# PNAS www.pnas.org

| 1        |                                                                                                        |
|----------|--------------------------------------------------------------------------------------------------------|
| 2        |                                                                                                        |
| 3        | Supplementary information for: DksA-DnaJ redox interactions provide a signal for the                   |
| 4        | activation of bacterial RNA polymerase                                                                 |
| 5        |                                                                                                        |
| 6        | Ju-Sim Kim, Lin Liu, Liam F. Fitzsimmons, Yang Wang, Matthew A. Crawford, Mauricio                     |
| 7<br>8   | Mastrogiovanni, Madia Trujillo, James K. Till, Rafael Radi, Shaodong Dai, and Andrés<br>Vázquez-Torres |
| 9        |                                                                                                        |
| 10       | Corresponding authors:                                                                                 |
| 11       | andres.vazquez-torres@ucdenver.edu                                                                     |
| 12       | rradi@fmed.edu.uy                                                                                      |
| 13       |                                                                                                        |
| 14<br>15 | Inis PDF includes:                                                                                     |
| 16       | Supplementary Materials and Methods                                                                    |
| 17       | Table S1. DksA partner molecules identified by mass spectrometric analysis.                            |
| 18       | Table S2. Zinc and thiol content of purified DnaJ protein variants in 8 M urea.                        |
| 19       | Table S3. Bacterial strains used in this study.                                                        |
| 20       | Table S4. Plasmids used in this study.                                                                 |
| 21       | Table S5. Oligonucleotides used in this study.                                                         |
| 22       | Fig. S1. Recombinant DnaJ and DksA proteins and biochemical pull-down assay.                           |
| 23       | Fig. S2. Zinc content of recombinant DksA variants.                                                    |
| 24<br>25 | remetallation and redox state in aerobic cultures                                                      |
| 26       | Fig. S4 <i>In-gel</i> digestion-HPI C-MS and redox analysis of DksA                                    |
| 27       | Fig. S5. Characterization of Salmonella strains expressing dnaJ variants.                              |
| 28       | Fig. S6. Transcription of <i>hisG</i> in <i>Salmonella</i> and purification of RNA polymerase from     |
| 29       | Salmonella.                                                                                            |
| 30       | Fig. S7. Effects of tetracycline on H <sub>2</sub> O <sub>2</sub> -stimulated ppGpp synthesis.         |
| 31       |                                                                                                        |
| 32       |                                                                                                        |
|          |                                                                                                        |

34

Supplementary Materials and Methods.

36 Remetallation assays. Zinc-deficient DksA was prepared by treating DksA with 1 mM 37 methyl methanethiosulfonate (MMTS), in the presence of 0.1 mΜ 38 diethylenetriaminepentaacetic acid (DTPA), for 30 minutes at room temperature in a Bactron I anaerobic chamber. After incubation, an aliquot from the reaction was set aside to confirm 39 zinc chelation. Excess MMTS and zinc chelates were removed from the remaining reaction 40 volume by double exchange into degassed 50 mM potassium phosphate buffer, pH 7.0 41 42 using Zeba Spin desalting columns. Zinc-deficient, MMTS-modified DksA was subsequently reduced by treatment with 10 mM (final) DTT for 1 h at room temperature under an 43 anaerobic environment. DTT was then removed by double exchange into degassed 50 mM 44 potassium phosphate buffer, pH 7.0. Following exchange, an aliquot of reduced, zinc-45 deficient DksA was removed from the anaerobic chamber to measure the protein 46 concentration using the Pierce 660 reagent. The protein concentration of zinc-containing 47 DnaJ was determined in parallel. In the anaerobic chamber, reduced, zinc-deficient DksA 48 and zinc-containing DnaJ were combined at a 1:1 molar ratio, and this mixture was 49 incubated for 1 h at 37°C. 50

51

Replicate aliquots (25 µl) from the prepared samples (reduced, zinc-containing DksA; 52 reduced, zinc-deficient DksA; reduced, zinc-deficient DksA + zinc-containing DnaJ; and zinc-53 54 containing DnaJ) were removed from the anaerobic chamber and treated with ONOO<sup>-</sup> (570 µM, final), prepared in ice-cold 10 mM NaOH, for 5 minutes at 37°C or urea (5.7 M) for 15 55 56 minutes at 95°C. Zinc release was subsequently quantified by spectrometry (OD<sub>500</sub>) using 150 µM (final) of the metallochromic indicator 4-(2-pyridylazo) resorcinol (PAR). Zinc 57 concentrations were calculated from standard curves prepared using ZnCl<sub>2</sub> standards in the 58 presence of  $ONOO^{-}$  or urea, as appropriate.  $ONOO^{-}$  was synthesized with  $H_2O_2$  and 59 acidified nitrite (1) 60

**Growth in minimal medium.** Strains grown overnight in LB at 37°C were diluted 1:100 in EG minimal media (0.2% MgSO<sub>4</sub>, 2% C<sub>6</sub>H<sub>8</sub>O<sub>7</sub>·H2O, 10% K<sub>2</sub>HPO<sub>4</sub>, 3.5% Na(NH<sub>4</sub>)HPO<sub>4</sub>·4H<sub>2</sub>O, and 4% D-glucose, pH 5.5) and incubated at 37°C. Cell growth was determined by following OD<sub>600</sub> over time.

66

Heat shock response. Strains grown overnight in LB broth at 37°C were sub-cultured 1:100
in LB broth. The specimens were incubated at 37°C to 45°C. Bacterial growth was
determined by recording cfu over time.

70

71 **Detection of DksA and DnaJ in immunoblots.** Wild-type and *AdnaJ Salmonella* expressing the *dksA::*FLAG were grown in LB broth at 37°C overnight, harvested, washed in 72 PBS buffer, and resuspended in PBS buffer at an OD<sub>600</sub> of 0.3. Where indicated, the 73 bacterial cells were treated with 100  $\mu$ M H<sub>2</sub>O<sub>2</sub> at 37°C. After 30 min of incubation with 74 shaking, the bacteria were harvested for Western blot analysis. In addition, stationary 75 phase Salmonella subcultured 1:100 in LB broth were grown to an OD<sub>600</sub> of 0.5-0.7. Cells 76 77 were disrupted by an ultrasonication liquid process, and protein concentrations were determined by BCA (Thermo Fisher Scientific). Samples were separated on 12% SDS-78 PAGE gels, and the proteins were transferred onto nitrocellulose membranes by electro-79 transfer. Blots were probed with anti-FLAG monoclonal (Sigma-Aldrich, Burlington, MA) or 80 anti-DnaJ polyclonal (Enzo, Farmingdale, NY) antibodies, followed by HRP-conjugated anti-81 mouse IgG or anti-rabbit IgG antibodies (GE Healthcare), respectively. Immunoblots were 82 developed as recommended using the ECL prime Western blotting detection system (GE 83 84 Healthcare), and imaged with a ChemiDoc XRS imaging system (Bio-Rad, Hercules, CA). 85 As a control, DnaK was detected with anti-DnaK monoclonal antibodies (MBL International, Woburn, MA) followed by HRP-conjugated anti-mouse IgG (GE Healthcare). 86

Measurement of (p)ppGpp. Bacterial strains were grown to OD<sub>600</sub> of approximately 0.2 (1.5 88 doubling times) in MOPS minimal media containing glucose, all amino acids, 0.4 mM 89  $K_2$ HPO<sub>4</sub>, and 10  $\mu$ Ci/mL of [<sup>32</sup>P]-labeled orthophosphate. Cells were treated with 10-25  $\mu$ M 90  $H_2O_2$  or 70 µg/ml tetracycline before 0.4 ml of ice-cold 50% formic acid was added to the 91 cultures. Extracts were incubated on ice for at least 20 min and the specimens were 92 centrifuged at 13,000 rpm for 5 min. Ten µl of ice-cold extracts were spotted along the 93 94 bottom of polyethyleneimine-cellulose thin layer chromatography (TLC) plates (20 x 20 cm; EDM Millipore, Billerica, MA). Plates were air-dried and the nucleotides were separated for 1 95 h with a 1.25 M K<sub>2</sub>HPO<sub>4</sub> solvent system, pH 3.4, in a TLC chamber. TLC autoradiograms 96 97 were visualized with phosphor screens and a phosphorimager (Bio-Rad, Hercules, CA). Relative nucleotide levels were quantified with the ImageJ software (NIH, Rockville, MD). 98

99

100

Protein Description 103 104 RNA polymerase  $\beta'$ RpoC 105 RpoB RNA polymerase  $\beta'$ 106 Modifies transcription through interactions with RNA 107 NusA polymerase; impacts elongation, readthrough, termination, 108 and anti-termination 109 110 Tig Trigger factor, promotes folding of newly synthesized 111 proteins DnaJ Chaperone protein 112 **RpoA** RNA polymerase  $\alpha$ 113 ADP-L-glycero-D-mannoheptose-6-epimerase RfaD 114 SegA negative modulator of the initiation of chromosome 115 replication 116 15 kDa of DNA binding protein 117 StpA HupA 10 kDa of DNA-binding protein HU- $\alpha$ 118 119

### 102 **Table S1. DksA partner molecules identified by mass spectrometric analysis**.

120

## Table S2. Zinc and thiol content of purified DnaJ protein variants in 8 M urea. 123

| 124          | Protein    | Zinc release ( $\mu$ M) | Thiol content ( $\mu M$ ) |
|--------------|------------|-------------------------|---------------------------|
| 125 —<br>126 | WT DnaJ    | 10.55 ± 0.71            | 49.27 ± 0.78              |
| 127          | DnaJ C186H | $11.02 \pm 0.35$        | 43.52 ± 0.13              |
| 128          | DnaJ C268A | 10.30 ± 0.15            | 43.80 ± 0.77              |
| 129          |            |                         |                           |

130 \*5  $\mu$ M of the indicated proteins were used to measure zinc and thiol content.

| 133 | Strain               | Relevant characteristics                                                                                         | Reference  |
|-----|----------------------|------------------------------------------------------------------------------------------------------------------|------------|
| 134 | Salmonella           |                                                                                                                  |            |
| 135 | 14028s               | wild-type of S. Typhimurium                                                                                      | ATCC       |
| 136 | AV17142              | ∆ <i>dksA</i> ::FRT (pWSK29::TAP)                                                                                | lab strain |
| 137 | AV10342              | ∆ <i>dksA</i> ::FRT (pWSK29:: <i>dksA</i> ::TAP)                                                                 | lab strain |
| 138 | AV17180              | ∆ <i>dksA</i> ::FRT, <i>rpoC::</i> 6His::Cm                                                                      | This study |
| 139 | AV08016              | dksA::3xflag::FRT                                                                                                | lab strain |
| 140 | AV15188              | <i>dksA</i> ::3xflag::FRT, ∆ <i>dnaJ</i> ::Km                                                                    | This study |
| 141 | AV17134              | <i>dksA</i> ::1xflag::Cm                                                                                         | This study |
| 142 | AV17143              | dksA K98A::1xflag::Cm                                                                                            | This study |
| 143 | AV15172              | ∆ <i>dnaJ</i> ::Km                                                                                               | This study |
| 144 | AV15184              | ∆ <i>dnaJ</i> ::Km (pWSK29:: <i>dnaJ</i> )                                                                       | This study |
| 145 | AV16068              | <i>∆dnaJ</i> ::Km (pWSK29:: <i>dnaJ</i> C186H)                                                                   | This study |
| 146 | AV17055              | ∆ <i>dnaJ</i> ::Km (pWSK29:: <i>dnaJ</i> C268A)                                                                  | This study |
| 147 | AV0663               | ∆ <i>relA</i> ::FRT                                                                                              | (2)        |
| 148 | AV14005              | ∆relA::FRT ∆spoT::FRT                                                                                            | (3)        |
| 149 |                      |                                                                                                                  |            |
| 150 | E. coli              |                                                                                                                  |            |
| 151 | DH5a                 | supE44 ∆lacU169 (ቀ80 lacZ ∆M15) hsdR17 recA1                                                                     | (4)        |
| 152 |                      | endA1 gyrA96 thi-1 relA1                                                                                         |            |
| 153 | BTH101               | F-, <i>cya-</i> 99, <i>ara</i> D139, <i>gal</i> E15, <i>gal</i> K16, <i>rps</i> L1 (Str <sup>r</sup> ),          | Euromedex  |
| 154 |                      | hsdR2, mcrA1, mcrB1                                                                                              |            |
| 155 | BL21(DE3)            | fhuA2 [lon] ompT gal (λ DE3) [dcm] ∆hsdS                                                                         | Invitrogen |
| 156 |                      | $\lambda DE3 = \lambda sBamHlo \Delta EcoRl-B$                                                                   |            |
| 157 |                      | int::(lacl::PlacUV5::T7 gene1 i21 ∆nin5                                                                          |            |
| 158 | Origami B(DE3) pLysS | <i>E. coli</i> K12 F- <i>ompT hsdSB</i> (rB- mB-) <i>gal dcm lac</i> Y1                                          | Novagen    |
| 159 |                      | <i>aphC</i> (DE3) <i>gor</i> 522::Tn10 <i>trxB pLysS</i> (Cm <sup>r</sup> , Km <sup>r</sup> , Tet <sup>r</sup> ) |            |
| 160 | AV15092              | HTH101 (pKT25 :: <i>dksA</i> , pUT18C)                                                                           | This study |
| 161 | AV15093              | HTH101 (pKT25 :: <i>dksA</i> , pUT18C :: <i>stpA</i> )                                                           | This study |
| 162 | AV15094              | HTH101 (pKT25 :: <i>dksA</i> , pUT18C :: <i>hupA</i> )                                                           | This study |
| 163 | AV15095              | HTH101 (pKT25 :: <i>dksA</i> , pUT18C :: <i>tig</i> )                                                            | This study |
| 164 | AV15096              | HTH101 (pKT25 :: <i>dksA</i> , pUT18C :: <i>dnaJ</i> )                                                           | This study |
| 165 | AV15099              | HTH101 (pKT25 :: <i>rpoA</i> , pUT18C)                                                                           | This study |
| 166 | AV15100              | HTH101 (pKT25 :: <i>rpoA</i> , pUT18C :: <i>stpA</i> )                                                           | This study |
| 167 | AV15101              | HTH101 (pKT25 :: <i>rpoA</i> , pUT18C :: <i>hupA</i> )                                                           | This study |
| 168 | AV15102              | HTH101 (pKT25 :: <i>rpoA</i> , pUT18C :: <i>tig</i> )                                                            | This study |
| 169 | AV15103              | HTH101 (pKT25 :: <i>rpoA</i> , pUT18C :: <i>dnaJ</i> )                                                           | This study |

Table S3. Bacterial strains used in this study.

| 170   | AV10267 | BL21(DE3) (pGEX6p-DksA)                | (5)        |
|-------|---------|----------------------------------------|------------|
| 171   | AV10266 | BL21(DE3) (pGEX6p-DksA C114S)          | (5)        |
| 172   | AV10258 | BL21(DE3) (pGEX6p-DksA C135S)          | (5)        |
| 173   | AV17115 | BL21(DE3) (pGEX6p-DksA all C to S)     | (5)        |
| 174   | AV18004 | BL21(DE3) (pGEX6p-DksA 146)            | This study |
| 175   | AV18005 | BL21(DE3) (pGEX6p-DksA 141)            | This study |
| 176   | AV18006 | BL21(DE3) (pGEX6p-DksA 136)            | This study |
| 177   | AV18007 | BL21(DE3) (pGEX6p-DksA 131)            | This study |
| 178   | AV17165 | BL21(DE3) (pGEX6p-DksA K98A)           | This study |
| 179   | AV17014 | BL21(DE3) (pET22b-DnaJ)                | This study |
| 180   | AV17138 | BL21(DE3) (pET22b-Tig)                 | This study |
| 181   | AV17015 | Origami B(DE3) pLysS (pET22b-DnaJ-I)   | This study |
| 182   | AV17018 | Origami B(DE3) pLysS (pET22b-DnaJ-II)  | This study |
| 183   | AV17019 | Origami B(DE3) pLysS (pET22b-DnaJ-III) | This study |
| 184   | AV17200 | Origami B(DE3) pLysS (pET22b-DnaJ-IV)  | This study |
| 185   | AV17203 | Origami B(DE3) pLysS (pET22b-DnaJ-V)   | This study |
| 186   | AV17204 | Origami B(DE3) pLysS (pET22b-DnaJ-VI)  | This study |
| 187   | AV17139 | BL21(DE3) (pET22b-DnaJ C186H)          | This study |
| 188   | AV18117 | BL21(DE3) (pET22b-DnaJ C167H)          | This study |
| 189   | AV17140 | BL21(DE3) (pET22b-DnaJ C268A)          | This study |
| 190 _ |         |                                        |            |

192

2 Table S4. Plasmids used in this study.

| _   |                                    | -                                                                                         |            |
|-----|------------------------------------|-------------------------------------------------------------------------------------------|------------|
| 193 | Plasmid                            | Relevant characteristics                                                                  | Reference  |
| 194 | pET-22b(+)                         | ori pBR322, C-terminal His Taq fusion vector, Pn <sup>r</sup>                             | Novagen    |
| 195 | pET22b::DnaJ                       | pET-22b(+) + 1.1-kb DNA containing <i>dnaJ</i> , Pn <sup>r</sup>                          | This study |
| 196 | pET22b::DnaJ-I                     | pET-22b(+) + 0.37-kb DNA containing truncated <i>dnaJ</i> , Pn <sup>r</sup>               | This study |
| 197 | pET22b::DnaJ-II                    | pET-22b(+) + 0.59-kb DNA containing truncated <i>dnaJ</i> , Pn <sup>r</sup>               | This study |
| 198 | pET22b::DnaJ-III                   | pET-22b(+) + 0.64-kb DNA containing truncated <i>dnaJ</i> , Pn <sup>r</sup>               | This study |
| 199 | pET22b::DnaJ-IV                    | pET-22b(+) + 0.52-kb DNA containing truncated <i>dnaJ</i> , Pn <sup>r</sup>               | This study |
| 200 | pET22b::DnaJ-V                     | pET-22b(+) + 0.68-kb DNA containing truncated <i>dnaJ</i> , Pn <sup>r</sup>               | This study |
| 201 | pET22b::DnaJ-VI                    | pET-22b(+) + 0.79-kb DNA containing truncated <i>dnaJ</i> , Pn <sup>r</sup>               | This study |
| 202 | pET22b::DnaJ C167H                 | pET-22b(+) + 1.1-kb DNA containing <i>dnaJ</i> C167H, Pn <sup>r</sup>                     | This study |
| 203 | pET22b::DnaJ C186H                 | pET-22b(+) + 1.1-kb DNA containing <i>dnaJ</i> C186H, Pn <sup>r</sup>                     | This study |
| 204 | pET22b::DnaJ C268A                 | pET-22b(+) + 1.1-kb DNA containing <i>dnaJ</i> C268A, Pn <sup>r</sup>                     | This study |
| 205 | pET22b::Tig                        | pET-22b(+) + 1.30-kb DNA containing <i>tig</i> , Pn <sup>r</sup>                          | This study |
| 206 | pET22b::RpoC                       | pET-22b(+) + 4.23-kb DNA containing <i>rpoC</i> , Pn <sup>r</sup>                         | This study |
| 207 | pGEX6p                             | GST fusion expression vector, Pn <sup>r</sup>                                             | (6)        |
| 208 | pGEX6:: <i>dksA</i>                | pGEX6p + 454-bp DNA containing <i>dksA</i> , Pn <sup>r</sup>                              | (5)        |
| 209 | pGEX6::dksA C114S                  | pGEX6p + 0.45-kb DNA containing <i>dksA</i> C114S, Pn <sup>r</sup>                        | (5)        |
| 210 | pGEX6::dksA C135S                  | pGEX6p + 0.45-kb DNA containing <i>dksA</i> C135S, Pn <sup>r</sup>                        | (5)        |
| 211 | pGEX6∷ <i>dksA</i> ∆C              | pGEX6p + 0.45-kb DNA containing dksA C114S C117S                                          | This study |
| 212 |                                    | C135S C138S, Pn <sup>r</sup>                                                              |            |
| 213 | pGEX6:: <i>dksA</i> 146            | pGEX6p + 439-bp DNA containing the C-terminal truncated                                   | This study |
| 214 |                                    | <i>dksA</i> (∆5 amino acid), Pn <sup>r</sup>                                              |            |
| 215 | pGEX6::dksA 141                    | pGEX6p + 424-bp DNA containing the C-terminal truncated                                   | This study |
| 216 |                                    | <i>dksA</i> (Δ10 amino acid), Pn <sup>r</sup>                                             |            |
| 217 | pGEX6:: <i>dksA</i> 136            | pGEX6p + 409-bp DNA containing the C-terminal truncated                                   | This study |
| 218 |                                    | <i>dksA</i> (∆15 amino acid), Pn <sup>r</sup>                                             |            |
| 219 | pGEX6::dksA 131                    | pGEX6p + 409-bp DNA containing the C-terminal truncated                                   | This study |
| 220 |                                    | <i>dksA</i> (∆20 amino acid), Pn <sup>r</sup>                                             |            |
| 221 | pGEX6:: <i>dksA</i> K98A           | pGEX6p + 0.45-kb DNA containing <i>dksA</i> K98A, Pn <sup>r</sup>                         | This study |
| 222 | pKD3                               | template vector for FRT-flanked Cm <sup>r</sup> cassette, Cm <sup>r</sup> Pn <sup>r</sup> | (7)        |
| 223 | pKD13                              | template vector for FRT-flanked Km <sup>r</sup> cassette, Km <sup>r</sup> Pn <sup>r</sup> | (7)        |
| 224 | pKT25                              | pSU40 derivative with T25 domain of CyaA,                                                 | Euromedex  |
| 225 |                                    | MCS at the end of T25, Kan <sup>r</sup>                                                   |            |
| 226 | pKT25::dksA                        | pKT25 plasmid with <i>cyaAT25-dksA</i> fusion, Kan <sup>r</sup>                           | This study |
| 227 | pKT25:: <i>rpoA</i>                | pKT25 plasmid with <i>cyaAT25-rpoA</i> fusion, Kan <sup>r</sup>                           | This study |
| 228 | pBluescriptSK(+)                   | Standard cloning vector 2958 bp, Pn <sup>r</sup>                                          | Stratagene |
| 229 | pSK:: <i>dksA</i> ::1xflag::Cm     | pSK(+) + 1.4-kb DNA containing <i>dksA</i> ::flag,Cm <sup>r</sup> Pn <sup>r</sup>         | This study |
| 230 | pSK:: <i>dksA</i> K98A::1xflag::Cm | pSK(+) + 1.4-kb DNA containing <i>dksAK</i> 98A::flag, Cm <sup>r</sup> Pn <sup>r</sup>    | This study |

| 231 | pSK:: <i>rpoC</i> '::6His::Cm | pBluescriptKS(+) + 1.89-kb DNA containing 539 bp C-terminal                              | This study |
|-----|-------------------------------|------------------------------------------------------------------------------------------|------------|
| 232 |                               | <i>rpoC</i> fused with 6His + 1,035 bp Cm <sup>r</sup> cassette + 318 bp <i>rpoC</i>     |            |
| 233 |                               | flanking region to construct <i>rpoC</i> ::6His::Cm, Cm <sup>r</sup> and Pn <sup>r</sup> |            |
| 234 | pTIM                          | bla rrnB & rpoC term pBluescript                                                         | (8)        |
| 235 | pTIM- <i>livJ</i>             | pTim + 1.34-kb DNA containing P <i>livJ</i> (-240) and <i>livJ</i>                       | This study |
| 236 | pTIM- <i>rpsM</i>             | pTim + 0.56-kb DNA containing P <i>rpsM</i> (-203) and <i>rpsM</i>                       | This study |
| 237 | pUT18C                        | pUC19 derivative with T18 domain of CyaA,                                                | Euromedex  |
| 238 |                               | MCS at the 3' start of T18, Pn <sup>r</sup>                                              |            |
| 239 | pUT18C:: <i>dnaJ</i>          | pUT18 plasmid with <i>dnaJ-cyaAT18</i> fusion, Pn <sup>r</sup>                           | This study |
| 240 | pUT18C:: <i>hupA</i>          | pUT18 plasmid with <i>hupA-cyaAT18</i> fusion, Pn <sup>r</sup>                           | This study |
| 241 | pUT18C:: <i>stpA</i>          | pUT18 plasmid with <i>stpA-cyaAT18</i> fusion, Pn <sup>r</sup>                           | This study |
| 242 | pUT18C:: <i>tig</i>           | pUT18 plasmid with <i>tig-cyaAT18</i> fusion, Pn <sup>r</sup>                            | This study |
| 243 | pWSK29                        | low copy plasmid, <i>lacZα</i> , Pn <sup>r</sup>                                         | (9)        |
| 244 | pWSK29::TAP                   | pWSK29 + 0.42-kb DNA containing TAP, Pn <sup>r</sup>                                     | (10)       |
| 245 | pWSK29:: <i>dksA</i> ::TAP    | pWSK29 + 1.07-kb DNA containing p <i>dksA::dksA</i> ::TAP, Pn <sup>r</sup>               | This study |
| 246 | pWSK29::dnaJ                  | pWSK29 + 1.49-kb DNA containing p <i>dnaK::dnaJ</i> , Pn <sup>r</sup>                    | This study |
| 247 | pWSK29:: <i>dnaJ</i> C186H    | pWSK29 + 1.49-kb DNA containing p <i>dnaK::dnaJ</i> C186H, Pn <sup>r</sup>               | This study |
| 248 | pWSK29:: <i>dnaJ</i> C268A    | pWSK29 + 1.49-kb DNA containing p <i>dnaK::dnaJ</i> C268A, Pn <sup>r</sup>               | This study |
| 249 |                               |                                                                                          |            |

| Strain                         | Primer Sequence $(5' \rightarrow 3')$                      |
|--------------------------------|------------------------------------------------------------|
| ∆ <i>dnaJ</i> ::Km             | F: CCGCCCGTGTATGCATGTTAAGGGCAGATAAAAAGAGATGGTG             |
|                                | TAGGCTGGAGCTGCTTC                                          |
|                                | R : TACACCCGGGCTGAAGAAAAATACAACGGGAAAAGATTAATTC            |
|                                | CGATTCCGGGGATCCGTCGACC                                     |
|                                |                                                            |
| Plasmid                        |                                                            |
| pET22b::DnaJ                   | F : <u>CATATG</u> GCGAAAAGAGATTACTACGAG                    |
|                                | R : <u>CTCGAG</u> AGTCAAATCGTCAAAGAATTTTTTC                |
| pET22b::DnaJ-I                 | F : <u>CATATG</u> GCGAAAAGAGATTACTACGAG                    |
|                                | R : <u>CTCGAG</u> CAAATCAGCCCCACGCGCCGC                    |
| pET22b::DnaJ-II                | F : <u>CATATG</u> GCGAAAAGAGATTACTACGAG                    |
|                                | R : <u>CTCGAG</u> CAGCGTACCGCGTCCCTGACA                    |
| pET22b::DnaJ-III               | F : <u>CATATG</u> GCGAAAAGAGATTACTACGAG                    |
|                                | R : <u>CTCGAG</u> TTCAACACGCCCATGACCGTG                    |
| pET22b::DnaJ-IV                | F : <u>CATATG</u> GAAAAGAGTAAAACTCTGTCC                    |
|                                | R : <u>CTCGAG</u> AGTCAAATCGTCAAAGAATTTTTTC                |
| pET22b::DnaJ-V                 | F : <u>CATATG</u> GCTGGCACGCAACCGCAAACC                    |
|                                | R : <u>CTCGAG</u> AGTCAAATCGTCAAAGAATTTTTTC                |
| pET22b::DnaJ-VI                | F : <u>CATATG</u> TTGCGTTATAACATGGATC                      |
|                                | R : <u>CTCGAG</u> AGTCAAATCGTCAAAGAATTTTTTC                |
| pET22b::RpoC                   | F : <u>CATATG</u> AAAGATTTATTAAAGTTTCTG                    |
|                                | R : <u>CTCGAG</u> CTCGTTATCAGAACCGCCC                      |
| pET22b::Tig                    | F : <u>CATATG</u> CAAGTTTCAGTTGAAACCACTCAG                 |
|                                | R : <u>AAGCTT</u> CGCCTGCTGGTTCATCAGCTC                    |
| pKT25:: <i>dksA</i>            | F : <u>TCTAGA</u> GCAAGAAGGGCAAAACCGTAAAAC                 |
|                                | R : <u>GGATCC</u> CCCGCCATCTGTTTTCGCG                      |
| pKT25:: <i>rpoA</i>            | F : <u>GGATCC</u> TCGTCAGCGATGCTTGCCGG:                    |
|                                | R : <u>GGATCC</u> TCGTTATCAGAACCGCCCAGAC                   |
| pSK:: <i>rpoC</i> '::6His::Cm  |                                                            |
| 1. <i>rpoC</i> '::6His DNA     | F: ATTT <u>GAATTC</u> GTTAAGATTAACGATAAACACATCGAAG         |
|                                | R: ATCG <u>TCTAGA</u> TTAATCAGTGGTGGTGGTGGTGGTGGTGCTCGAGCT |
| 2. Cm cassette                 | F : <u>ACTAGT</u> CATGGTCCATATGAATATCC                     |
|                                | R : <u>ACTAGT</u> GTGTAGGCTGGAGCTGCTTC                     |
| 3. <i>rpoC</i> flanking        | F : ATCG <u>ACTAGT</u> TCGTTAAATGGTGGAGGGGTATTT            |
|                                | R : ATCG <u>AAGCTT</u> GCTTTTTTATCCGCGCTGG                 |
| pSK:: <i>dksA</i> ::1xflag::Cm | F : ATCGTA <u>GAATTC</u> ATGCAAGAAGGGCAAAACCGTAAAACATC     |
|                                | R :CCGC <u>GGATCC</u> TTACTTGTCGTCATCGTCTTTGTAGTCACCCGC    |
|                                | CATCTGTTTTCGCG                                             |
| pTim- <i>livJ</i>              | F : G <u>GAATTC</u> CAATACGTTTGCCCGATGG                    |
|                                | R : ACT <u>CTGCAG</u> TCACTTAGCGTCTGTCGC                   |
| pTim- <i>rpsM</i>              | F : ATC <u>GAATTC</u> CAATACGTTTGCCC                       |
|                                | R : ACT <u>AAGCTT</u> TCACTTAGCGTCTGTCGC                   |
| pUT18C:: <i>dnaJ</i>           | F : <u>TCTAGA</u> GAAAAGAGATTACTACGAGA                     |
|                                | R: <u>GAGCTC</u> CGAGTCAAATCGTCAAAGAA                      |
| pUT18C:: <i>hupA</i>           | F: TCTAGACAAGACTCAACTGATTGATG                              |
|                                | R: <u>GAGCTC</u> TTAACTGCGTCTTTCAGAGC                      |
| pUT18C:: <i>stpA</i>           | F: TCTAGATTTGATGTTACAGAACTTAAATAATATCC                     |

### **Table S5. Oligonucleotides used in this study.**

|                            | R: <u>GAGCTC</u> ATTAAGAAATCATCCAGAGATTTCC              |
|----------------------------|---------------------------------------------------------|
| pUT18C:: <i>tig</i>        | F: TCTAGAAGTTTCAGTTGAAACCACTCAG                         |
|                            | R: GAGCTCGCCTGCTGGTTCATCAGCTC                           |
| pWSK29::TAP                | F:AAGAATTCATGAAGCGACGATGGAAAAAGAATTTCATAGC              |
|                            | R:AACTGCAGTTATTCTTTGTTGAATTTGTTATCCGCTTTCGGT            |
| pWSK29:: <i>dksA</i> ::TAP | F : ATACTCGAGCGAACCAGTACCCATAAC                         |
| ·                          | R · ATCGAATTCACCCGCCATCTGTTTTCG                         |
| nMSK20dna l                |                                                         |
| 1 ndnak DNA                |                                                         |
| fragment                   |                                                         |
| adna / DNA fragmant        |                                                         |
| 2. Unaj DNA nagmeni        |                                                         |
|                            | R. CGC <u>GGATCC</u> TTAGCGAGTCAAATCGTCAAAGAATTTTTTCACG |
| Point mutations            |                                                         |
| dksA K98A                  | E · CCGTGAGCGCAAACTGATCAAAGCGATCGAGAAGACGCTG            |
|                            | R : CAGCGTCTTCTCGATCGCTTTGATCAGTTTGCGCTCACGG            |
| dnaJ C167H                 | F : CCTGACCAGAACCATGATGGGTCGGACAGGTTTGCG                |
|                            | R : CGCAAACCTGTCCGACCCATCATGGTTCTGGTCAGG                |
| dnaJ C186H                 | E : CCCTGACAGTGTGGGTCTGCTGTACAGC                        |
|                            |                                                         |
| dna.I C.268A               | E · CAATAATCTTTATGCAGAAGTGCCGATCAACTTTG                 |
|                            | R · GATCGGCACTTC <i>T</i> GCATAAAGATTATTGCC             |
|                            |                                                         |
| Truncated DksA prot        | eins                                                    |
| dksA 146                   | F : ATCGGATCCATGCAAGAAGGGCAAAACCGTAAAAC                 |
|                            | R : ATCGAATTC <b>TTA</b> TTCGCGAATTTCAGCCAGCGTTTTG      |
| dksA 141                   | F : ATCGGATCCATGCAAGAAGGGCAAAACCGTAAAAC                 |
|                            | R : ATCGAATTC <b>TTA</b> CAGCGTTTTGCAGTCGATGCA          |
| dksA 136                   | F : ATCGGATCCATGCAAGAAGGGCAAAACCGTAAAAC                 |
|                            | R : ATCGAATTC <b>TTA</b> GATGCACAGATCGGCTGTTGG          |
| dksA 131                   | F : ATCGGATCCATGCAAGAAGGGCAAAACCGTAAAAC                 |
|                            | R : ATCGAATTC <b>TTA</b> TGTTGGACGCGCTTCCAG             |
|                            |                                                         |
| Real time qRT-PCR          |                                                         |
| rpoD                       | F: GTGGCTTGCAATTCCTTGAT                                 |
|                            | R: AGCATCTGGCGAGAAATA                                   |
|                            | Probe: 6-FAM-ATAAGTTCGAATACCGTCGCG-3BHQ-1               |
| livJ                       | F: CGCAGGGCTGAAAACCCA                                   |
|                            | R: CACACGAATGCGCCGCTA                                   |
|                            | Probe: 6-FAM-TCAGCGGAAGGCTTACTGGTC-3BHQ-1               |
| hisG                       | F : CAGGCCGTTTAAGCGATGATTCACGAG                         |
|                            | R : AATACCGAGATCGACCACGCCATCC                           |
|                            | Probe: 6-FAM-ATCGGCATGTTTTCCGCCATCGCAATCAGG-3BHQ-1      |
| In vitro transcription     |                                                         |
| livJ                       | F : GGAATTCCAATACGTTTGCCCGATGG                          |
|                            | R : TGCACTGCAGTGCATATTTCACCGCGACGAGC                    |
| hisG                       | F : TAAGGCGTAAAAGTGGTTTAG                               |
|                            | R: CACGCGCAGGATATCAATCGGC                               |
|                            |                                                         |

\* Restriction enzyme sites are underlined. \*\* Point mutation sites are indicated in italics.

253 254 255 \*\*\* Stop codons are marked in bold.

#### 256 Supplementary figure legends

257

Fig. S1. Recombinant DnaJ and DksA proteins and biochemical pull-down assay. 258 Protein-protein interactions were evaluated in (A) a bacterial two-hybrid system in which T25 259 and T18 fragments of adenylate cyclase are fused to bait and prey proteins, respectively, 260 261 and by (B) biochemical pull-down assays using recombinant proteins in the absence of DTT. GST and GST-DksA proteins were used as bait, whereas DnaJ and Tig were used as prey. 262 DnaJ in the pull-downs assays was detected by Western blotting. (C, D, E) Input proteins 263 used in the biochemical pull-down assays corresponding to Fig. S1B, 1C and 1D as shown 264 by Coomassie-stained SDS-PAGE gels. 265



268

266

Fig. S2. Zinc content of recombinant DksA variants. (A-C) Input proteins (5  $\mu$ g) used for the pull-down assays shown in Fig. 2A, D and E were visualized in Coomassie-stained SDS-PAGE gels. (D) Purified DksA proteins used for CD analysis shown in **Fig. 2G**. (E) Determination of zinc content from 25  $\mu$ M of recombinant, WT DksA and truncated variants after treatment with 50-1000  $\mu$ M H<sub>2</sub>O<sub>2</sub> as measured spectrophotometrically with the zinc chelator PAR using regression analysis of standard curves prepared with ZnCl<sub>2</sub>.



275 276

Fig. S3. Characterization of recombinant DnaJ and determination of DksA 278 279 remetallation and redox state in aerobic cultures. (A) Thiol content and zinc release after treatment of 3.33 µM DnaJ recombinant protein with increasing concentrations of H<sub>2</sub>O<sub>2</sub> or 280 281 ONOO<sup>-</sup>. Thiol content, as calculated from the molar extinction coefficient of TNB, was 282 measured spectrophotometrically by following the reaction of sulfhydryl groups with DTNB. 283 The amount of thiol detected in untreated samples corresponds to about 2 moles per mole 284 of protein, likely reflecting modification of the two cysteines in the C-terminal domain. 285 Addition of up to 10 molar excess of H<sub>2</sub>O<sub>2</sub> or ONOO<sup>-</sup> did not change the estimated thiol content. Neither  $H_2O_2$  nor ONOO<sup>-</sup> released zinc from DnaJ, as determined using PAR. 286 287 Together these findings suggest that that cysteine residues in DnaJ site 1 and site 2 zinc fingers may be resistant to oxidants. (B) Thiol content and zinc release after 3.33 µM of 288 recombinant DnaJ were treated with increasing concentrations of urea. (C) Proteins used in 289 290 the MS analysis done in Fig. 3B were visualized in SDS-PAGE gels stained with Coomassie 291 Brilliant Blue. (D) Zinc release from: 1. zinc-containing DnaJ (DnaJ alone); 2. reduced, zincdeficient DksA pre-incubated for 1 h at 37°C with an equimolar amount zinc-containing DnaJ 292 (zinc<sup>neg</sup> DksA + DnaJ); 3. reduced, zinc-deficient DksA (zinc<sup>neg</sup> DksA) prepared by DTT 293 reduction and desalting of DksA pre-treated with the sulfhydryl-reactive compound MMTS in 294 the presence of the chelating agent DTPA; 4. reduced, zinc-containing DksA (zinc<sup>pos</sup> DksA). 295 296 Zinc release was measured by spectrometry using the metallochromic indicator PAR following exposure of the samples to ONOO<sup>-</sup> (570 µM final) or urea (5.7 M final). Zinc 297 concentrations were calculated from standard curves prepared using ZnCl<sub>2</sub> standards in the 298 presence of ONOO<sup>-</sup> or urea, as appropriate. Oxidation by ONOO<sup>-</sup> elicits zinc release from 299 DksA, but not DnaJ. Urea elicits zinc release from both DksA and DnaJ. Upon exposure to 300 ONOO<sup>-</sup>, minimal zinc release was observed from the zinc<sup>neg</sup> DksA + DnaJ sample, indicating 301 that DnaJ did not remetallate zinc-deficient DksA under the experimental conditions 302 examined. (E) Redox state of thiol groups in DksA cysteine residues in aerobic, log phase 303 304 Salmonella was evaluated by Western blot analysis after derivatization with the alkylation



agent AMS. Immunoblot analysis was performed to detect DksA-FLAG proteins.

Fig. S4. In-gel digestion-HPLC-MS and redox analysis of DksA. (A) Cysteine containing 310 peptides, T<sub>18-19</sub> and T<sub>20-21</sub>, in both oxidized or reduced states were analyzed by HPLC-311 Enhanced Resolution MS. Upper panel shows a representative extracted ion current 312 chromatogram for Z = +2 (red) and Z = +3 (blue) corresponding ions for each peptide. 313 Enhanced resolution mass spectra for each ion are shown in lower panels. (B) Redox state 314 315 of thiol groups in DksA cysteine residues in anaerobic, log phase Salmonella was evaluated 316 by Western blot analysis after derivatization with the alkylation agent AMS as described in Fig. S3. Some of the bacterial cultures were treated for the indicated times with 1 or 10  $\mu$ M 317 318  $H_2O_2$ .



 $\overbrace{0.1 \ 1 \ 5}^{\text{Time (min)}} \overbrace{0.1 \ 1 \ 5}^{\text{DksA}} \xrightarrow{-\text{red}} \xrightarrow{-\text{red}} \xrightarrow{+\text{cred}} \xrightarrow$ 

В

319

320

untreated  $1 \mu M H_2O_2 10 \mu M H_2O_2$ 

Fig. S5. Characterization of Salmonella strains expressing dnaJ variants. (A) Growth of 322 WT, *AdnaJ*, and complemented Salmonella strains in LB broth at 37 or 45°C. (B) Growth of 323 Salmonella WT,  $\Delta dksA$ , and ∆dnaJ in EG minimal media as determined 324 spectrophotometrically by following OD<sub>600</sub>. (C) Immunoblot of DksA-3xFLAG and DnaK in 325 lysates (20 µg/lane) obtained from the indicated Salmonella strains grown to log phase in LB 326 broth. Select cultures (+) were treated with 1 mM H<sub>2</sub>O<sub>2</sub> for 30 min. (D) DnaJ expression in 327 328 the indicated Salmonella strains grown to exponential phase in LB broth as determined by immunoblot analysis. DnaK is shown for comparison. The results are representative of 2-3 329 330 independent experiments.



331

Fig. S6. Transcription of *hisG* in *Salmonella* and purification of RNA polymerase from 333 334 Salmonella. (A and B) Abundance of hisG transcripts in anaerobically grown Salmonella left untreated or exposed to 1 or 10  $\mu$ M H<sub>2</sub>O<sub>2</sub>. The abundance of *hisG* transcripts was 335 336 normalized to the housekeeping gene rpoD. \*\*\*p<0.001 compared to untreated controls as determined by One-way ANOVA. Data are expressed as mean +/- SD from 4 independent 337 338 experiments. (C) Growth of anaerobic Salmonella in E salts minimum media supplemented with glucose and casamino acids in the presence of 1 or 10  $\mu$ M H<sub>2</sub>O<sub>2</sub>. (D) Purified 339 Salmonella RNA polymerase holoenzyme was examined by 8% SDS-PAGE and Coomassie 340 Brilliant Blue staining. E. coli RNA polymerase holoenzyme was included for comparison. 341



343

Fig. S7. Effects of tetracycline on  $H_2O_2$ -stimulated ppGpp synthesis. (A) TLC autoradiogram of <sup>32</sup>P-labeled nucleotides in WT *Salmonella* treated with 70 µg/ml tetracycline for 3 min before the addition of 25 µM  $H_2O_2$  for 1 min. The blot shown is representative of 2 independent experiments. (B) DksA-3xFLAG, DnaJ and DnaK proteins were examined by immunoblot in the indicated *Salmonella* strains that had been grown to log phase. (C) Recombinant DksA K98A protein used in **Fig. 6G**.



| 352<br>353        |     | References:                                                                                                                                                                                                                        |
|-------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 354<br>355        | 1.  | Radi R, Beckman JS, Bush KM, & Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. <i>J Biol Chem</i> 266:4244-4250.                                                 |
| 356<br>357<br>358 | 2.  | Fitzsimmons LF, Liu L, Kim JS, Jones-Carson J, & Vazquez-Torres A (2018) <i>Salmonella</i> Reprograms Nucleotide Metabolism in Its Adaptation to Nitrosative Stress. <i>MBio</i> 9: e00211-18.                                     |
| 359<br>360<br>361 | 3.  | Henard CA, Bourret TJ, Song M, & Vazquez-Torres A (2010) Control of redox balance by the stringent response regulatory protein promotes antioxidant defenses of <i>Salmonella. J Biol Chem</i> 285:36785-36793.                    |
| 362<br>363        | 4.  | Hanahan D (1983) Studies on transformation of <i>Escherichia coli</i> with plasmids. <i>J Mol Biol</i> 166:557-580.                                                                                                                |
| 364<br>365<br>366 | 5.  | Henard CA, <i>et al.</i> (2014) The 4-cysteine zinc-finger motif of the RNA polymerase regulator DksA serves as a thiol switch for sensing oxidative and nitrosative stress. <i>Mol Microbiol</i> 91:790-804.                      |
| 367<br>368        | 6.  | Smith DB & Johnson KS (1988) Single-step purification of polypeptides expressed in <i>Escherichia coli</i> as fusions with glutathione S-transferase. <i>Gene</i> 67:31-40.                                                        |
| 369<br>370        | 7.  | Datsenko KA & Wanner BL (2000) One-step inactivation of chromosomal genes in <i>Escherichia coli</i> K-12 using PCR products. <i>Proc Natl Acad Sci U S A</i> 97:6640-6645.                                                        |
| 371<br>372<br>373 | 8.  | Tapscott T, <i>et al.</i> (2018) Guanosine tetraphosphate relieves the negative regulation of <i>Salmonella</i> pathogenicity island-2 gene transcription exerted by the AT-rich ssrA discriminator region. <i>Sci Rep</i> 8:9465. |
| 374<br>375        | 9.  | Wang RF & Kushner SR (1991) Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in <i>Escherichia coli. Gene</i> 100:195-199.                                                            |
| 376<br>377<br>378 | 10. | Song M, Kim JS, Liu L, Husain M, & Vazquez-Torres A (2016) Antioxidant Defense by Thioredoxin Can Occur Independently of Canonical Thiol-Disulfide Oxidoreductase Enzymatic Activity. <i>Cell Rep</i> 14:2901-2911.                |
| 379               |     |                                                                                                                                                                                                                                    |