Supplemental Information for “Emergent Elasticity in the Neural Code for Space”

Code available at https://github.com/ganguli-lab/EmergentElasticity AnalysisAndSimulations

OVERVIEW OF SUPPLEMENTAL MATERIALS

In this supplemental information we first provide a reference for all mathematical symbols used (Sec. m) In Sec. we
present, in full mathematical detail, a general family of models that combines attractor networks, velocity-conjunctive
cells, and plastic error correcting landmark cells, that can all work together to form maps of space in one dimension.
In Sec. [T} we then perform model reduction on this model to derive simplified low dimensional equations which
capture the essential combined neural and synaptic dynamics of the full model. By linearizing, we derive an even
simpler model in Sec. [[V] which can be applied towards understanding how a simple geometry is learned through

exploration in

Sec.[V]

In Sec. [VI| we provide a simple specific example of a neural model which yields analytic formulas for the effective
reduced dynamics. The reader is encouraged to refer to this section to build intuition.

In Sec. [VII,

we extend the above mathematical formalism to two-dimensional attractor models yielding grid cells

in two dimensions, and show how linearization of the exploration process yields a mechanical “particles-on-springs”
model in Sec. [VITI} We outline several connections to experiments in Sec. [[X] and then discuss several extensions and

lemmas used

or the theory in Sec. [X] as well as explain details of simulations and data analysis in Sec. XTI}
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TABLE I: Table of symbols used in main paper.

Variable Name Symbol Type Units

Exploration/dynamics time scale t Scalar Time

Neural ring position U Angle (defined modulo 27) Neur. sheet length
(Dimensionless)

Synaptic activation of attractor cells |s(u) Scalar function of neural ring position Firing rate

Pairwise cellular interactions J(u —u) Scalar function of neural ring position 1/(Neur. sheet lengthx
Time)

Leak time Tm Scalar Time

Firing nonlinearity g Scalar function Firing rate/Time

Attractor state o (t Angle (also neural ring position) function of time Dimensionless

Steady bump pattern §(u— &™) Scalar function of neural ring position Firing rate

One-dimensional animal position

Scalar function of time

Physical length

One-dimensional running velocity

Scalar function of time

Physical length/Time

1D path integration constant

Scalar

Angle/Physical length

Landmark cell index

Integer label

Dimensionless

Landmark cell firing rate

Scalar function of time

Firing rate

Landmark cell firing field

Scalar function of animal position

Firing rate

Landmark cell synaptic weights (neu-
ral ring basis)

Scalar function of neural ring position

1/Neur. sheet length

Weight component in attract. basis | @ Angle (defined modulo 27) Dimensionless

Attractor force law F(¢¥ —¢™) |Function of difference of neural ring position Dimensionless

Landmark strength w Scalar 1/Time

Training time T Scalar Training sessions

Linearized landmark pinning phase | 0F Unrolled angle (not defined modulo 27 ) Dimensionless

Box width L Scalar Physical length

Width of wall cues Lwan Scalar Physical length

Box traversal time T Scalar Time

Animal running speed 0 Positive scalar (speed not velocity) Physical length/Time

Magnitude of effect of east landmark | Mwg Scalar 1/Training session

on west landmark (spring constant)

Path integration amount between west | AX{ g Scalar Physical length

wall and east wall

Position self-estimate X x(t), t] Scalar functional of path history and time Physical length

Landmark position estimate X5, X\Ix, Scalar Physical length

Landmark pinning phase 0%, 0% Unrolled phase Dimensionless

2D neural sheet position u Position on periodic rthombus, defined mod. (0, 27), (v/37, 7)|Neur. sheet length

Pairwise cellular interactions J(Ju—u']) Function of neural sheet distance (Neur. sheet length) ™2/
Time

Synaptic activation s(u) Scalar function of 2D neural sheet position Firing rate

Steady bump pattern s(u— ™) Scalar function of 2D neural sheet position Firing rate

2D attractor state (location of firing| @™ Position on periodic rthombus, defined mod. (0, 27), (v/37, 7)|Neur. sheet length

bump) (Dimensionless)

2D attractor force law F(pF — ¢*) [2D vector function of neural sheet separation Dimensionless

2D running velocity v(t) 2D vector function of time Physical length/Time

2D path integration constant K 2 X 2 matrix (2D animal velocity — 2D neural sheet velocity) | Angle/Physical length

2D position r(t) 2D vector Physical length

Synaptic weights (neural sheet basis) |W;(u Scalar function of neural sheet position (Neur. sheet length) 7

Synaptic weights (attractor basis) W, (") Scalar function of position on periodic rhombus (Neur. sheet length) =2

Synaptic weight component in attrac-| ¢ Position on periodic thombus, defined mod. (0, 27), (v/37, 7)|Neur. sheet length

tor basis (Dimensionless)

2D position self-estimate RA 2D vector Physical length

2D landmark position estimate RE 2D vector Physical length

Magnitude of effect of landmark j on|M;; Scalar 1/Training session

landmark ¢

Mean path integration between land- A'R]-A_” 2D vector Physical length

mark ¢ and landmark j




1. Table of all symbols used in SI

A. Table for one-dimensional model and its reduction

TABLE II: Table of Symbols for One-Dimensional Model(Sec. [lI)) and its Reduction(Sec. Sec.

Variable Name Symbol Type Units

Exploration/Neural —dynamics time|t Scalar Seconds

scale

Neural ring position U Angle (defined modulo 27) Neur. sheet length
(Dimensionless)

Synaptic activation of non-conjunctive|s(u) Scalar function of neural ring position Firing rate

attractor cells

Pairwise cellular interactions J(u — ) Scalar function of neural ring position 1/(Neur. sheet lengthx
Time)

Leak time Tm Scalar Time

Firing nonlinearity g One-variable function Firing rate/Time

Attractor dynamics Dals] Functional of synaptic activation; both inputs and | Firing rate/Time

outputs a function of neural ring position

Attractor state (location of firing bump) [ ¢ (¢) Angle (defined modulo 27) function of time Neur. sheet length
(Dimensionless)

Steady bump pattern s(u— ¢™) Scalar function of neural ring position Firing rate

Jacobian of dynamics around attractor
state ¢

Jacgya (u,u')

Matrix of scalars, indexed by pairs of neural sheet
positions (u,u')

(Neur. sheet length) 2
xTime ™"

Generic perturbation to attractor state | As(u) Scalar function of neural ring position Firing rate

Generic perturbation strength € Scalar 1/Time

Generic  perturbation to network|e ds(u — (Z)P) Scalar function of neural ring position Firing rate/Time

dynamics

Path integration perturbation strength |ep1 Scalar 1/Time

Offset of outgoing connections of|A¢pr Angle (defined modulo 27) Dimensionless

velocity-conjunctive cells

Synaptic  activation of  velocity-|sgc(u), Scalar function of neural ring position Firing rate

conjunctive attractor cells swe(u)

Conjunctive characteristic speed vCo Positive scalar (speed not velocity) Physical length/Time

Landmark cell perturbation strength €LM Scalar Neur. sheet lengthx
(Firing rate) /Time

Shift in outgoing connections of velocity | A¢p1 Difference in neural ring position Neur. sheet length

conjunctive cells

Center of perturbation to network or Angle (defined modulo 27) Neur. sheet length

One-dimensional position x(t) Scalar function of time Physical length

Attractor force law F(¢F — ™) |Function of difference of neural ring position Dimensionless

One-dimensional running velocity

Scalar function of time

Physical length/Time

One-dimensional animal position

]
—

~
|

Scalar function of time

Physical length

1D path integration constant

Scalar

Angle/Physical length

Landmark cell index

Integer label

Dimensionless

Landmark cell firing rate

~
~—

Scalar function of time

Firing rate

Landmark cell firing field

Scalar function of animal position

Firing rate

Synaptic weights (neural ring basis)

NS
8
<

Scalar function of neural ring position

1/Neur. sheet length

Synaptic weights (attractor basis)

S| T T

.

—~|=
S
= N

<

Scalar function of angle

1/Neur. sheet length

Synaptic weight component in attractor | ¢~ Angle (defined modulo 27) Dimensionless
basis

Training time T Scalar Training sessions
Landmark strength w Scalar 1/Time
Linearized landmark pinning phase oF Unrolled angle (not defined modulo 27 ) Dimensionless




B. Table for simplest environment case

TABLE III: Table of Symbols for Simplest Environment Case (Sec.

Variable Name Symbol Type Units

Box width L Scalar Physical length
Width of wall cues Lwan Scalar Physical length
Width of cue-depleted zone Lint Scalar Physical length

Box traversal time T Scalar Time

Animal running speed Up Positive scalar (speed not velocity) Physical length/Time
Magnitude of effect of east landmark | Mwg Scalar 1/Training session

on west landmark

Path integration amount between|AX g Scalar Physical length

west wall and east wall

Position self-estimate XA[x(t),t] [Scalar functional of path history and time Physical length
Landmark pinning phase HZ-L Unrolled phase Dimensionless
Landmark position estimate XL Scalar Physical length

C. Table of units for mechanical framework

TABLE IV: Table of units mechanical framework (Sec. [VIII|)

Variable Name Symbol Type Units

Position estimate given a path|RA[r(t),1] 2D vector functional of path history and|Physical length
history time

Mean position self-estimate at a|R*(r) 2D vector function of animal position |Physical length
given position

Mean position self-estimate across|RZA 2D vector Physical length
landmark field ¢

Total landmark strength at a given|w(r) Scalar function of animal position 1/Time
position

Effect of landmark forcing at r’ on|S(rp,ra) Scalar function of animal position pairs|1/(Physical length?)
position self estimate at r (depends on path statistics)

Reverse animal trajectory Frev(t) 2D vector function of time Physical length
Effect of landmark forcing at time t'|F[r(t), ¢, ] 2D vector functional of time pairs and|1/Time

on self-estimate at time ¢

path history

Degree of memory of input from time
t' at time ¢

Mem|r(t),t,t']

2D vector functional of time pairs and
path history

Dimensionless




D. Table of symbols for two-dimensional model, reduction, linearization, and mechanical proof

TABLE V: Table of symbols for two-dimensional model (Sec. [VII)

Variable Name Type Units
2D neural sheet position Position on periodic rhombus, defined modulo|Neur. sheet length
(0,27), (v/3m, ) (Dimensionless)

Firing nonlinearity

Scalar function

Firing rate/Time

Pairwise cellular interactions

Function of neural sheet distance

(Neur. sheet length) =2

Synaptic activation

Scalar function of 2D neural sheet position

Firing rate

Steady bump pattern

Scalar function of 2D neural sheet position

Firing rate

2D attractor state (location of firing
bump)

Position on periodic rhombus, defined modulo
(0,27), (v/3m, ©) (function of time)

Neur. sheet length
(Dimensionless)

Attractor force law

2D vector function of neural sheet separation

Dimensionless

Attractor dynamics

Functional of synaptic activation; both inputs
and outputs a function of neural sheet position

Time derivative of synap-
tic activation

2D running velocity

2D vector function of time

Physical length/Time

Two dimensional path integration
constant

2 x 2 Matrix (transforms 2D animal velocity
to 2D attractor state velocity)

Angle/Physical length

2D animal position

2D vector function of time

Physical length

Landmark cell index

Integer label

Dimensionless

Landmark cell firing rate

Scalar

Firing rate

Landmark cell firing field

Scalar function of 2D physical position

Firing rate

Synaptic weights (neural sheet basis)

Scalar function of neural sheet position

(Neur. sheet length) =2

Synaptic weights (attractor basis)

Scalar function of position on periodic
rhombus

(Neur. sheet length) =2

Synaptic weight component in at-

Position on periodic rhombus, defined modulo

Neur. sheet length

tractor basis (0,27), (v/3m, ) (Dimensionless)
Landmark pinning phase Unrolled 2D phase Dimensionless
Training time Scalar Training sessions
Landmark strength Scalar 1/Time

Position self-estimate 2D vector Physical length
Landmark position estimate 2D vector Physical length

Average landmark position estimate
at a position

2D vector function of physical position

Physical length

Total landmark strength at a
position

Scalar function of physical position

1/Time

Magnitude of effect of landmark j on Scalar 1/(Training session)
landmark ¢
Mean path integration between land- 2D vector Physical length

mark ¢ and landmark j




E.  Table of units for experiments and simulations

TABLE VI: Table of symbols for experiments and simulations (Sec. D

Variable Name Symbol Type Units
Head direction unit vector HD(t) 2D unit vector (function of time) Dimensionless
Experimentally observed animal po-|r(t) 2D vector Dimensionless
sition (center of diodes)
Path condition C Boolean functional of time and path history|Dimensionless
r(t) (path condition is satisfied or not satisfied
at a certain time given the path history)
Grid cell label GC Integer label Dimensionless
Variational step distance for cross-|Arc 2D vector Physical length

correlation

Conditional firing rate of cell GC
given path condition C

sGo(r)

Scalar function of 2D animal position

Physical length

Cross-correlation between two path
conditions C1, C2 for grid cell GC

CG&’ (Arc)

Scalar function of 2D difference in animal
position

Dimensionless

Firing field center

'

2D animal position

Physical length

Firing field

ff

Set of 2D animal positions

Physical length

Spike shift for path condition C, grid
cell GC, and firing field ff

Sc.co.g

2D difference vector

Physical length

Spike position

I'Spk

2D vector

Physical length




II. FULL HIGH-DIMENSIONAL MODEL OF DYNAMICS AND LEARNING FOR PATH
INTEGRATION AND ENVIRONMENTAL EXPLORATION

We first consider a one-dimensional attractor network consisting of a large population of neurons whose connectivity
is determined by their position on an abstract ring, as in Fig. [SLIl For analytical simplicity, we take a neural field
approach [I], so that position on the ring is described by a continuous coordinate u, with the activation, or firing rate
of a neuron at each position u given by s(u) (see list of symbols and units in Table [II)).

In the interest of generality, we do not commit to any particular functional form for the neural field model presented
in this section. To help build intuition, the reader is encouraged to refer to Sec. [VI} where a simple, exactly solvable
model is presented.

1. Cell Types

Our model has three types of cells.

A. Non-conjunctive attractor network cells

Non-conjunctive cells that form an attractor network are uniformly distributed on a neural ring, and have a firing
rate s(u), where u is the position on the neural ring. Non-conjunctive attractor network cells have outgoing connec-
tions to each other with a weight of J(u' — w), yielding some set of attractor dynamics. These additionally receive
inputs from conjunctive attractor network cells and landmark cells. In general, to yield a steady bump pattern, J will
have local excitation and mid-range inhibition (Fig. BLIA).

B. Congunctive-velocity sensitive cells

The model also has a ring of east-conjunctive (EC) and a ring of west-conjunctive (WC) cells. The firing rates
of these cells at a position u on their respective rings depend instantaneously on the firing rates s(u) along the
non-conjunctive attractor ring and the animal running velocity through the functions

sec(u) = (”Et) s(w),  swelu) = (”V“) s(w). (SLIL1)

Uco Vco

Here vgast, Uwest correspond to the east and west components of the animal velocity v:

g :{vv>0 v :{O v>0 v o v
ast 0v<0" West v <0’ East ‘West ;
and vgg is the characteristic speed at which conjunctive cell firing rates equal the non-conjunctive attractor network
cell firing rates.

The east-conjunctive cells at u have outgoing weights onto the attractor ring so that the peak synaptic output is
biased, and centered at a point u+ A¢pr, where A¢py is the bias in the direction of outgoing weights. West-conjunctive
cells have outgoing weights with opposite bias to u — A¢pr. In general, weights from a conjunctive cell at u will have
an outgoing synaptic strength profile that peaks at u + A¢py for east-conjunctive cells (Fig. SLIB) and u — A¢py for
west-conjunctive cells (Fig. [SLIIC). Here, for simplicity, we have each east (west) conjunctive cell at u connect to a
single non-conjunctive attractor cell at u + A¢gpr. See Sec. |X_T| for a more realistic case in which a conjunctive cell
connects to multiple non-conjunctive attractor network cells.

C. Landmark cells

Landmark cells do not live on a neural ring like the attractor cells and the velocity-conjunctive cells. Instead, each
landmark cell i has a position-dependent normalized firing rate of s¥(t) = H;(z(t)), where H;(z) is some function of



immediate animal position. They do, however, have plastic synaptic connections onto every non-conjunctive cell in
the attractor network with neural ring position-dependent strength W;(u) (Fig. SLID).

2. Attractor dynamics

Over the short exploration time scale ¢, the equations (extended version of Eq. Main)) for neural dynamics [2]

are (Fig. [BLI)):

dsd(tu) = 7%:) + G </u/ J(u— u/)s(u')) +ep1 (suc (u — Agpr)) +eprswe (u + Adpr) + eLm ZZ (Wl(u)s%(t))

East cells (Fig. [SLIB) West cells (Fig. [BLIIC) Landmark Cell Inputs (Fig. SLID)
(SI.H.?)

Non-conjunctive (Fig. [SLIA)
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FIG. SI.1:

A) Schematic of a ring attractor with short-range excitation (red arrows) and longer range inhibition (blue arrows).
B) East-conjunctive cells with clockwise biased outgoing connections (u — u+ A¢pr) C) West-conjunctive cells with
counterclockwise biased outgoing connections (v — u — A¢pr). While in Eq. we assume a simple uniform
offset for velocity-conjunctive cells, this constraint can be generalized to more realistic outgoing connections as well
(Sec. . D) Landmark cells. The landmark cell doesn’t live on the neural sheet, but has outgoing connections to
attractor neurons with a strength of W;(u).

Here J(u — u’) defines the synaptic weight from a cell at position u’ to a cell at u, 7,,, is the “leak time” and G is a
nonlinearity (See Sec. for how variants of these dynamics can be solved.) The firing rates of east-west conjunctive
cells are given by the non-conjunctive firing rates and the animal velocity [3]:

secl) = (2 ) s, swoln) = (2 s(u)

Uco Uco

and the firing rates of the landmark cells are:

3. Plasticity dynamics

The long term learning (Eq. [f{Main)) is mediated by the updates of the Hebbian weights W;(u) from the landmark
cells to the attractor network:
dT

s(u, t sk(t
= (s(u)]: Firing) — W;(u) = ft(il)z() — W, (u) (SLIL3)
ft s;/(t)
There is a separation of timescales between the navigation dynamics (Eq. [SLIL2) and the learning dynamics (Eq.
[SLIL3). The integral ft represents the average within a single training session [4] (assumed to be much longer than
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the time it takes to traverse the environment), while d/dT represents plasticity across training sessions [B], or at least
over several traversals through the environment. We note that the equations for learning (Eq. SLIL3) and dynamics
(Eq. [STIL2) implicitly depend on (1) the environmental geometry, (2) the landmark firing fields H(z), and (3) the
distribution of animal trajectories z(t). We will see below how these three ingredients interact to determine learned

circuit outcomes.

III. MODEL REDUCTION OF HIGH-DIMENSIONAL NEURAL DYNAMICS TO A REDUCED PHASE
DYNAMICS

In this section (List of symbols and units in Table [[I) we will first show how the state of the ring attractor can be
mapped onto a single periodic variable (Sec. representing the peak of the bump pattern. Then, using this low-
dimensional representation, we develop a framework to understand the effect of perturbations on the low-dimensional
attractor state (Sec. [[I12), and then use this framework to understand the effect of path integration (Sec. and
landmarks (Sec. [[IT4)) on this state. Finally, in Sec. we also map the Hebbian learning rule to this reduced
representation. In Sec. [VI] we present an exactly solvable model which reduces to analytically solvable functions for
effective dynamics.

1. Reducing the ring attractor network state to a single phase variable

We will refer to the non-velocity, non-landmark dynamics as Da[s]:
Dals] = —@ +g (/ J(u' — u’)s(u')) :
When there is no external sensory input, Eq. [SLIL2 reduces to:

ds (u)
dt

= DA[S]

How can we characterize these dynamics?

>

Axoyrquyuy
A1078310X7

FIG. SL.2:

A) The ring attractor dynamics ds(u)/dt = Da[s] yield a 1D family of bump-attractor states s(u — ¢*), which are
mapped onto a single periodic variable ¢* representing the peak of the bump pattern. B) Manifold schematic of
attractor dynamics. In the state space of s(u), there exists a one-dimensional manifold of stable attractor dynamics
s* (Teal circle). A state s(u) not on the manifold will eventually be pulled towards some steady state s(u — ¢*) on

the manifold.

Many appropriate choices of J and G, corresponding for example to short range excitation and long range inhibition,
will yield a stable, or steady state, localized bump activity pattern [6l [7]. We assume we have chosen J to be an even
function whose shape admits such stable bump solutions. In Sec. [VI|we describe a specific choice of J that leads to an
exactly solvable model. Because the dynamics are translation-invariant, every translation of a steady bump pattern
is also a steady bump pattern. We call these stable bump patterns patterns s(u — ¢*), parameterized by the position
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of their peak firing ¢* [6] [7].

This one-dimensional family of stable bump activity patterns can itself be thought of as ring of stable firing patterns
in the space of all possible firing patterns. Just as u indexes a family of neurons on the neural sheet, the coordinate ¢*
indexes the different stable neural activity patterns, with a particular value of ¢* corresponding to a stable bump on
the neural ring centered at coordinate u = ¢*. For simplicity we set units such that the coordinate u along the neural
ring, and the coordinate ¢* along the ring of stable attractor patterns are both angles, defined modulo 2. Thus u
and ¢? are phase variables denoting position along the neural ring and ring of bump attractor patterns respectively.

2. Effects of perturbations on the reduced attractor state

The dynamics of Eq. [SLIL2| are:

ds (u)
dt

= Da[s] + ep1 (sec (u — A¢pr)) +epr swo (u+ Appr) +erm ZZ (W;(u)sp (1)

Input from east cells Input from west cells Landmark cell inputs

where sgpc, sgc are defined in Eq. [SLILIl While we have characterized the stable fixed points of § = Dals] in
the absence of landmark and self-motion cues, we have not yet shown how the attractor network responds to these
extra inputs. Assuming that the intrinsic dynamics are much stronger than the inputs applied from landmark and
conjunctive cells, we can treat these inputs as small perturbations to the intrinsic dynamics. We can then describe
how these small input perturbations cause the attractor bump to move around, without changing shape. To do so, we
first derive a reduced description for how a general weak external feedforward input to the attractor network modifies
its dynamics.

A. Attractor dynamics under small perturbations

Here, we examine how an attractor network with a steady-state firing pattern s(u—¢*) responds when its dynamics
are perturbed by some small additional input eds(u — ¢%), which is centered at ¢'. This perturbed dynamics is given
by

ds(u)
dt

In order to understand the effect of this small perturbation, we need to linearize the dependence of dynamics on
synaptic activation. The linearization of dynamics around an arbitrary state so(u) with a generic perturbation to the
attractor state As(u) is defined by the functional derivative:

= Dals] + eds(u — ¢7). (SLIIIL.4)

0D
D As| ~ D A LIII.
Als0 + As] Also] + (A 55 (1) s(u)) - (S 5)
We can write Eq. [SLIIL5 in matrix notation using the Jacobian Jac,, around sg:
0D
Dalso + As] = Dalso] + Jacs, - As, where Jacs, = 5s (2) (SLIIL.6)
S=8o

Because s(u) will always be close to a steady state under a small perturbation, we specifically need to understand
Jacya, the Jacobian of these dynamics around the point s(u — »*) 8.
B. Linearized response of the attractor network to perturbations

Because

Dals'(u — ¢™)] = 0 For all ¢*, (SLIIL7)
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Eq. BLIIL4l reduces to:

0

d ——
5 Da[spa + As] + €0 = Datsga] + Jacga - As + b,

T
Likewise, Eq. [SLIILT tells us that the sliding mode s(u — ¢*) (the spatial derivative of s*(u— ¢*) ) is a zero-
eigenvector of the Jacobian Jacga [9]. This can be seen through the definition of the Jacobian:

0 For all ¢*
* _ 1A
).(ds(z A¢ )> :_TdA Dol far— 0.
s(u)=s(u—g¢A) ¢ o

Moreover, because s{(u— ¢*) is a stable one-dimensional family of solutions of Dy, J acya must be a negative semidef-
inite matrix, where the sliding mode s(u — ¢*) is the only eigenvector of Jacga with a non-negative eigenvalue

[10).

Jacya - [s*’ (u — ¢A)] - _ (‘SDA[S(ZL)]

C. Mathematical background: response of linear dynamical systems to perturbations

How will a dynamical system, with a negative semidefinite Jacobian having a single zero mode, respond to a weak
perturbation? To answer this question, we first review some mathematical background. Consider a simple case of a
two-dimensional line attractor with a state s = (sg, $1). The dynamics ds/dt = Da(s) are:

A A A A A A ANAS/dN A S
s / 0
A
FIG. SI.3:

Schematic of perturbed line attractor dynamics (Eq. SLIIL). Any applied perturbation will the projected onto the
8o direction, which is the zero-eigenvector of the Jacobian.

Sl)=(0 o) (o)

Adding a perturbation of ds = (050, ds1) yields the dynamics:

d(s)_(0 0 50 ds0 \ _ 850
dt(81>_<0—wp> (51>+((551 “\ 0gq—wpsy |- (SLIILR)

Note that there are no interactions between the two modes. In the limit where the attractor dynamics are very strong
(wp — o), Eq. BLITL8 reduces to

dSO/dt = (530, S1= 0, (SIIIIQ)

i,e. the sgp mode (“the sliding mode”) is free to move, while the s; mode is anchored at zero.

In matrix notation, the reduction of Eq. [SLIILS| to Eq. [SLIILYl is the reduction of the full dynamics under a
perturbation (Equivalent to Eq. [SLIILY):

ds/dt = Jac - s + 85 (SLIIIL.10)
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to the projection of the perturbation onto the sliding mode (Equivalent to Eq. SLIILA):
ds/dt = (30-8s) x 8 | SLIIL11
/ (So - ds) 0 ( )

Proj. onto Sliding Mode
Sliding Mode

where §y = (1,0) is the zero-eigenvector of Jac [I1].

The reasoning in Sec. [[IlI2D] is an analogous but higher-dimensional generalization of Eq[SLITLII] applied to
functions and functional derivatives. In essence, in the higher dimensional case, an input-perturbation will be restored
along all dimensions in firing rate space back to the manifold of attractor bump patterns, except in the single direction
along the sliding mode. Since the sliding mode is a spatial derivative of the bump pattern, adding in the sliding mode
will move the bump pattern along the manifold of attractor states. Moreover, the rate of motion will be proportional
to the inner product of the profile of the external input perturbation as a function along the neural ring, and the spatial
derivative of the current bump pattern. We now study this inner-product, or projection of the input perturbation
onto the attractor network sliding mode to yield a force law for attractor bump motion.

D. Projection of perturbations onto the sliding mode

When an external perturbation is small and Jacya is symmetric at a given firing rate profile of s(u), e.g.

st = LD AN _

the eigenvectors of Jacy,a are orthogonal [12]. Therefore, given any small perturbation to the dynamics:
ds(u)/dt = Dals] + eds(u — oY), (SLIIIL.12)

the effective perturbation will be the projection of the actual perturbation d,(u — ¢¥) onto the sliding mode, i.e., the
single zero-mode of the Jacobian:

ds(u) e {1 / § (u—¢™) o5 (u—9")| 8" (u— o) = ¢ [1 / §(u)ds (u— [¢F — qﬁA]) §'(u— ¢A), (SLIIL.13)
dt N u —— N u —_———
Sliding Mode Sliding mode
Projection onto Sliding Mode Projection onto Sliding Mode

where we have substituted © — u+ ¢* in the second step [13], and A is equal to the squared magnitude of the sliding
mode [I4] to ensure that the projection is properly normalized.

We can define the negative of projection onto the sliding mode to be an effective force law F ((bP — ¢A), ie.

F(67 =) = =57 [ 1008 (a= [ - oY)

to get (Fig. [SL4):
ds(u)
dt

Eq. BLIILT4 shows that at any given time, the temporal derivative ds(u)/dt is a multiple of the spatial derivative
§"(u — ¢™). Therefore, the effect of any perturbation can be reduced to an effective force on the single-variable bump
position:

= —eF(¢" —¢*) " (u—¢%). (SLIIL14)

do™ P A
T eF(p- — o). (SLIIIL.15)
We can verify that the effective force law of Eq. [SLIIL.15l yields Eq. [SL.ITT.14]
ds* (u — qﬁA) _ds (u — ¢A) do? B
dt N do? dt

do?
dt

—5"(u— M) = = —cF(¢" — ") (u—9),  (SLIIL1G)
dgA /dt

where we have used the fact that dsi(u — ¢*)/d¢™ = —ds(u — ¢*) /du = —8'(u — ¢*).
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a. Form of the force function ~ When the perturbation takes the form of input from localized Hebbian landmark
cells, the perturbation function is simply the attractor bump pattern s(u — ¢%). Therefore, defining A¢ = ¢~ — o™,

F@0) =~ [ st a0 == [ st sopt = - [ FEES sy - L] [t aoysta].

Therefore, the force function is simply the negative derivative of the spatial autocorrelation function of the bump
pattern. Because the spatial autocorrelation is even and maximized at A¢ = 0 (minimized at A¢ = =), the force
function will be odd, with positive (negative) values for positive (negative) A¢. As long as the bump size is not much
smaller than the bump spacing, the autocorrelation will decrease gradually between A¢ = 0, A¢p = =, leading to
a long range force function which only approaches zero at, and far from, the origin. This behavior is qualitatively
matched by F (A¢) = sin(A¢). For simplicity, we define the magnitude of F(A¢) to give it a slope of 1 at A¢ = 0;
all strength information can be absorbed in the factor € it is multiplied by.

b.  Dynamics with non-symmetric Jacobians. Jacga will in general be non-symmetric. In this case, we may use
the same techniques as before, except now we must use a non-orthogonal projection onto the sliding mode:
ds(u)
dt

~ e U Voroj (W — %) 0s(u— ") | 7 (u—¢") = —eF(¢" — ™) (u—¢*)  (SLIIL1T)

—_———
Sliding Mode

Non-orthogonal projection onto sliding mode

where vpro5(u — #*) can, in principle, be solved through diagonalization of the Jacobian Jacga.

A

East Vel Cells West Vel Cells Landmark Cells

FIG. SI.4:

A) Schematic of how perturbation slides attractor state along manifold. There exists a one-dimensional manifold
of steady attractor states s'(teal circle), which is supported by the attractor dynamics Da(Gray arrows). Any per-
turbation in the direction of &,(u — ¢¥) will be projected to the sliding mode s(u — ¢*) along the manifold. B)
When the animal travels east, the resulting perturbation s(u — [¢p* — A¢pi]) rotates the attractor network clockwise
at a rate that does not depend on the attractor state. C) When the animal travels west, the resulting perturbation
s(u+ [¢* — A¢pi]) rotates the attractor network clockwise at a rate that does not depend on the attractor state. D)
Schematic of a landmark cell correcting the attractor bump (Eq. SLIIL22). A single landmark cell will pull the peak
of the bump pattern towards the peak of its efferent synaptic strength profile.

3. Proof of recovery of exact path integration

When the animal is moving, there are additional velocity inputs to the attractor network from the east-conjunctive
and west-conjunctive cells, yielding:

ds(u)/dt = Das] + vastepr 8" (u — [¢™ — Agp1]) + vweseepr s*(u — [¢™ + Adpi])
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where Vgagt, Uwest are the east and west velocities of the animal. Treating §; = s, model reduction via Eq. [SLITL.T5]
yields (Eq. 2{Main))

d¢™ Jdt = vpasseptF (Adp1 + 62=0") + vwestept F (—Adpr + 62=57) =
[UEast - chst] EPI}— (A¢P1) = vk, (SI.HI.IS)

v k(Definition)

where k is a constant of proportionality that relates animal velocity to the rate of phase advance in the attractor
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FIG. SL.5:

Solving Eq. [SLIILTY yields an attractor phase (Eq. [SLIILI9), and thus individual firing rates (top cell in attractor
ring, Eq. SLIIL.20) which are only a function of current position z(t).

network (k = 27 /Grid Field Spacing). Solving Eq. SLIILIS allows us to recover path integration (Fig. [SLH) where
the resulting (Eq. BfMain)) integrated attractor phase is only a function of current position z(t):

™ (t) = ¢™(0) + K[z(t) — z(0)] (SLIIL19)

= s(u,t) = (u— ¢ (0) — k[z(t) — z(0)]) . (SLIII.20)

Thus the connectivity of the conjunctive-velocity cells in Fig. [SI.4B, C ensure that as the animal moves east (west)

along a 1D track, the attractor phase moves clockwise (counterclockwise), at a speed proportional to velocity. The

collection of neurons in the attractor network then trace out periodic firing patterns as a function of spatial position,
all with the same period but different phases.

4. Anchoring of the attractor state to landmark cell synapses

When the animal is in a landmark field, there are additional inputs to the network from landmark cells. Each
landmark cell has Hebbian weights W;(u) onto neurons at position u on the attractor ring. It is convenient to express
these Hebbian weights in the “attractor basis”, i.e., as a weighted superposition of attractor bumps with peaks at o
with weighting W;(¢"):

Wi(u) = [ Wi(o¥)s(u — ov). (SLIIL.21)
¢L
When a single landmark cell 7 is firing with rate s¥(¢), the dynamics become:
ds(u)/dt = Dals] + evmsi (t) | Wi(¢")s(u— ¢").
¢

First, we examine the effect on the attractor state from a single ¢%. When Wi(qSL) is localized near a single point
¢, the landmark perturbation is well described by

3s(u) = eLnsy () Wi(9")s(u — o%),

and using Eq. [SLITL15 we recover the effective dynamics (Eq. (Main)) when the sole input comes from this landmark
cell firing:

do™ Jdt = ws ()W, (") F(e" — ™), (SLIIL22)
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where w o e . €M sets the strength of synapses from the landmark cell to the attractor network, while w is the
emergent strength of the effective force that the landmark cell exerts on the reduced attractor state.

Because we have linearized the effect of input perturbations, the effect of multiple perturbations to the reduced
attractor state is additive. Treating the force law F[ds] as a functional of a perturbation, both Eq. SLIILI3 and Eq.
IO yield F[62 + 68] = F[62] + F[6F]. Therefore, the effect of a landmark cell i with arbitrary W;(¢") is:

d(bA L X L L A
e = wisk (1) ¢LWZ-(¢ VF(6F — ¢h). (SLIIL23)

a. Combined neural and synaptic dynamics during exploration. Again, taking advantage of the fact that weak
input perturbations act additively, we combine the effect of path integration on the attractor phase ¢™ described in
Eq. SLIILI§ with the effect of multiple landmark cells with arbitrary learned weights W;(¢"), each acting on the phase
through Eq. we obtain the full dynamics of attractor phase driven by both animal velocity and landmark
encounters:

— = vkt zi:wiHi(m(t)) /¢ L\fvi(&)f(& — ™). (SL.IIT.24)

Recall that st(t) = H;(z(t)).

Eq. BLIIL24] constitutes significant reduction of the original functional dynamics of Eq. The attractor
state has been reduced from an arbitrary function over the neural sheet s(u) to a scalar ¢*. The effect of velocity-
conjunctive cells has been reduced to ideal path integration, and the effect of landmark cells has been reduced to a
distribution of forces “pulling” the attractor state to each synaptic weight peak ¢“. While these dynamics describe
exactly how the reduced attractor dynamics evolve given fized synaptic weights from landmark cells to attractor cells;
it does not describe how the attractor weights themselves evolve. Next, we perform model reduction on the learning

dynamics of Eq. BLIT3l

5. Hebbian learning of landmark cell synapses

The model assumes Hebbian plasticity with weight decay, of efferent landmark cell synapses during exploration
while both path integration and landmark cells are active. The synaptic dynamics follow Eq. [SLIL3]

s(u, t)st
— (s(u)]i Firing) — W, (u) = W

Because the attractor firing rates can always be described as some translation of the steady bump pattern, s(u,t) =
s(u— ¢*(t)), the long term average (s(u)|i Firing) of attractor patterns s(u) conditioned upon landmark cell i firing
can be written as:

dT

— Wi(u). (SLIII.25)

(s(u)|i Firing) = / §(u — ¢%)Pr(¢™(t) = ¢"|i Firing).
d)L

Thus all that matters for determining synaptic strength is the distribution of attractor phases that occur when the

landmark cell fires. Again, it is convenient to use the “attractor basis”, where the Hebbian weights are represented

as a weighted superposition of attractor bump patterns W;(u) = | oL W, (¢%)s*(u — #*). Representing Eq. [SLIL3] in

this basis yields the learning dynamics of the synaptic weighting coefficients (see Sec. for a proof):

dW;(¢")/dT = Pr(¢™(t) = ¢"|i Firing)—W;(o"). (ST.III.26)

Together, Eq.[SLIIT.24] and Eq. [SLIIL.26l reflect a complex coupled dynamics between neurons and synapses. In Eq.
SL.ITT.26]l the distribution of attractor network activity patterns, or phases, drives plasticity in synapses from landmark
cells to the attractor network. In turn, these synaptic weights modify the evolution of the attractor network phase

via Eq. BLIIT.24]
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6. From landmark cell synapses to pinning phases

From Eq. [SLIIL.23] we know the effect of a single landmark cell on the dynamics of the attractor state is given by:

A ~
W — st (1) [ WMF(" — o)
¢L

We want to characterize the entire distribution of landmark cell synapses W(¢L) using only two variables: 1) The
average pinning phase 9}{55 that the landmark pulls the attractor state to, and 2) the effective strength wgg with which
the landmark cell pulls the attractor state [I5]. The approximation problem is to find 0]{56, wgg such that the effective
force on the attractor state is well approximated when the animal is within the firing field:

unH(r() F (B — 6 (0) = wH(t) | WGHF(6" — 6 (), (SLIIL27)

where the approximation is averaged over the joint exploration and attractor state statistics x(t), ¢*(¢). This ap-
proximation can not be exact in general, but it becomes exact in certain limits.

A.  Single bump state

When the Hebbian weights are a single bump state, i.e. W(¢Y) = d(¢F — #%), the approximation becomes ezact,
recovering Eq. SLIIL22] where wgpg = w, OFx = ¢. More generally, as long as W(¢") is localized, the approximation
works well, where 6% is the mean of the distribution W(¢b), i.e.

ko= [ W(o",

where the bounds of integration contain the localized bump W(¢"). In this limit wgg is close to w and inversely
related to the dispersion of W(¢%).

B.  Sinusoidal force law

Another case in which the approximation works exactly and intuition can be built is when the force law is sinusoidal,
ie. F(o¥ — ¢™) = sin(¢p" — ¢?) (See Sec. [VI| for an attractor network where this is the case). Here, we can solve Eq.
SLIIL2T exactly for arbitrary landmark cell synapses W(¢%). We do so by summarizing the landmark cell synapses

with a single complex number:
= (/ W(qsL)ewL) .

The effective pinning phase 9]{53 is then given by the angle of 2", and the effective landmark strength wgg is given by
the magnitude of z"
e = 22|28, WEg = ‘zL’ w, 2L = e g, (SLIII.28)

We can verify that the approximation Eq. [SLITL.28] is exact:
w/ V~V(¢L)sin(¢L _ ¢A) :/ Imag (wW(¢L)ei(¢L_¢A)) _
ol L

Imag (zLe_M’A) = Imag (wEﬂrewE”e_i‘i’A) = WEg Sin (QEH — (bA) .

(SLIIL.29)

Next, in section Sec. [[V] we will show a limit in which this approximation can be made exact, where the distribution
of synaptic weights W;(¢") as well as the attractor state distribution Pr (¢A|i ﬁring) are localized.
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IV. LINEAR APPROXIMATION

While the equations of Eq. and Eq. [SLITL.26 have been significantly reduced from the original equations
of Eq. BIIL2, Eq. there is an additional source of complexity in that the synaptic weights of each landmark
cell are described by an entire distribution over attractor phases W;(¢"). In this section, we will show how these
dynamics can be linearized, yielding a single scalar representation for learned landmark cell synapses which can be
used to characterize both exploration and learning of environments (List of symbols and units in Table [II)).

1. Linearized representation of weights from landmark cells to the attractor network

For landmark cells with localized firing fields (much smaller than the grid spacing), the distribution of synaptic
weights Wi(gbL) tends to become localized [16] ; it does not spread evenly around the entire unit circle, but is rather
centered in a region. Recall from Sec. [[IT6] that we may simplify the force exerted by a landmark cell on the attractor
state in tlﬁe manner of Eq. by representing each landmark cell’s synaptic weight distribution by its weighted
average 0;".

0; = » Wi(o™)e". (SLIV.30)

Intuitively, 0 is also the weighted average synaptic position (Fig. SL8).

W (u) o-

o o000, B
OO O~ OO ®)
O @] O @]
3 ; 3 S
OO d Small OO OO
(0]el®) angle approx (019)®)

FIG. SI.6:

Schematic of the scalar single variable representation of a landmark cell’s synaptic strength profile in Eq.
The entire distribution of synaptic weights W(u) can be approximated concisely as the weighted average of efferent
synaptic strengths onto the neural attractor ring, yielding a single phase variable % description for a landmark cell’s
synapses. When the landmark cell fires, its effect on the attractor bump is to pull it towards A" along the neural ring.

2. Linear approximation of force law

After initial steps of learning, when the animal is within the localized firing field of a landmark cell, the bump
attractor peak tends to be close to the peak synaptic output of that landmark cell (this corresponds to navigational
errors that are much smaller than the spacing between firing fields). If, whenever a landmark cell i is firing, ¢* () is
close to all " for which W; (") is significantly greater than zero, we may linearize the force law F(¢"—¢*) ~ (¢ —¢?)
[1I7] to obtain a simple linear force proportional to the difference between the attractor phase and the mean position
of the landmark cell synapses onto the attractor ring. Therefore, we can simplify the force exerted by a single firing
landmark cell exerted on the attractor state:

/ W, (6%) F (¢ — %) ~ / Wi (0") (6% — %) = [ Wi@heh— [ Wi(eh)eh = (6% — o),
foxs oL PL PL
o A




19

yielding dynamics (Eq. [f{Main)) of:

dp /dt = kv + Y wiHi(x(t)) (6] — ¢*). (SLIV.31)

3. Linear approximation of learning rule

While the evolution of the learned Hebbian weights W;(¢“) (Eq. BSLIIL24) depends on the distribution of ¢*
conditioned on a landmark cell firing, the evolution of the weighted average 6% depends only on the average attractor
phase conditioned on landmark firing:

dT

Eq. [SIIV.32] (Eq. [(Main)) can be verified by combining the attractor basis dynamics for Hebbian learning and the
linear approximation for A%:

dHZL_d 5 LNJLY) _ dWi(¢L) L A _ S Lis T s oL L
dT_Cer(¢LWZ(¢ )¢)—/L <dT>¢ —/d)L(Pr((b = ¢"|i Firing) — W;(¢ ))¢

= / Pr(¢® = ¢%|i Firing)o" —/ Wi(¢")¢" = (¢*|i Firing) — 0}
oL oL

= (¢"|i Firing) — 0} (SL.IV.32)

(¢ i Firing) ok

In essence Eq. and Eq. constitute a significant model reduction of Eq. and Eq. In
this reduction, the entire pattern of neural activity of the attractor network is summarized by a single number ¢*,
denoting a point, or phase, on the ring manifold of stable attractor states. Similarly, the entire pattern of synaptic
weights W;(u) from landmark cell i into the attractor network is summarized by a single number 6%, which denotes
the mean position of landmark cell synaptic inputs onto the attractor ring (Fig. [SLG]).

Intuitively, the reduced Eq. describes both path integration and a dynamics whereby each landmark cell
i attempts to pin the attractor phase ¢* to the landmark cell’s learned synaptic phase 6%, each time the physical
position z(t) of the animal is within the landmark’s firing field H;(z). In turn, synaptic plasticity described in Eq.
aligns the learned pinning phase 6% of each landmark cell i to the average of the ensemble of attractor phases
¢* that occur when the animal is in the firing field of the landmark.

As we will see below, as an animal explores its environment, this coupled dynamics between attractor phase ¢* and
landmark pinning phases 6~ settle into a self-consistent steady state such that the attractor phase yields an internal
estimate of the animal’s current position that is, to first order, largely independent of the history of the animal’s
previous trajectory. Moreover, each landmark cell learns a pinning phase 0%, consistent with the location of its firing
field in physical space.

V. LEARNING A SIMPLE ENVIRONMENTAL GEOMETRY

To keep the supplementary material self-contained, we largely repeat a section of the main paper describing and
illustrating how the above equations yield a self-consistent neural representation of space in a simple 1D environment.
A relevant list of symbols and units can be found in Table [[TI]

Consider the linearized dynamics of Eqs. [SLIV.31} [SLIV.32| for the simple case of an animal moving back and forth
between the walls of a 1D box of length L, at a constant speed vy = L/7, yielding a total time of 27 to complete a
full cycle (Fig. @A). In this environment we assume two landmark cells corresponding to the east (west) walls, with
firing fields extending a distance Ly into the environment leaving an empty space Lpy = L — 2Lwan between (Fig.
[SLT). Their pinning phases 0% (9{7\,) encode the peak position of their outgoing synaptic weights. How does circuit
plasticity yield a consistent environmental representation through exploration?

We will build intuition in the limit where L.y — 0, w — oo; in this regime, landmark cells only act at the very
edge, yet fully anchor the attractor state when the animal touches the edge. At ¢t = 0, the animal starts at the west
wall at physical position 2(0) = —L/2. Through Eq. [6] the west border cell pins the initial attractor phase so that
#*(0) = 0%,. At t = 7, the animal travels to the east wall at physical position z(7) = +L/2, and the attractor phase
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FIG. SI.7:

Schematic of an animal moving between two landmark fields in a simple 1D geometry, along with attractor phase as
a function of position and path history (¢*(0),¢™(7/2),¢*(7),*(37/2)). The landmark fields extend a distance of
Lwan into the environment leaving an empty space Ly = L — 2Lwan between.

advances due to path integration to become ¢*(77) = 9\17‘, + kL. However, upon encountering the east wall, the east
border cell pins the attractor phase to 6.

Before any learning, there is no guarantee that the east border cell pinning phase 9% equals the attractor phase
0% + kL, obtained by starting at the west wall and moving to the east wall; sensation and path integration might
disagree (Fig. @B). However, plasticity described in Eq. [ will act so as to move 0% closer to 0% + kL. Then as the
animal returns to the left wall at time ¢ = 27, path integration will retard the attractor phase ¢*(27) = 0L — kL,
and an encounter with the west wall leads the west border cell to pin the attractor phase to 6%,. Again, there is no
guarantee that the west border cell pinning phase 0%, agrees with the attractor phase 65 — kL obtained by starting at
the east wall and traveling to the west wall, but circuit plasticity will change H%V to reduce this discrepancy. Overall,
plasticity over multiple cycles of exploration yields the iterative dynamics

0% — 0% + kL, O — 0 — kL.

1. Learning as an elastic relaxation between landmarks.
To gain further insight into the learning dynamics, it is useful to interpret the periodic attractor phase ¢*(t) as an
internal estimate of position through the “unrolled” coordinate variable
XA = Pk, (SLV.33)
Likewise, we can replace the landmark phase 8% with another linear variable
Xp=0;/k, (SLV.34)

denoting the internal representation of the position of landmark ¢ (Fig. FID). This enables us to associate physical
positions to landmark cells, or more precisely their pinning phases, although these assigned positions are defined only
up to shifts of the grid period. Plasticity over the long timescale T of exploration then yields the following learning
dynamics for the physical positions in unrolled phase for the landmark cells:

dX5/dT = —Mpw [AF — (X% + AXg,g) ] (SI.V.35)
dXg /dT = —Mwg Xy — (X5 + AXE,w)]. (SL.V.36)
where AXY g = —AXE,w =L, and Mpw = Mwg.

These dynamics for the two landmark cell synapses in unrolled phase are equivalent to those of two particles at
physical positions X\va and Xé“ , connected by an overdamped spring with rest length L, and spring constant Mg
which sets the learning rate (Fig. HE). If the separation X — X between the particles is less (greater) than L, then the
spring is compressed (extended) yielding a repulsive (attractive) force between the two particles. Learning stabilizes
the two particle positions when their separation equals the spring rest length, so that X]% — X\va = L. This condition
in unrolled phase is equivalent to the fundamental consistency condition for a well defined spatial map, namely that
the phase advance due to path integration equals the phase difference between the pinning phases of landmark cells
(Fig. HIC). However the utility of the unrolled phase representation lies in revealing a compelling picture for how a
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spatially consistent map arises from the combined neuronal and synaptic dynamics, through a simple, emergent first
order relaxational dynamics of landmark particles connected by damped springs. As we see below, this simple effective
particle-spring description of synaptic plasticity in response to spatial exploration generalizes to arbitrary landmarks
in arbitrary two dimensional environments.

We note that if the environment has not been fully learned or has been recently deformed, the internal representation
of landmarks in unrolled phase will lag behind the true geometry for a time, leading to “boundary-tethered” firing
fields seen in [I8], [19]. Additionally, we have solved the dynamics when the firing fields of the border cells have a finite
extent Lwan and the landmark cells have a finite strength w, and we find the dynamics obeys that of Eq. and
Eq. (Eq. [B(Main) and Eq. [){Main)). One notable difference is that the internal map will be contracted, and
the rest length will be AX\%/—>E = Lyt + 2vg tanh (wLwan/2vp)/w < L (See Sec. . We note that this still produces
a consistent, path-independent representation in the center of the track, far from the firing fields of either border cell.

VI. AN EXAMPLE OF AN EXACTLY SOLVABLE RING ATTRACTOR MODEL

To build intuition, and to derive explicit equations in a concrete setting, we turn to a modified and simplified
version of the model of Ben-Yishai et al. [20] which is exactly solvable and yields analytic, effective force laws in the
model reduced description.

Without external inputs, the model follows the dynamics:

dsd(tu) w46 (/u T u/)s(u/)> 7 (SLVL37)

where J(Au) = Jg cos(Au), and the nonlinearity is defined by:

-1 h<-1
Ghy=< h —-1<h<l1
1 h2>1

1. Steady state solution

Any steady state solution will have the form

where

h(u) = /u J(u —u)sW) = Jo (/u cos(u — u’)s*(u'))

To solve these equations, we note that regardless of s%(u), h(u) will have the form hg cos(u — ¢*). Thus any attractor
solution must have the form s(u) = G(hgcos(u — ¢*)). When Jy < 1/7, the only steady state is the uniform state

$(u) = 0; however, when Jo approaches 1/m from above, the uniform state becomes unstable, and there is now a
stable steady state solution of

*

§(u) = cos(u),

and the nonlinearity G is barely triggered (Fig. [SLS]).

2. Effective force function

When Jg approaches 1/7 from above, the non-linearity is barely in effect, i.e. G(s(u)) = s(u) for nearly all w [21].
Defining the dynamics Eq. [SLVL37 by the functional Dy [s] we see that the Jacobian around any steady state, Jacya,
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is nearly symmetric, i.e.

Jac (ul7u) _ d(Djs[(SL]Lgu’)) _ d(zﬁ([j]lgu)) _ JaC¢A (u7u/) ~Jo COS(’LL/ —u),

and so the eigenvectors of the Jacobian are orthogonal. Therefore, any perturbation applied will be projected along
the sliding mode in the manner of Eq.[SLIILI4l For example, if we apply a perturbation of € cos(u — ¢F), the effective
sliding dynamics of the attractor bump will be given by,

ds(u)
dt

= eF (@ = M) (u—o%),

where the attractor force law is F(¢F — ¢™) = sin(¢F — ¢™).

u
FIG. SL8:

Steady attractor state s(u — ¢™) for Eq. SLVL3T Jo = 1.01/7, 1% above the threshold value. The network is in
the linear regime in almost all parts of the neural sheet, except for the very top and bottom, which are truncated at
+1. As Jo approaches 1/7 from above, these nonlinear regions become infinitely small, and the Jacobian becomes
symmetric.

Adding velocity conjunctive cells and landmark cells in the same manner as Sec. [[, we obtain the explicit, effective
reduced dynamics:
de™

— = cersin(Agpr)u t+ery > Hi (2(t) W(g") sin(¢" — ¢*),
N————— (2

dW; (")

o Li- e - &7 (AL
T = Pr(¢~|i Firing) — W;(¢~).  (SI.VL38)

kv

VII. GENERALIZATION TO TWO-DIMENSIONAL GRID CELLS

In order to make contact with experiments, we generalize all of the above to two dimensional space, and two-
dimensional attractor models yielding grid cells. See Table [V] for a list of symbols and units.

Now attractor network grid cells live on a periodic two-dimensional neural sheet, where each neuron has position
u = (up,us).

1. Velocity-conjunctive cells

When we generalize to 2D, there are now four kinds of velocity conjunctive cells: east-conjunctive, west conjunctive,
north-conjunctive and south-conjunctive. Each one of these four cell-types live on their own distinct neural sheet with
the same coordinate u = (uj,u2) as the sheet corresponding to the attractor network sheet that contains pure,
non-conjunctive grid cells. The firing rates of these conjunctive cells at their own neural sheet position u depend
instantaneously on the firing rate s(u) of the non-conjunctive grid cells at their corresponding position u, as well as
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FIG. SL.9:

A) A 2D neural sheet with short-range excitation and long-range inhibition, analogous to Fig. [l Each neuron on
the continuous sheet now has coordinates u = (uj,us). B1) A 2D analogue of a single attractor pattern on the
neural sheet, with high firing rates in red (compare to Fig. BLIJA). The set all unique stable attractor patterns is
now indexed not by a single phase variable as in 1D, but a 2D phase variable ¢® ranging over a rhombus, the
unit cell of the attractor bump pattern. Copies of the unit cell are shown via white lines. B2) Schematic of the
discrete translational symmetry of the bump attractor state Eq. C1) Schematic of outgoing weights for
east-conjunctive cell (while Eq. uses one-to-one conjunctive weights, this can be easily extended). North,
south, and west-conjunctive weights can be constructed in the same way. C2) As the animal travels along the south
wall, the average firing rates will form a “streak” across the neural sheet. C3) The landmark cell Hebbian weights
will be a combination of 2D attractor states (Eq. [SLVIL43).This leads the Hebbian weights on the neural sheet to
form the same streak; this learned state can be represented as a distribution over the periodic rhombus. Analogously,
there is a force law, where the state of an attractor network ¢ will be pulled towards this distribution W;(¢") (Eq.
[SLVIL42). D) Here, we can unroll the two-dimensional attractor phase into a two-dimensional position variable,
thereby associating landmark pinning phases to points in physical space. Given landmarks in all four corners, the
landmark pinning phases correspond to different points on the phase rhombus, but through unrolling this rhombus,
each can be associated to a physical corner of the environment.

on the animal running velocity through the formulas:

sne(u) = (VNorth/vco)s(1),  sec(u) = (VEast/vco)s(u),  ssc(u) = (Vsouth/vco)s(u),  swe(u) = (Vwest/vco)s(u).

Here vy is some characteristic speed at which the velocity-conjunctive cells fire at the same rate as the non-conjunctive
attractor cells, and VNorth, VEast, VSouth, VWest are the north, east, south and west components of animal velocity
respectively:

VNorth = [V . 5’]+, VEast = [V . X]er VSouth = [—V . y]+a VWest = [_V . X]+> v = (VNorth - VSouth) S’ + (VEast - VWest) X

where X, y are unit vectors in the x and y directions respectively.
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2. Full two-dimensional neural dynamics

The full dynamics of the attractor network (extended version of Eq. [I0{Main)), analogous to Eq. [SLIL2] are

de(tU) __s(w +g (/u/ J(ju— u’|)s(u’)> +eLMZ (W (w)sk (1)) +

Tm

g Landmark cell inputs
ep1 (snc (U — |Agpr| G2)) +epr (spc (U — [Agpr| 1)) + €epr (ssc (U + [Agpr] G2)) + ep1 (swe (u+ |Agpr| 01)),

Input from north cells Input from east cells Input from south cells Input from west cells

(SL.VIL39)

where the firing rates of the landmark cells are a function of 2D animal position:

3. Hebbian learning of landmark cells in two-dimensions

The long term learning is mediated by the updates of the Hebbian weights W;(u) from the landmark cells to the
attractor network in a manner analogous to Eq. [SLIT3}

dWi(u)

—— = (s(u)]i Firing) — W;(u)

_ ft s(u,t)sk(t) B

i s%(t; Wi(u). (SLVIL40)

4. Two-dimensional model reduction
A. Reduced two-dimensional attractor state

Applying the same techniques as before, we see that attractor dynamics on a two-dimensional neural sheet can
now yield a two-dimensional family of stable, or steady state, localized bump activity patterns s{(u — ¢*). When
2D attractor dynamics yield a family of steady hexagonal bump patterns, this periodicity on the neural sheet has
hezagonal symmetry(Fig. BLAB2), and can be represented mathematically on the neural sheet as:

§ (ug,ug) = §(uy + 2w, ug) = s (uy + 7, us + V37),

where we have defined units on the neural sheet in terms of this periodicity. Therefore, the coordinate ¢ specifying
a point on the manifold of stable attractor patterns is a periodic variable defined modulo the periodicity of the steady
state pattern:

™ = o™ + (27,0) = ¢ + (m,V3n). (SLVIL41)
The attractor state is now a 2D phase ¢* on the periodic rhombus (Fig. SLIB2).

B. Reduced short-timescale exploration dynamics

Likewise, we may obtain a 2D analogue (Eq. Main)) to the dynamics of the attractor state:

d™ fdt = Kdr/dt + } wiHi(x(1)) / Wi (@) F (o" — %) (SLVIL42)

L

Here we have replaced the 1D gain scalar, k, with K, a 2 x 2 matrix that translates 2D animal velocity into phase
advance in the 2D attractor network; K determines both grid spacing and orientation. When (north, east, south,
west) cells have outgoing connections in the G2, 1y, —li2, —1; directions, K is a multiple of the identity and yields
NESW oriented grid fields. When grid fields are at an angle, K will be some multiple of a rotation matrix.



25
C. Two-dimensional learning dynamics

We may likewise obtain the analogue (Eq. Main)) of the learning dynamics of Eq.
dW;(¢Y)/dT = Pr(¢™(t) = ¢L|i Firing) — W;(¢"), (SI.VIL.43)

where W;(¢") is now a distribution over the periodic rhombus (Fig. SLAC).

D. Two-dimensional linearized dynamics

Continuing further, we may make a small-angle approximation (Analogous to Eq. SLV.33but now using 2D variables
with periodicity over the rhombus) to replace the attractor phase ¢®(t) with a two-dimensional unrolled linear
variable:

RA() =K 9™ (1), (SLVIL44)

reflecting an internal estimate of instantaneous position in 2D physical space.

Likewise we may replace the distribution of Hebbian landmark weights V~V1(¢L) with a single 2D phase variable O
on the rhombus representing the weighted average (Analogous to Eq. BLIV.30) of its synaptic weight distribution:

0; = / / Wi(gp™)p". (SLVIL45)
Analogously to Eq.[SLYV.34] we can unroll the phase variable % into a linear variable,

R =K '6F (SI.VIL.46)
associated with a physical position in real space (Fig.[SL.OD) up to the grid periodicity.
This reduction yields two-dimensional dynamics (Eq. [[6(Main), Eq. [[7(Main)) for internal estimates of position

(i.e. unrolled attractor phase) and internal estimates of landmark position (i.e. unrolled mean phase of landmark cell
synapses), given in analogy to Egs. [SI.IV.31} [SI.IV.32| by:

ARA[dt = dr/dt + ) " w; Hi(x(t)) (R} — R™), (SLVIL47)
dRY/dT = (R*(t)|Cell i Firing) — R (SL.VIL.48)

i

VIII. REDUCING THE JOINT EXPLORATION AND LEARNING DYNAMICS TO A MECHANICAL
MASS, SPRING SYSTEM.

A list of symbols and units can be found in Table [V]

We showed in Eq. and Eq. SLV.36] that the emergence of spatial consistency between path integration and
landmarks through Hebbian learning dynamics, during exploration of a simple 1D environment, could be understood
as the outcome of an elastic relaxation process between landmark cell synapses, viewed as particles in physical space
connected by damped springs. Remarkably, this result generalizes far beyond this simple environment. As long as the
exploration dynamics are time-reversible [22], the learning dynamics of any set of landmark cells in any geometry in
2D (and 1D) yields this particle-spring interpretation (Eq. Main)):

AR} /dT = =Y M;; (R} — [R} + ARL,]). (SI.VIIL.49)
J
The spring constant M;; is related to the frequency with which the animal moves between each pair of landmark
firing fields 4, j, while the rest displacement AR%,, is the average change in unrolled attractor phase as the animal
moves from firing field j to field 4, roughly related to the distance between the landmark firing fields. Below, we show
how this is derived, as well as how precise expressions for the spring constants and rest lengths are determined by the
statistics of exploration.
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1. Animal position self-estimate as a function of position and path history

We first need to solve for an animal’s internal estimate of position (i.e. its unrolled attractor phase) as a function
of its path history. To do so we first make the bookkeeping substitution:

dRA/dt = dr/dt + w(r(t))[RY(x(t) — RA] (SL.VIIL50)
N——
Path Integration Landmark Cells

where w(r) = Y~ wH; (r) is the combined strength of all landmark cells that fire at r, and RY(r) = 3 [H; (r) RF] /w(r)
is the average position estimate being reinforced at position r. As the animal moves around the environment, the
position self-estimate will get pushed to the learned reinforcing positions of landmarks the animal visits, path inte-
grated as the animal moves, and eventually forgotten as the animal encounters new landmarks. We can take this
basic intuition and turn it into a closed-form equation (Verified in Sec. ; given any path history r(¢) the solution
for Eq. SLVIIL50! is:

RAe(t),t] = / t [RE (x(t)) + (x(t) — r(t))] X (w(r(t’))e_ftt’ w<r<t”>>dt”)dt'(SI.vm.m)

Landmark Position Estimate 4+ Path Integration from t’

Memory of time ¢’

a. Solving for learned position estimates as a function of current landmark position estimates. We now need to
compute the mean position-self estimate seen by each landmark cell. We note that for any individual path, R [r(t),]
is linear with respect to RY(r’). Therefore, defining ra and rg as the starting and ending positions of a path, we can
show that the average R (rp) is also linear with RY(ra) by averaging over all paths starting at ra and ending at
rg. Therefore, we can construct a matrix equation:

RA(rp) =/ S(rp,ra)[w(ra) (R™(ra) + (rg —ra))],

where our matrix entries S(rg,ra) represent all possible ways the landmark position-estimates at position ra con-
tribute to the mean position self-estimate at rg. As long as the exploration dynamics are reversible, i.e., for any r(¢),
the reverse path r(—t) is equally likely, S is symmetric (S(ra,rg) = S(rg,ra), proof in Sec. [XI4).

To solve for the learning dynamics, we expand w(r), RY(r) to understand the average position self-estimate as a
function of position and the landmark position estimates of all landmark cells j:

RA(rp) = Z/ S(rp,ra)H;(ra) (RY + (rg —ra))dr’.
joUra
The mean position self-estimate seen by each landmark cell 7 is then:

RA = Z//rB,rA H,(rg)S(rg,ra)H; (ra) (’R,? + (rg —ra)).

Combining this with the landmark learning rule gives:
dR} _pA _ pL _ ) ) L — —RL
T = R>P—R; = Z H,(rg)S(rg,ra)H; (ra) [’R,j + (rg —ra)|-RY.
j rp,raA

> U/ e S, ma B (1) R+ 5 U/ Hi(rs)S(r, ra)H, (ra) (rp — 1a) | ~RY.

M j (Definition) M;; ARA

Ji

(Definition)

Where we have divided the contributions into symmetric components M;; that depend on the landmark states ’R,f‘
and antisymmetric components MijA’Rf‘_”- which depend on path integration. We note that j M;; = 1 For all ¢
[23]; therefore, we can rewrite the above equation as:

dR}J L A L
o0 = 2 My ([RY + AR, ] - RY).
j
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Because S(ra,rg) = S(rg,ra), we can see that M;; = M;; and A’R}A_,i = —A’R,;A_)j. Therefore, the long term dynamics
of mapping are equivalent to the first-order dynamics of a set of particles i, attached by damped springs of strength
M;;, each having a rest displacement vector of AR}A%. The spring constant is M;; related to the frequency with
which the animal moves between each landmark field, while the rest displacement A’Rf‘_”» is a weighted average of
the distances between pairs of points in the two landmark fields.

While we have presented the 2D proof for convenience, this proof also works for navigation in one-dimensional

geometries with one-dimensional attractor networks, where the rest displacement AXJA_H» is a scalar.

IX. CONNECTION TO EXPERIMENTS

We saw above that exploration in a simple 1D geometry lead to a consistent internal map in which the attractor
network phase was mapped onto the current physical position alone, independent of path history (Fig. HIC). This
consistency arises through the elastic relaxation process in Eq. Main) and Eq. @(Main), which makes the distance
between the landmark cells in unrolled phase XL — X equal to the physical distance between their firing fields L,
just like two particles connected by a spring with rest length L (Fig.[dE). Likewise, we have showed that navigation of
an arbitrary environment will yield a “particles on springs” elastic relaxation process in 2D. While the 1D situation
generalizes to two dimensions if there are only two landmarks, namely a west and east border cell (Fig.[6A1), yielding
a rest length of Lx, adding more landmarks yields a more complex elastic relaxation process that we will build
intuition about.

Consider the addition of a south-border landmark cell, in a 2D environment. How will the addition of this third
landmark field affect the internal map?

In this case, east and west landmark particles will be connected by a spring of rest length A”Rﬁ Lw = LX, as before,
but they will each also be connected to the south landmark particle with springs. These springs have a rest length
vector which is smaller than Lx/2, as contributions from the overlap between firing fields dominate the rest length.
We may build some intuition about this process (See Sec. for more detail) by approximating:

Mwg = Msg = Msw,  AR&G.p=L%  AR{w=ARE,s=0,
which will yield a learned internal map of:
RE=RL +1x/3, Ry =RL-1Lx/3, RE-RL =2L%/3<ARS 5.

Intuitively, as the animal travels from the east or west walls to the south walls, the landmark pinning phases of each
of these three border cells will be attracted towards each other. In general, the combined three particle elastic system
will settle into an equilibrium configuration in which the difference in unrolled phase between east and west landmarks
will be less than the physical separation Lx, or equivalently the rest length A’Rﬁ _w of the spring connecting them.
While we have presented a very simple case, we emphasize that more complex, non-overlapping distributions yield
the same deformations.

This deformation and contraction of the internal map implies that the attractor phase assigned to any physical
position in the interior will be relatively phase advanced (retarded) if the animal is on a trajectory leaving the west
(east) wall. This path dependence in the attractor phase is entirely analogous to that seen in Fig. dB. However, the
reason is completely different. In Fig. @B, the landmark particles are not separated by the rest length of the spring
connecting them because the environment is not fully learned and so the particles are out of equilibrium, whereas in
Fig. [GA2, the particles are not separated by the rest length, even in a fully learned environment, because additional
springs from the south landmark create excess compression.

This theory makes a striking experimentally testable prediction, namely that even in a fully learned 2D environment,
grid cell firing fields, when computed on subsets of animal trajectories conditioned on leaving a particular border,
will be shifted towards that border (Fig. BB). This shift occurs because at any given position, the attractor phase
depends on the most recently encountered landmark. In particular, on a west to east (east to west) trajectory, the
attractor phase will be advanced (retarded) relative to a east to west (west to east) trajectory. Thus on a west to
east trajectory, the advanced phase will cause grid cells to fire earlier, yielding west shifted grid cell firing fields as a
function of position. Similarly on an east to west trajectory, grid fields will be east shifted. In summary, the theory
predicts grid cell firing patterns conditioned on trajectories leaving the west (east) border will be shifted west (east).

While we have derived this prediction qualitatively using the conceptual mass-spring picture in Fig.[BlA2, we confirm
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FIG. SI.10:

A1) For two landmark cells, the rest length AR# . of the spring connecting them equals the physical width L of
the environment, and so the two landmark particles learn unrolled pinning phases RY and RY% obeying the spatial
consistency condition (RE — RY)gq = AR, = L as in Fig. [f{Main) C. Blue and red arrows represent animal
trajectories between the west and east walls, having equal and opposite path integration distance AR% ., ARA, -
A2) The addition of a southern landmark cell will cause a pinning effect which pulls R%;, RE closer together. The
animal can travel from the east and west landmark field to the southern landmark field with little path integration at
all (blue/black and black/red arrow pairs), yielding AR%L g ~ 0, ARE,; ~ 0. B) If the attractor phase is advanced
on a west to east trajectory (blue) relative to an east to west trajectory (red), then any particular grid cell (in this
case the shaded grey cell) will fire earlier (later) on west-to-east (east-to-west) trajectory. Thus grid fields computed
from trajectories leaving the west (east) border will shifted west (east). C1) When landmark pinning phases are
pulled together closer than the path integration distance between them, then the attractor phase will shift away from
whichever wall the animal last encountered. Therefore it will phase advance on west-to-east trajectories relative to
east-to-west trajectories, as in Fig. @B and Fig. [BB. C2) Thus simulations of Eq. I3l and Eq. I3l1lead to grid cell firing
patterns shifted towards whichever wall the animal last encountered. D) Schematic of the distribution of landmark
cells for simulations of squares environments. To model a heterogeneous distribution of landmark cell degrees of
localization, we include both landmark cells which fire uniformly along a boundary, as well as semi-elliptical landmark
cells which are localized to a section of a boundary.

this intuition through direct numerical simulations of the full circuit dynamics in Eq. I3 and Eq. (Fig. BIC2, D).
Under reasonable parameters, our simulations can yield path-dependent shifts of up to ~2 cm towards whichever wall
the animal last touched (Sec. [XII]).
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» 0 FIG. SL11:
4L A A) Schematic of observed shifts. An
-4 0 CEl (—5cmi) 1 -4 0 C&&(-5cmjy) 1 animal traveling from the east wall will
EW NS have its firing patterns east-shifted; an
C C (Ar) C (AI‘) animal traveling from the west wall

will have its firing patterns west-shifted.
Likewise, an animal traveling from the
north (south) wall will have its fir-
ing patterns north (south) shifted. B)
Path-dependent shifts demonstrated by
Cross-Correlograms of individual grid
cells. Most cells fall on the upper left
of the plots, showing that the patterns
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1. Experimental observation of path-dependent shifts

We searched for such subtle shifts in a population of 143 grid cells from 14 different mice that had been exploring
a familiar, well-learned, 1-meter open field (Sec. [XII2]), using two separate analyses, based on cross-correlations and
spike shifts with respect to field centers.
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A. Path conditioned rate maps

One method for detecting a systematic firing field shift across many grid fields is to cross-correlate firing rate maps
conditioned on trajectories leaving two different borders (Sec. . For example, for each cell, we can ask how
much and in what direction we must shift its west border conditioned firing field to match, or correlate as much as
possible with, the same cell’s east conditioned firing field. We constructed maps of firing rate as a function of spatial
position conditioned on the animal having last touched the north wall more recently than it touched the south wall,
etc. An animal was defined to have “touched” a wall when the head-tracking diodes came within 10 cm of the wall
(varying this distance did not significantly effect our results).

A type of cross-correlation was taken, using the cosine-angle between two path-conditioned rate maps.

st + Arg)sf(r)
Gkl 1 Aro)| [s(r)]

CEE* (Are)

i

where the mean firing rate is subtracted, and the inner product is only calculated using bins where there is data. To
show significance, we calculate

CEV (5emx) — Cho (—hemx),  Cug(5emy) — Coe(—5emy)

And show that the patterns are shifted towards whichever wall the animal last touched for both the EW Walls
(CEY (5em %) — CEY (—5cm %) > 0, P = 1.5- 1075, Binomial Test, P = 1.5 - 10~°, Sign-Flip Test), and the NS walls
(CR%,(5em §) — CRE(—5em ¥), P = 1077, Binomial Test, P = 10~7, Sign-Flip Test), in agreement with the theory.

Overall, this analysis shows that grid patterns are shifted towards the most recently encountered wall, both for the
NS walls (3 cm, P = 1.5- 1075, Binomial Test, P = 1.5 - 10~°, Sign-Flip Test) and the EW Walls (1.5 cm, P = 1077,
Binomial Test, P = 10~7, Sign-Flip Test), matching the sign and magnitude seen in simulations. We avoid any
sort of smoothing to prevent artifacts which might show up an experimental signature; as such, the bin size of the
computed s (r) is 5emx 5em, and each individual trial leaves many bins for which s&(r) is not defined; we create
finer-grained cross-correlelograms with fewer undefined bins by choosing bin sizes of 5/3 c¢m, and smoothing in the
manner of [24], but these maps are not used for showing statistical significance.

B. Spike displacement

Our results in path-conditioned rate maps can be corroborated by computing shifts in spikes relative to firing field
centers, when conditioning spikes on the path history (Sec. . We used an adaptive smoothed rate map to
identify firing fields [25]. Fields were detected as connected regions with a total area greater than 5 bins (~ 10 cm?),
where each bin had a firing rate above a threshold of binned firing rates for that rate map. For each firing field center,
we gather spikes recorded in that neighborhood. Then, for each path condition C and each firing field center rg, we
calculate the average spike position rgpix within that firing field, and subtract the average mouse position r(¢) within

that firing field (See Sec. [XII 2 B for explanation).
Sc.com = (rspk — rg|C, rspk € ff)— (r(t) —rg|C,r(t) € ff) (SLIX.52)

We calculate the path-dependent shift of an individual grid cell as the average shift of all firing fields in the center:

Sc.ac = E Sc,cc.m
F

and examine how the shifts depend on which wall the animal last touched. To test for statistical significance, we
calculate the relative shifts between path conditions for each cell:

ASgw.cc = (Se,cc — Sw,ao) - X, ASns,ac = (Sn,ac — Ss,ac) - ¥-

We test whether ASgw cc, ASns,cc are significantly different from zero; for completeness, we perform both binomial
tests, which only depend on the sign of ASgw, cc, ASns,cc, as well as magnitude-weighted sign-flip tests.

Again, the patterns are shifted towards whichever wall the animal last touched (Fig. [ C) for both the NS walls
(.5 cm, P = 10~° Binomial Test, P = 10~° Sign-Flip Test) and the EW Walls (.5 cm, P = 3 - 10~* Binomial Test,
P = 21072 Sign-Flip Test). The discrepancy in the estimated magnitude of the shift between the methods of analysis
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is likely due to poorly defined firing fields; a method based on firing field centers will give a lower signal-to-noise ratio,
and thus a lower shift magnitude, than the cross-correlogram method.

2. Mechanical deformations in complex environments

Another experimental observation that can be reproduced by our theory is the distortion [26] 27] of grid cell patterns
seen in an irregular environment (Fig.[BA). In our model, landmark cells with firing fields distributed across an entire
wall will pull the attractor phase to its associated landmark pinning phases regardless of where along the wall the
animal is. Here, we simulate Eq. , Eq. by discretizing the learning dynamics and using a random
walk model for animal trajectories (Sec. . Experimental landmark cell firing fields associated with borders are
heterogeneous; some are localized along a border, while others are distributed across an entire border. To replicate
this distribution, we have two types of landmark cells in our model. (1) Landmark cells having uniform wall-length
firing field, with a width of 10cm. (2) More localized, overlapping, firing fields along each wall.

The presence of a diagonal wall then causes the average attractor phase as a function of position to curve towards
the wall, yielding spatial grid cell patterns that curve away from the wall (Fig. 8B, C). Previous theoretical accounts
of this grid cell deformation have relied on purely phenomenological models that treated individual grid cell firing
fields as particles with mostly repulsive interactions [28], without a clear mechanistic basis underlying this interaction.
Here we provide, to our knowledge for the first time, a model with a clear mechanistic basis for such deformations,
grounded in the interaction between attractor based path integration and landmark cells with plastic synapses. Such
dynamics yields an emergent elasticity where the particles are landmark cell synapses rather than individual firing
field centers.

FIG. SI.12:

A) Experimental data of grid cell firing patterns deformed, curving away from a wall in an irregular geometry. B1)
A full simulation of Eq. I3 Eq. also yields grid firing patterns bent away from the wall. B2) Visualization of
the average attractor state as a function of position (periodicity removed for visualization purposes). The reversal
between the bending of the internal attractor phase and the bending of firing rate maps is similar to the reversal seen
in Fig. BB. B3), B4) Schematic of the distribution of landmark cells for simulations of trapezoidal environments. To
model a heterogeneous distribution of landmark cell degrees of localization, we include both landmark cells which fire
uniformly along a boundary, as well as semi-elliptical landmark cells which are localized to a section of a boundary.
C1-4) Same as B1-4), but for a slightly different geometry.
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3. Topological defects in grid cells: a prediction

While the dynamics of the linearized Eq. SLVIL48 will always flow to the same relative landmark representations
RE, this is not the case for the full dynamics of Eq. Eq. which can learn multiple different stable
landmark cell synaptic configurations. One striking example of this is the ability of the learning dynamics to generate
“topological defects”, where the number of firing fields traversed is not the same for two different paths (Fig. SLI3A,
B and Sec. . An environmental geometry capable of supporting these defects will yield a set of firing patterns
that depends not only on the final geometry, but also on the history of how this geometry was created (Fig. BLI3IC).

Essential components to creation of topological defects are: (1) A “donut-shaped” environment, which can support
the topological defect. (2) An environment rich in localized, strong landmark cues. (3) The larger the environment
is, the less deformation it has to support per unit distance, i.e. if an environment is 3 firing fields wide, a topological
defect must modify the grid spacing by 33%; if the environment was 5 firing fields wide, the grid spacing would only
need to be modified by 20%. Therefore it is easier to create topological defects in a larger environment. (4) During
the “winding” procedure, the animal cannot acclimate to the intermediate environment for too long; if the animal
fully learns the intermediate environment, the winding procedure will not work (Fig. E).

X. DETAILS OF THEORY
1. Path integration using a more realistic conjunctive model

In Eq.[SLIT2, we use a simplified model where we assume each velocity conjunctive cell at u has only one outgoing
connection to u + A¢py.

ds (U) _ _@ +g (/, J(u — u’)s(u/)) + €p1 SEC (u — A¢PI) + ep1 Swe (u =+ A¢p1) + Y eLm (Wl(u)s%(t))

dt T

Input from east cells Input from west cells K Landmark cell inputs

It might be more realistic to have a model where the outgoing conjunctive weights have the same form as that of the
non-conjunctive cells and the landmark weights are also fed into the nonlinearity. Here, we show how to relax the
assumption used in Eq. [SLIT.2)

ds (u) B @—I—

dt Tm,
(SLX.53)
g / J(u—u') x | s(u') + epr (suc (u' — Adpr)) + eprswe (0 + Adpr) | + e Y (Wi(u)sp(t))

Input from east cells Input from west cells ' Landmark cell inputs

XI. EFFECT OF PERTURBATION SHAPE ON EFFECTIVE FORCE FUNCTION

Switching to the dynamics of Eq. [SLX.53] changes the shape of perturbations caused by landmark and velocity-
conjuctive cells, such that we must use different perturbation functions for the force function and the landmark
function. For example, when the attractor state is s(u — ¢*), the perturbation function for landmark cells will be:

900 = 6/ ([ 3= )00 = 0%) ) cnrWw)sto),

and the perturbation for east-conjunctive cells will be:

55 (u) = eprG’ </u J(u—u)s(u — ¢A)> /u J(u—u')sec (v — Adpr),

and we can construct a similar perturbation for west-conjunctive cells.
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FIG. SI.13:

E

A) Schematic of the distribution of landmark cells for simulations the topological environment; cues are densely and
uniformly localized throughout the arena. B) Two steady state grid cell patterns emerging from the same cue-rich
environment. In the first firing pattern, the combination of landmark pinning and path integration yields a phase
advance of four firing fields in traveling from west to east along either corridor. The second pattern has a topological
defect; traveling from the west to east through the north corridor yields a phase increase of ~ 1.5 firing fields;
traveling east to west through the south corridor yields a phase decrease of ~ 2.5 firing fields. This second pattern is
stable nonetheless. C) Schematic of 1D underlying attractor state as a function of space. The two patterns in (A)
correspond to two different landmark pinning phase patterns learned by the many landmarks. Both landmark pinning
patterns are stable under Eq. I3 Eq. In the first pattern, the combination of landmark pinning and path
integration yields the same phase advance in both the north and south corridors. The second pattern has a topological
defect; the phase advance in the north corridor is one full rotation less than the phase advance through the south
corridor. This is possible because many landmark cues (colored arrows) can yield many landmark cells with multiple
stable synaptic configurations, or pinning phases under Eq. Eq. D) Schematic of proposed
“deformation schedule” that could yield a topological defect in grid cell firing patterns. By separating/truncating
the northern corridor, stretching it (along with spatial cues, denoted by colored arrows), then reconnecting it, it may
be possible introduce one of these defects. Even though the initial geometry is identical to the final geometry, the
deformation schedule has lead to a firing pattern which is three fields wide in the north and four fields wide in the
south. E) Example of topological defect failing to form due to learning. If the winding procedure is done too slowly,
the animal will learn the deformed geometry (Third box — Fourth Box), removing the topological effect.

Because the perturbations from path integration and landmarks have different functional forms, the force laws
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that we calculate (Sec. [[I12)) will have different functional forms. Before, when there was a single functional for
perturbations, we were able to map:

b5 — F(o" — ™).
Now we must do this separately for landmark and self-motion input, where:
07t FE(OT —gh), oM = FIM(6T — %),

Once this complication is taken into account, the rest of the calculation can proceed verbatim.

1. Verifying the Hebbian learning rule in the attractor basis

We can verify that in the attractor basis:

Wi(u) = [ Wi(e")s'(u— o") (SL.XI1.54)
¢L
the learning rule of Eq. [SL.IIT.26]
S ~
7dw¢}é‘¢ ) = Pr(¢"|i Firing) — W;(¢")

gives us the learning rule in the neural basis (Eq. [SLITL25):

dVZ"T(u) = (s(u)|i Firing) — W;(u) = / $(u — ¢¥)Pr(¢|i Firing) — W;(u)
¢
by inspection:

dW; d - . dWi L i}

dT(u) <~ ar { Wi(g")s'u — ¢>] = / % (u—¢")
Basis Switch or foxs
— / [Pr(¢"|i Firing) — Wi(¢")| s(u - ¢") = / Pr(¢"|i Firing)s(u—¢) — [ Wi(¢")s(u—¢")
EqBLITzE” ¢ oL oL
W (u)

= /L §(u — ¢“)Pr(¢"|i Firing) — W;(u).

EqBLIT2H

2. Detailed calculations for learning a simple environmental geometry

This section is a more detailed version of Sec.[V]containing full calculations for the orientation and learning dynamics
given arbitrary landmark strength (w), animal running speed (vg), and landmark field width (Lyyay). First, we solve
for the steady-state position self-estimate given a set of landmarks, and use that to solve for equilibrium internal
map. We then examine the path-dependent shifts that come from an unlearned environment, as well as the effects
landmark strength and animal speed on the learning rate.

The position self-estimate will reach a steady cycle, so we start with the animal at z(t = 0) = —L/2, having
position self-estimate X3*. The position self-estimate will follow the linearized dynamics, which include terms for path
integration as well as the east and west landmarks.

dXA  dx L A L A
W - E +UJHE($) ('XE - X ) +wHw($) (XW - X )
He(@) = v — (L/2 = Lwan)lys  Hw(a) = [(~L/2 + L) — 2,
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We can assume the position self-estimate will reach a steady cycle such that X(t = 27) = XA(t = 0). Defining
XP = XA (1/2), &P = XA (1), &P = XA(37/2), we can solve for the position self-estimate as a piecewise function:

X+ vt Twall <1 < T —Twan
X2 + [Line/2]) em@tmwan) 4 (XL 4+ 20] (1 — e=vt) T—Twan <t <7
YA~ ) (X nt R all ST LXI.
(t) XQAe—w(t—'rwau) 4 [X]If _ 7(170} (1 _ e—wt) T <t < T4 Twal (S 55)

Where Twan = Lwan/vo. This yields a set of linear equations:

= e (1= ) [+ 2 o L /2]

2 = e (X [Lane/2]) + (1= e [+ 2]

2 = T (1= ) [ = 20— (L /2]
X = A = eV (X — [Lie/2]) + (1 — e797wen) [X&V - %0}

The average position self-estimate seen by the east landmark comes from two components of piecewise function
XA(t). The first is 7 — Twan < t < 7, the second is 7 < t < 7 + Twau:

[T Hp(a@)AN(e) 1 prrrwen
[RENE0) s [ 0=

T—T Wall

Xh = <XA(t)|East Landmark Cell Firing> =

B 1 T Wall o o T Wall o o
Xh = X / (XlA + [le/Q}) e vt 4 [Xé‘ +vo] (1 —e t) + / Xie w4 [XII;‘ — vo] (1 —e t) =
2T Wall 0 0
T—TwWall <t<T T<t<T+T Wall
1 1 T wall Cancels 1 T wan
x| (XD 4 L /2 ) i-e " xL _t-e 7
rwan [( 1+ [Lint /2] ( o + E+ T Wall o +

Cancels

1 A [ 1— e ¥TWal L Py 1 — e~ ¥TWall
X. X5 — al — | ——m
2T Wall [ 2 ( w >+ [ B < ] (TW ! ( w ))]

1 1 — e ¥WTWal 1 — e ¥TWan 1 — e ¥WTWal 1 — e ¥WTWal
X [(XlA + [Llnt/Q]) <w> + X}% (Twau — ) + XQA <w) + X}% l:Twan — :|:|

- 27—Wa11 w w
(1 — e_WTWall)

= XL
Et 2WT Wall

(A + [Lrne/2] = ) + (X5 — A5)]
Therefore, at equilibrium:

(X + L /2]) + X4
2

XY =8 =

There is a translational symmetry to this problem, such that any shifted version of a solution is also a solution.
We center around zero for simplicity, such that X = -, X3 = —X, and AL = —XL. Combining the above
equations and this symmetry gives the steady state solution:

Xt =xf =0,
XzA = <[L1nt/2] + w (UO)> = ([Llnt/2] + 2 tanh (WTwan/2) (%)) _ 6%

1+ e wTwan w

Xy = ([Llnt/2] + w (UO)> = ([Llnt/Q] + tanh (wTwan/2) (%)) = —xk.

1+ e~ wTwal w
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A.  Out of equilibrium path-dependent shifts and learning dynamics

When the system is out of equilibrium it is convenient to refer to the landmark representations in terms of their
deviation from the equilibrium state.

Xy = AXE + (XE) g A = AL + (),

We have the set of linear equations for how much the position self-estimates vary with the landmark position
estimates, where we use the shorthand A’ A — = AX; A (XZ-A)Eq
AXP = emTWa AN + (1 — e @TWe) AXY
AXG = e WTWIAX 4 (1 — e @TWe) AXE
AXS = e W AXS 4 (1 — e @TW) AXE
AXP = AXS = e T ALY + (1 — e @TwW) AX

We can combine the equations for AX;', AX to get:

AX? _ efw‘rwauAXQA + (1 — 67“’7“’3“) AX&
— pwTwan [e_‘*’TWa“A?flA + (1 _ e—wrwan) AX]:%] + (1 _ e—wTWall) AX]%
_ e—QwTWauAXlA + AX]I:J (1 _ e—2wTWa11)

We can express through X7 in terms of X§* through symmetry:

AXD = e 2TWa AXE - AXE (1 — e 207 wan)
AXP = e 2TWa AXS + AN (1 — e 207 wen)

Plugging one into the other:

AXP = em2omwan [om20Twant AXP 4 AXE (1 — e 207w )] + AX (1 — e 207 wan) =

AXD = (e Homwan) AXD 4 em29mwan (1 — =29 wan) AXL 4 AXE (1 — e 297wan)
(1 _ e—4mwﬁu) AXA — e~ 2wTwan (1 _ e—?w‘f‘wau) AXE + AX\I;V (1 _ e—QWWaU) -
(1 — e domwan) AR = (1 — e~ 20mwen) [e=20mwan AXE 4 AXY)

This yields the change in position self-estimate:

[e2eTwWan AXE + AX ]
1 4+ e 2wTwan

(X - AXE)
1t e 2wrwan

AXA = = AXE +

This allows us to recover the first coefficient related to path-dependent shift. When AXL = fAX\I;,,

(Axy—Axy)
14+e— 29T Wall

AXD = AXL + = AXE [w] — _AXL [1’7‘““} — —AX} tanh (Wrwan).  (SLXL56)

14297 Wall 1+e 297 Wall

We note that when wrway — 00, the path-dependent shift is exactly the shift in the estimated position of the landmark
last touched X\I;V. When wrwan — 0, the shift goes to 0, as the memory of X]Ij is nearly the same as that of X\I;V.
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B. Learning timescale coefficient

In order to understand the learning dynamics, we must calculate the effect of the estimated landmark position on
the estimated position self-estimate that becomes associated with each landmark:

_ AXP + AxP 1 — e @7 Wan
ARD —aby [AMFAL (e ).
2 WT Wall

Plugging in:

AXD = AXE + (AX — X)) ememwan

gives AX} in terms of A

_ 1 —WT Wall 1 — e~ ¥WTWall
AXQ:X]§+(2«{*—X]§)[ re H( e~r)

L A pLy | Lo er R
5 :XE+(X1 —XE) _

WT Wall 2WTWall

Plugging in the value of X}*:

B+ 1 4+ e 2wTwan
gives:

1 — e WTWall

yA _ yL L  yL
AXE = XE + (XW XE) 2WTWall (1 + e—2w7Wa11>

yielding a learning time of:

2WT Wall (1 + 6_2wTW‘*”)

1 — e~ wWTwal

(SLXL57)

TLearning =

From Eq. we can see that as the landmark cells become stronger, the shifts become stronger, as the
animals position self-estimate becomes more heavily weighted toward whichever landmark it most recently saw. From
Eq. we see that, as landmark cells become stronger, the learning rate slows down, as landmark cells mostly
see their own self-estimates; the contribution to position self-estimate from spatially disjoint landmarks decays quickly
after the animal moves into the landmark firing field.

C. Simple case of internal map contraction

The learning rule for landmark landmark position estimates will be

d Ri}g . R Mwe (RY% + ARG L)  +Msg (’R‘IS: + AR%E)
o | Rw | = | Mow (RE — ARG k) +Msw (R§ + ARE,w) (SL.XI.58)
R§ Mps (RE — ARfLs) +Mws (R — ARG s)

For simplicity, we approximate:
Mwg = Msg = Msw, ARG.p=L%  ARLWw=AREs=0
and solve for the equilibrium state Eq. SLXL58 to find the learned landmark position estimates:

RE=REY+xL/3, R%=RE-xL/3, RE-RYL =2L%/3< ARG 5.



3. Proof of convolutional integral for position self-estimate as a functional of path history

We can check that the solution for the position self-estimate Eq. [SLVIIT.5T]
t
RA(e), ) = [ [RY(6(¢) + (x(0) — (¢)Jo(e(t)) [ 0 ar
satisfies the dynamics of Eq. [SLVIIL50! :

dRA(t)  dr(t)
T +w(r) [RE(x(t)) — RA]

by inspection. We plug Eq. [SLVIIL51]into Eq. RLVIILA0l to get:

A t " " ¢ r t " ”
TR [RE o)+ ot0) —w(0)] () 0] [ B g

L
wR dr/dt

RS )+ (00 = )] x [lalt (el S

— 0o

— 00

—wWwRA
The underbraced identities are more easily seen by simplifying terms:

1

d _ —_— _ t ”
S RY = | RY (x(t)) £ =T | |w(r(t)) e 7 +dr/dtW
dr/dt
wRL
_“(r<t))/_ [RY (x(t") + (x(t) — x(¢))] x [w(r(t’)).e—fttzw(r(t”))dt”}dt/

RA

4. Proof that S(ra,rs) is symmetric for time-symmetric path distributions

38

Here we prove that, as long as the distribution of animal trajectories is time-reversal symmetric (given any
path, the reverse path r..(t) = r(t) is equally likely), S(ra,rg), i.e., the effect of landmark forcing at one position
on the mean position self-estimate at another position, will be symmetric. See Table[[V]for a list of symbols and units.

The mean position self-estimate of the animal at position rg is the average self-estimate of all paths that pass rp at
time ¢ = 0. (We pick t = 0 for mathematical convenience). R (rg) is defined using a path integral over all possible

r(t):
RA(rg) = / Dr(#)Prlr(t)] 5(x(0) — r5)RA[(0), ¢ = 0].
To avoid clutter, use the shorthand:

RAE(0),¢ = 0)] = / RE () + (x(t) — x(t) ew(rx(t') e~ N / Flr, t,¢'Memlr, £, ¢

tl
Where:

Flr,t,t] = [R¥ (x(t) + (r(t) — v(t')]w(r(t")), Memlr,t,¢/] = ¢~ Jo <@ Ndt”,

Intuitively, F[r, ¢, '] is the contribution of landmark forcing at ¢’ to the position self-estimate at ¢, and Mem|r, ¢, ']
is the weighting, i.e., the “memory” of time ¢’ at time t. We decompose this into contributions from different past
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FIG. SI.14:

Sketch of proof in Sec. that S is symmetric for time-symmetric path distributions. Our proof relies on two factors.
(1) The probability of the reverse path is equal(time-reversal symmetry). (2) The contribution of the mean landmark
state at position A to the mean attractor state at position B from the forward path is equal to the contribution of the
mean landmark state at position B to the mean attractor state at position A from the reverse path (Eq. [SLXT.64).

times '
0

RA(rg) = /Dr(t)Pr[r(t)] d(r(0) —rp) </ Flr,t = 0,t|Mem]r,t = O,t']dt’).

— 00

Reshuffling the order of integration and breaking terms down further into contributions of ra = r(t')

RA(rg) = /0 dt’/drA/Dr(t)Pr[r(t)] x §(r(0) —rp)d(r(t') —ra) x (F[r,t = 0,t'Mem]|r,t = 0,t]).

Ensures path from A to B

Because we have assumed the statistics of the animal trajectories r(t) will be time-reversal symmetric, the reverse,
time shifted path ry,(t) = r(t’ — t) is equally likely. We therefore apply the symmetrization procedure:

IRA(rp) = [ Ooo dt’ / dra / Dr(t)Prfr(t)] x

5(r(0) —rp)d(r(t') —ra) Flr,0,¢Mem|r,0,t'] | + | 6(rrev(t’) — rA)d(rrev(0) — rB) Flrrey, 0, ¢ |Mem|[ryey, 0, ]

Ensures path from A to B Ensures rev. path from A to B

(SL.XIL.59)

We note that the total forgetting of the forward path from time ¢’ to time 0 is the same as the degree along the reverse
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path, i.e. Mem|ryey,0,¢] = Mem]r,0,¢'] (Eq. [SLXL64) Therefore, we can simplify Eq. [SLXL50

2RA (rp) = /_ Ooo dt' / dra / Dr(t)Prr(t)] x

(SL.XL60)
Mem|r,0,t'] | 6(r(0) —r)d(r(t') — ra) Flr,0,t'] + 6(rrev(t’) — ra)d(rrev(0) — rB) Flrrey, 0,

Ensures path from A to B Ensures rev. path from A to B

We now expand and simplify the contribution of landmark forcing from ra to the position self-estimate at rg for

both the forward and reverse paths (Eq. SLXL65] Eq. [SLXT.66]):
5(r(t') —ra)d(r(0) —rg) Flr,0,¢] = 5(r(t') — ra)d(r(0) — r) (R¥(ra) + rp — ra) w(ra), (SLXL61)

Ensures path from A to B Ensures path from A to B
3(rrev(t") = rA)0(rrev(0) — rB) Flrrey, 0,8'] = 6(r(t') — rg)d(r(0) —ra) (RL(I'A) +rp— rA) w(ra) (SL.XI.62)
Ensures reverse path from A to B Ensures path from B to A

Taking advantage of this shared structure in Eq. SLXL61] Eq. [SLXTL.62 we simplify Eq. [SLXL60 to:

IRA(rp) = / dra [ OOC dt’ / Dr(t)Prfr(t)] x

Mem([r,0,¢][R™(rs) + (rg — ra)|w(ra) [6(r(0) —p)5(r(t') —ra) +6(r(0) —ra)d(r(t) —rp)| = (SI1.XI1.63)

Ensures path from A to B Ensures path from B to A

2/drAS(rB,rA) [’R,L(rA) + (rg — ra)]w(ra)

Where our matrix entries:

1 0
S(rg,ra) = 3 X / dt’/Dr(t)Pr[r(t)] Mem|r,0,t'] | §(r(0) — rg)d(r(t') —ra) +(r(0) —ra)d(r(t') — rp)

Ensures path from A to B Ensures path from B to A

are symmetric with respect to the swapping of rg,ra.

This proof assumes uniform density of animal positions with uniform areas and equal strengths for each landmark
cell. The proof can be generalized beyond these constraints by making effective particles corresponding to certain
landmarks more “massive”, but here we present the simpler proof in the interest of clarity.

A. Lemmas about functionals used in symmetry proof

We may show Mem|ryey, 0,t'] = Mem|r, 0,¢'] through:

Mem[rrev, O7 t/] =e ffo/ w(rrev(t”))dt” =e ffg w(r(t/_t//)) =e ffg w(r(t”))dt” = 1\/[61]’1[[‘7 0, t/] (SIXI.64)

We can simplify the effect that the landmark forcing at ra has on the position self-estimate at rp (Eq. [SLXL6T)
as:
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5(r(t') —ra)d(r(0) — rg) Fr,0,t'] =
Ensures path from A to B

3(x(t) = ra)d(r(0) —rp) [RY (r(t)) + (r(0) — x(t)]w(x(t) =

(SLXL65)
Ensures path from A to B
§(r(t') —ra)d(r(0) —rp) (R¥(ra) + 15 —ra) w(ra)
Ensures path from A to B
and can likewise do this for the reverse path(Eq. BLXL62):
5(rrev<t/> - rA)é(rrev(O) - PB) F[rreva 07 t/] =
Ensures reverse path from A to B
O(Trev (t/) —1A)0(rrev(0) — rB) [RL (rreV(t/)) + (rrev(0) — rreV(tl))]w(rrev (t/))
nsures reverse path from A to

B pet b (SLXL66)

= §(Trey(t’) — TA)0(rrev (0) — ) (RL(rA) +rp —ra)w(ra)
Ensures reverse path from A to B
=§(r(t') —rp)d(r(0) —ra) (’R,L(rA) +rg — rA) w(ra).

Ensures path from B to A

XII. DETAILS OF SIMULATIONS AND DATA ANALYSIS

Here, we provide details of the simulations and analysis used for Sec. [XII} See Table [V for a list of symbols and
units. Code available at https://github.com/ganguli-lab/EmergentElasticity AnalysisAndSimulations

1. Simulations
A. Ezploration

In our simulations, we discretize space onto a grid. For simplicity, we have the animal follow diffusive dynamics,
implemented through a random walk; at every time step, the animal moves to one of four neighboring cells; any move
which would take the animal outside the box is prohibited. The animal has a position self-estimate R4 (t) as well as
an attractor state ¢ (¢), which undergoes discrete path-integration at every time step:

RA(t + At) — RA (t) + AI‘Sim(t)v
dA(t+ At) — ¢ (t) + K - Argim(t)
Afterwards, the position self-estimate is pulled towards the position estimates of any landmark cells which are firing:
RA(t+ At) —» RA(t+ At) + (w(r)[RY(r) — RA(t + At)]) x At
dA (L + At) = ¢™(t+ AL) + (Zi wiH; (x(t)) quL W, (%) F (o™ — ¢L)) x At,
Where ¢ is discretized into a 15 x 15 grid so that W (d)L) can be represented as an array. We set the timescale of
animal motion to be:

_ |AI‘Sim|2

At D

where D is the “diffusion rate” of the animal; this scaling removes dependence on the discretization size.


https://github.com/ganguli-lab/EmergentElasticityAnalysisAndSimulations
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B. Learning

The learned states are initialized to their firing field center of masses. At every learning epoch T, the simulated
animal is placed in the box with an initial position and position self-estimate and explores to get good statistics.
RA(r), is logged, and at the end of each learning epoch, the position estimate of each landmark cell i is updated to
be the average position self-estimate when the landmark cell is firing.

’R’zI:T-Q—l - kﬁTa W; (¢L) — Pr(¢p®(t) = ¢"|i Firing).

Each of these will converge after a handful of learning epochs; in practice, we use twenty.

C. Simulation of square and bent environments

Landmark cell firing fields are heterogeneous; while some are distributed across an entire border; to replicate this
distribution we have two types of landmark cells in our model. (1) Landmark cells having uniform wall-length firing

field, with a width of 10cm, for example H(z,y) = e~ (e ) for a landmark cell on the west wall. (2) More localized,
overlapping, firing fields along each wall. Each firing field is a 5 cm x 10 cm half-ellipse of along a particular wall; i.e.
Y—¥%o )27( T—Twall

H(x, y) = 67( T0cm ~ Bem

sei)” for a landmark field along the EW wall with center yg. Each type of landmark cell is
evenly distributed along each wall, with the total strength and number set such that total firing strength of localized
and non-localized cells is the same, and their combined strength leads to a forgetting time of w = 8Hz along each
wall.

Grid spacing is chosen to be 30 ¢cm for square environments (1 x 1 meter); We set the diffusive constant D to be
(10 em)?/Second such that it takes an animal ~100 seconds to traverse the width of the environment.

Grid spacing is 50 ¢m with a 7° offset for the first trapezoidal environment (1.9 X .8 meters, same geometry as
[26]); We set the diffusive constant D to be (20 cm)?/Second such that it takes an animal ~100 seconds to traverse
the length of the environment.

Grid spacing is 50 cm with a 7° offset for the second trapezoidal environment (1.9 meters long. Two straight walls
with lengths of .12 meters, .6 meters, with diagonal walls starting 1 meter from the smaller straight wall (14° angle);
We set the diffusive constant D to be (20 cm)?/Second such that it takes an animal ~100 seconds to traverse the
length of the environment.

The angular offset breaks the symmetry of the trapezoidal environments, yielding bending, but is not required to
yield path-dependent shifts.

D.  Simulation of topological environments

In order for an environment to support topological defects, cues must be rich and localized, leading to uni-
formly distributed landmark firing fields. To model this, we have uniformly localized landmark fields, with
H(z,y) = 6*(?{55:3)2*(%)2, arranged at a density such that their combined strength leads to a forgetting time
of 1Hz throughout the environment. The environment was 1.8 meters x 1 meter, with a center rectangular section of
1.3 x .8 meters removed. K is chosen to yield a grid spacing of 60cm. The first simulation(no topological defect) was
initialized with no landmark weights, while the second simulation (topological defects) was initialized with landmark

weights corresponding to a topological defect; both initial conditions relaxed into different (meta)stable internal maps.




43
E.  Force law and visualization

The simulated grid cell patterns are visualized by using a truncated parabolic firing rate:
A _

[1 B ’¢u
B

where u is the position of the “recorded” cell on the neural sheet and the field width B is chosen to be 27/5.

2

+

The force law chosen is a truncated sin function:
sin ¢L—¢A
Floh — ¢*) = { (¢" - o) x Sl sz - ¢’:)\ <7 (SLXIL67)
0 (o" — %) 27

We choose this function because it has the correct qualitative features. In addition, in experimental data, the width
of a firing rate peak is on the order of the spacing between two firing peaks; this prohibits a force law which is much
more short-ranged than this (Sec. [[II 2)).

2. Experimental methods

Data included a subset of published neural recordings previously presented in Hardcastle et al., 2017, Hardcastle
et al., 2015. Briefly, mice explored a square box while foraging for chocolate cheerios sprinkled on the floor. During
each recording, neural signals from medial entorhinal cortex were recorded and subsequently clustered into distinct
neurons. A grid score was computed for each cell following Langston et al., 2010. Cells above a threshold of .4 were
considered grid cells. Each grid cell in the dataset was recorded after an average of 28 (data selected from Hardcastle
et al., 2015) or 20 (data selected from Hardcastle et al., 2017) exposures to the recording environment.

A. Pre-processing of trajectories

To control for the effect of head direction and running speed, we preprocessed the data by translating
r(t) = r(t) + lem x HD(t),

where HD(¢) is a unit vector representing the animal’s head direction as a function of time. This is to avoid artifacts
related to tracking; a purely position-dependent firing rate model depends on some part of the animal’s body, which
unlikely to be exactly the position of the tracking diode. Because head direction is correlated with the last border
touched, head direction-depdendent shifts from this artifact would yield path-dependent shifts; our preprocessing
removes this possibility.

B. Subtraction of average animal position for shifts in patterns around firing fields

We define the path conditioned shift (Eq. [SLIX.52)) as the difference between the average spike position within a
firing field and the mean animal position within that firing field.

Sc,ac.g = (rspk — re|C,rspk € fF) — (r(t) —rglC,r(t) € fF)

The animal’s position within the firing field is subtracted to eliminate any systematic biases that might come from
the animal trajectory rather than the actual neural activity (Fig. [SLI5]).
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Schematic of the motivation for subtracting mouse position in Eq. [SLIX.52] An animal is most likely to be closest
to the last wall it touched; if the mean animal position was not subtracted from the mean spike position, this would
yield a path-dependent shift in spike positions purely dependent on animal trajectory rather than neural activity.

FIG. SI.15:
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