respect to the swapping of rB, rA.

This proof assumes uniform density of animal positions with uniform areas and equal strengths for each landmark
cell. The proof can be generalized beyond these constraints by making effective particles corresponding to certain
landmarks more “massive”, but here we present the simpler proof in the interest of clarity.

A. Lemmas about functionals used in symmetry proof

We may show Mem[rrev, 0, t
′] = Mem[r, 0, t′] through:

Mem[rrev, 0, t
′] = e−

∫ 0
t′ ω(rrev(t′′))dt′′ = e−

∫ 0
t′ ω(r(t′−t′′)) = e−

∫ 0
t′ ω(r(t′′))dt′′ = Mem[r, 0, t′] (SI.XI.64)

We can simplify the effect that the landmark forcing at rA has on the position self-estimate at rB (Eq. SI.XI.61)
as:
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δ(r(t′)− rA)δ(r(0)− rB)︸ ︷︷ ︸
Ensures path from A to B

F[r, 0, t′] =

δ(r(t′)− rA)δ(r(0)− rB)︸ ︷︷ ︸
Ensures path from A to B

[RL (r(t′)) + (r(0)− r(t′))
]
ω(r(t′)) =

δ(r(t′)− rA)δ(r(0)− rB)︸ ︷︷ ︸
Ensures path from A to B

(RL(rA) + rB − rA

)
ω(rA)

(SI.XI.65)

and can likewise do this for the reverse path(Eq. SI.XI.62):

δ(rrev(t′)− rA)δ(rrev(0)− rB)︸ ︷︷ ︸
Ensures reverse path from A to B

F[rrev, 0, t
′] =

δ(rrev(t′)− rA)δ(rrev(0)− rB)︸ ︷︷ ︸
Ensures reverse path from A to B

[RL (rrev(t′)) + (rrev(0)− rrev(t′))
]
ω(rrev(t′))

= δ(rrev(t′)− rA)δ(rrev(0)− rB)︸ ︷︷ ︸
Ensures reverse path from A to B

(RL(rA) + rB − rA

)
ω(rA)

= δ(r(t′)− rB)δ(r(0)− rA)︸ ︷︷ ︸
Ensures path from B to A

(RL(rA) + rB − rA

)
ω(rA).

(SI.XI.66)

XII. DETAILS OF SIMULATIONS AND DATA ANALYSIS

Here, we provide details of the simulations and analysis used for Sec. XII. See Table VI for a list of symbols and
units. Code available at https://github.com/ganguli-lab/EmergentElasticityAnalysisAndSimulations

1. Simulations

A. Exploration

In our simulations, we discretize space onto a grid. For simplicity, we have the animal follow diffusive dynamics,
implemented through a random walk; at every time step, the animal moves to one of four neighboring cells; any move
which would take the animal outside the box is prohibited. The animal has a position self-estimate RA(t) as well as
an attractor state φA(t), which undergoes discrete path-integration at every time step:

RA(t+ ∆t)→RA(t) + ∆rSim(t),

φA(t+ ∆t)→ φA(t) + K · ∆rSim(t)

Afterwards, the position self-estimate is pulled towards the position estimates of any landmark cells which are firing:

RA(t+ ∆t)→RA(t+ ∆t) +
(
ω(r)

[RL(r)−RA(t+ ∆t)
])
×∆t

φA(t+ ∆t)→ φA(t+ ∆t) +
(∑

i
ωiHi(r(t))

∑
φL

W̃i

(
φL
) F (φA − φL

))
×∆t,

Where φL is discretized into a 15× 15 grid so that W̃i

(
φL
)

can be represented as an array. We set the timescale of
animal motion to be:

∆t =
|∆rSim|2

D

where D is the “diffusion rate” of the animal; this scaling removes dependence on the discretization size.

https://github.com/ganguli-lab/EmergentElasticityAnalysisAndSimulations
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B. Learning

The learned states are initialized to their firing field center of masses. At every learning epoch T, the simulated
animal is placed in the box with an initial position and position self-estimate and explores to get good statistics.
R̄A(r), is logged, and at the end of each learning epoch, the position estimate of each landmark cell i is updated to
be the average position self-estimate when the landmark cell is firing.

RL
i,T+1 → R̄A

i,T, W̃i

(
φL
)
→ Pr(φA(t) = φL|i Firing).

Each of these will converge after a handful of learning epochs; in practice, we use twenty.

C. Simulation of square and bent environments

Landmark cell firing fields are heterogeneous; while some are distributed across an entire border; to replicate this
distribution we have two types of landmark cells in our model. (1) Landmark cells having uniform wall-length firing

field, with a width of 10cm, for example H(x, y) = e−(
x−xwall

5cm )2 for a landmark cell on the west wall. (2) More localized,
overlapping, firing fields along each wall. Each firing field is a 5 cm × 10 cm half-ellipse of along a particular wall; i.e.

H(x, y) = e−(
y−y0
10cm )2−(

x−xwall
5cm )2 for a landmark field along the EW wall with center y0. Each type of landmark cell is

evenly distributed along each wall, with the total strength and number set such that total firing strength of localized
and non-localized cells is the same, and their combined strength leads to a forgetting time of ω = 8Hz along each
wall.

Grid spacing is chosen to be 30 cm for square environments (1 × 1 meter); We set the diffusive constant D to be
(10 cm)2/Second such that it takes an animal ∼100 seconds to traverse the width of the environment.

Grid spacing is 50 cm with a 7◦ offset for the first trapezoidal environment (1.9 × .8 meters, same geometry as
[26]); We set the diffusive constant D to be (20 cm)2/Second such that it takes an animal ∼100 seconds to traverse
the length of the environment.

Grid spacing is 50 cm with a 7◦ offset for the second trapezoidal environment (1.9 meters long. Two straight walls
with lengths of .12 meters, .6 meters, with diagonal walls starting 1 meter from the smaller straight wall (14◦ angle);
We set the diffusive constant D to be (20 cm)2/Second such that it takes an animal ∼100 seconds to traverse the
length of the environment.

The angular offset breaks the symmetry of the trapezoidal environments, yielding bending, but is not required to
yield path-dependent shifts.

D. Simulation of topological environments

In order for an environment to support topological defects, cues must be rich and localized, leading to uni-
formly distributed landmark firing fields. To model this, we have uniformly localized landmark fields, with

H(x, y) = e−(
y−y0
10cm )2−(

x−x0
10cm )2 , arranged at a density such that their combined strength leads to a forgetting time

of 1Hz throughout the environment. The environment was 1.8 meters × 1 meter, with a center rectangular section of
1.3 × .8 meters removed. K is chosen to yield a grid spacing of 60cm. The first simulation(no topological defect) was
initialized with no landmark weights, while the second simulation (topological defects) was initialized with landmark
weights corresponding to a topological defect; both initial conditions relaxed into different (meta)stable internal maps.
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E. Force law and visualization

The simulated grid cell patterns are visualized by using a truncated parabolic firing rate:

[
1−

∣∣∣∣
φA − u

B

∣∣∣∣
2
]

+

where u is the position of the “recorded” cell on the neural sheet and the field width B is chosen to be 2π/5.

The force law chosen is a truncated sin function:

F(φL − φA) =

{ (
φL − φA

)
× sin(|φL−φA|)

|φL−φA|
∣∣(φL − φA

)∣∣ < π

0
∣∣(φL − φA

)∣∣ ≥ π
(SI.XII.67)

We choose this function because it has the correct qualitative features. In addition, in experimental data, the width
of a firing rate peak is on the order of the spacing between two firing peaks; this prohibits a force law which is much
more short-ranged than this (Sec. III 2).

2. Experimental methods

Data included a subset of published neural recordings previously presented in Hardcastle et al., 2017, Hardcastle
et al., 2015. Briefly, mice explored a square box while foraging for chocolate cheerios sprinkled on the floor. During
each recording, neural signals from medial entorhinal cortex were recorded and subsequently clustered into distinct
neurons. A grid score was computed for each cell following Langston et al., 2010. Cells above a threshold of .4 were
considered grid cells. Each grid cell in the dataset was recorded after an average of 28 (data selected from Hardcastle
et al., 2015) or 20 (data selected from Hardcastle et al., 2017) exposures to the recording environment.

A. Pre-processing of trajectories

To control for the effect of head direction and running speed, we preprocessed the data by translating

r(t)→ r(t) + 1cm × ĤD(t),

where ĤD(t) is a unit vector representing the animal’s head direction as a function of time. This is to avoid artifacts
related to tracking; a purely position-dependent firing rate model depends on some part of the animal’s body, which
unlikely to be exactly the position of the tracking diode. Because head direction is correlated with the last border
touched, head direction-depdendent shifts from this artifact would yield path-dependent shifts; our preprocessing
removes this possibility.

B. Subtraction of average animal position for shifts in patterns around firing fields

We define the path conditioned shift (Eq. SI.IX.52) as the difference between the average spike position within a
firing field and the mean animal position within that firing field.

SC,GC,ff = 〈rSpk − rff|C, rSpk ∈ ff 〉 − 〈r(t)− rff|C, r(t) ∈ ff 〉

The animal’s position within the firing field is subtracted to eliminate any systematic biases that might come from
the animal trajectory rather than the actual neural activity (Fig. SI.15).

[1] G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear, and K. Friston, PLOS Computational Biology 4, 1 (2008).
[2] We have chosen for the path integration and landmark inputs to not be fed into the nonlinearity for mathematical simplicity;

these can be fed in arbitrarily, although doing so yields different force functions for path integration and landmark input.

http://dx.doi.org/ 10.1371/journal.pcbi.1000092
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FIG. SI.15:

Schematic of the motivation for subtracting mouse position in Eq. SI.IX.52. An animal is most likely to be closest
to the last wall it touched; if the mean animal position was not subtracted from the mean spike position, this would
yield a path-dependent shift in spike positions purely dependent on animal trajectory rather than neural activity.

[3] sEC(u), sWC(u) could follow their own differential equations [7, 29]; as long as they yield a perturbation which is linear
with animal velocity the mathematical techniques developed would still hold. We choose not to do so here for simplicity.

[4] A training session is roughly the same as a learning epoch.
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T−1
0 . . . , but we leave this base learning rate T−1

0 out for simplicity.
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