

# Supplementary Information for

#### Title: ERVmap analysis reveals genome-wide transcription of human endogenous retroviruses

**Authors:** Maria Tokuyama<sup>1</sup>, Yong Kong<sup>1</sup>, Eric Song<sup>1</sup>, Teshika Jayewickreme<sup>1</sup>, Insoo Kang<sup>2</sup>, and Akiko Iwasaki<sup>1,3\*</sup>

### Author Affiliations:

Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA.

<sup>2</sup>Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA

<sup>3</sup>Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.

\*Corresponding Author: Akiko Iwasaki, Howard Hughes Medical Institute, Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, New Haven, CT 06519, USA, Tel: 203.785.2919. <u>akiko.iwasaki@yale.edu</u>.

### This PDF file includes:

Supplementary Materials and Methods Figs. S1 to S7 Tables S1 to S3 References for SI reference citations Supplementary Information Text

Heading Subhead. Materials

#### ChIP sequencing datasets:

The following big.wig files were obtained through ENCODE:

| H3K4me3  |             |             |             |  |  |
|----------|-------------|-------------|-------------|--|--|
| GM12878  | ENCFF003DXG | ENCFF583MDQ | ENCFF776DPQ |  |  |
| A549     | ENCFF152LRB |             |             |  |  |
| HelaS3   | ENCFF489CIY | ENCFF913SUG |             |  |  |
| MCF7     | ENCFF530LJW | ENCFF797IUA |             |  |  |
| K562     | ENCFF525ZRM | ENCFF712XRE | ENCFF847JMY |  |  |
| HepG2    | ENCFF736LHE | ENCFF746CXV | ENCFF777EVS |  |  |
| SKNSH    | ENCFF208OZM | ENCFF555ZEF |             |  |  |
|          | H           | 3K27Ac      |             |  |  |
| GM12878  | ENCFF340JIF |             |             |  |  |
| Hela S3  | ENCFF194XTD |             |             |  |  |
| MCF-7    | ENCFF515VXR | ENCFF986ZEW |             |  |  |
| K562     | ENCFF779QTH |             |             |  |  |
| HepG2    | ENCFF764VYK |             |             |  |  |
| SK-N-SH  | ENCFF151FXB | ENCFF143WKK |             |  |  |
|          | H3K9me3     |             |             |  |  |
| HelaS2   | ENCFF891XLY |             |             |  |  |
| MCF7     | ENCFF191LDZ | ENCFF754TEC |             |  |  |
| K562     | ENCFF812HRW |             |             |  |  |
| HepG2    | ENCFF485BCI |             |             |  |  |
| SK-N-SH  | ENCFF919ISB | ENCFF932EUO |             |  |  |
| H3K27me3 |             |             |             |  |  |

| GM12878 | ENCFF039JOT | ENCFF313LYI |  |
|---------|-------------|-------------|--|
| HelaS3  | ENCFF614HNF |             |  |
| MCF7    | ENCFF495QYP | ENCFF081UQC |  |
| K562    | ENCFF928NWQ | ENCFF914VFE |  |
| HepG2   | ENCFF419FUZ | ENCFF598TWA |  |
| SK-N-SH | ENCFF224TVD |             |  |

All of the data we chose are ChIP-sequencing files that contained fold over control for 2 replicates. The sequencing files were uploaded onto IGV software for visualization of tracks at each ERV locus.

#### **RT-qPCR primers:**

| Name            | Sequence (5' -> 3')            |
|-----------------|--------------------------------|
| Fwd:1114        | GTG ATG AAG TTG TTC CTG TTT AG |
| Rev:1114        | CAT ACA GTT GAG TGG GAG TAA A  |
| Fwd:4627        | GGG AAC TGA AGC CTG TTA TC     |
| Rev:4627        | TTC TGG ATG GGT AGG ATA GG     |
| Fwd:ERVK3-1     | CTG CCA TTG TCC TCT TCT TAT    |
| Rev:ERVK3-1     | TCC TCC CTC TCC TGT TTA TC     |
| Fwd:3409        | CAG AAG CGG GTA GAT GAA ATA G  |
| Rev:3409        | CTT ATG TAG CCC TCC CAA ATC    |
| Fwd:4452        | GAG CAA TCC CGC CAA TAA        |
| Rev:4452        | GAC TGC CCA AAG GAA TCT AC     |
| Fwd:5346        | GAC AGG CAG TAA ATA CCC ATT A  |
| Rev:5346        | GGA GTA GGA CAG AGT GTA GAA    |
| Fwd:4585        | TCC TCA ATA CCT GCC TCT ATA A  |
| Rev:4585        | GGA TGA AGG GTG CAA AGA A      |
| Fwd:ERVH13q33.3 | CCA AAC TGC CAC TCT TAA CT     |
| Rev:ERVH13q33.3 | GGG AGG ATC TAG GAC ATC TAA T  |

Primers used to amplify ERVs in cell lines are as follows:

| Fwd:4503   | TCA GTC AGC CCT TGT TTA TTC    |
|------------|--------------------------------|
| Rev:4503   | CAA GTG CCA CTC CAG TTA TT     |
| Fwd:4700   | CCT TCC ATC ACT CTT CCT AAT G  |
| Rev:4700   | GAC CCT GAA ATA GGT GGA TAA A  |
| Fwd:2187   | GAG CCA GGG TAA ATG TCT TC     |
| Rev:2187   | GAG CAT TCC AGC TTC GTA TTA    |
| Fwd:4059   | CCC ATG GAA AGA GGT GTA TTT    |
| Rev:4059   | GGG CCT TTA AGA GGT GAT TAG    |
| Fwd:2003   | CCA GTC AGG TAT AGT ACG AGA T  |
| Rev:2003   | CAA CTC CAG AGG TTG GTA TAA G  |
| Fwd:5361   | GAG ACC AAA GTG CCG ATA AG     |
| Rev:5361   | GGA GTC TGG ACA TCT GGA ATA    |
| Fwd:4699   | CCT TCC ATC ACT CTT CCT AAT G  |
| Rev:4699   | GAC CCT GAA ATA GGT GGA TAA A  |
| Fwd:1043   | CCA ACT GTC CCT AAC CCT TAA A  |
| Rev:1043   | GGG TCA GAG GAA TAG CAA AGA A  |
| Fwd:2744   | GAC CAG ACC GTT AGA AGA ATA AG |
| Rev:2744   | GCC CTT GGT TTC CTG AAT AA     |
| Fwd:ERV3-1 | CTA CTA CCA GTG CCT GAT TTA C  |
| Rev:ERV3-1 | CGC AGG AGG AAG AGA AAT TAT    |
| Fwd:768    | GAC ATG GGT AGT GAG GAT GAA AG |
| Rev:768    | GAG GCA GAA ATG GGC ATA AGA    |
| Fwd:3340   | CTG GGT TCT GTG TCT CTT TG     |
| Rev:3340   | GAC ATC AGA TGA GCA GGA TAA G  |



**Fig. S1. Flowchart of ERVmap.** ERVmap was developed by first compiling a list of proviral ERVs into a database of 3220 ERVs. Then a computational pipeline was developed to filter mapped reads using stringent criteria in order to increase accuracy in reads mapped to repetitive sequences. Reads that were mapped to ERVs in our database were extracted and normalized to size factors obtained from cellular gene analysis.

```
#!/usr/bin/env perl
#
# erv: map to genome, for SE data
#
use warnings;
use strict;
use File::Basename;
use Cwd;
use Getopt::Long;
use File::Type;
my home = "\sim/scripts";
my $cell = "sample";
                          # sample name
my $workdir = ".";
                         # working dir "$cell"
my $outdir = "tmp";
                         # dir under $cell
my stage = 0;
my stage2 = 0;
                  # sequence file
my $fastq;
my length = 40;
my score offset = 33;
my score = 25;
my $pat = "$~/bin/trim/illumina_adapter.txt";
my $cat = ";
my \text{stest} = 0;
print map("\t$_", @ARGV), "\n";
GetOptions ("test" => \
         "cell=s" => \$cell,
         "workdir=s" => \workdir,
         "outdir=s" => \$outdir,
         "stage=i" \Rightarrow \
         "stage2=i" \Rightarrow $stage2,
         "length=i" => \length,
```

```
"score_offset=i" => \score offset,
          "pat=s" => \$pat,
         "cat"
                   \Rightarrow \
          "score=i" => \score,
         "fastq=s" => \$fastq, ### absolute path
         );
die unless (fastq \&\& stage > 0 \&\& stage 2 > 0);
my $genome = "~/genome/genome";
### check if fastq file is zipped
my \$zipped = 0;
my $ftype = File::Type->new->checktype filename($fastq);
print STDERR "$fastq: $ftype\n";
if (ftype = /zip/) {
  sipped = 1;
}
### btrim
my $btrim = "~/bin/trim/btrim/btrim3";
my $adaptor = "~/bin/trim/illumina adapter.txt";
my $btrimout = "btrim g se.out";
my $btrim cmd;
if (score offset == 33) {
  if ($zipped) {
       $btrim cmd = "/bin/bash -c '$btrim -l $length -w 10 -a 25 -p $adaptor -3 -P -o
$btrimout -t <(gunzip -c $fastq) -C > btrim.log 2> btrim.log''';
  } else {
       $btrim cmd = "/bin/bash -c '$btrim -1 $length -w 10 -a 25 -p $adaptor -3 -P -o
$btrimout -t <(cat $fastq) -C > btrim.log 2> btrim.log''';
} else {
  if ($zipped) {
       $btrim cmd = "/bin/bash -c '$btrim -i -l $length -w 10 -a 25 -p $adaptor -3 -P -o
$btrimout -t <(gunzip -c $fastq) -C > btrim.log 2> btrim.log''';
  } else {
       $btrim cmd = "/bin/bash -c '$btrim -i -l $length -w 10 -a 25 -p $adaptor -3 -P -o
$btrimout -t <(cat $fastq) -C > btrim.log 2> btrim.log''';
  }
}
```

```
### bwa
my $bwa = "bra";
my $samtools = "samtools";
my $filter = "$~/scripts/parse bam.pl";
my $bwabam = "bwa.bam";
#my $bwa cmd = "/bin/bash -c '$bwa mem -t 8 -p $genome ${btrimout} | $samtools
view -Sh -F4 - | tee >($samtools view -Shb - | $samtools sort - -o bwa unfiltered.bam) |
$filter | $samtools view -bSh - > $bwabam''';
my $bwa cmd = "/bin/bash -c '$bwa mem -t 8 -p $genome ${btrimout} | $samtools view
-Sh -F4 - | $filter | $samtools view -bSh - > $bwabam''';
### sort
my $bwabam sorted = "bwa sorted.bam";
my $sort cmd = "$samtools sort $bwabam -o $bwabam sorted";
# index
my $bamindex cmd = "$samtools index ${bwabam sorted}";
### count
my $bedtools = "~/bin/bedtools";
my $bed = "~/genome/ERVmap_v2_all_sorted.bed";
my $genomefile = "~/genome/GRCh38.genome file.txt";
my $cntfile = "herv coverage GRCh38 g pe2.txt";
my $count cmd = "$bedtools coverage -b ${bwabam sorted} -a $bed -counts -sorted -g
$genomefile > $cntfile";
chdir($workdir);
my $wdir = "$cell";
my $cmd = "mkdir -p $wdir";
&cmd($cmd);
chdir($wdir);
# btrim
if (stage \le 1 \&\& stage \ge 1) {
  &cmd($btrim cmd);
}
# bwa
if (stage \le 2 \&\& stage \ge 2) {
  &cmd($bwa cmd);
  unlink($btrimout) if (-s $bwabam > 10);
}
```

```
if ($stage <= 3 && $stage2 >= 3) {
  &cmd($sort cmd);
  &cmd($bamindex cmd);
  unlink($bwabam);
}
# count
if ($stage <= 4 && $stage2 >= 4) {
  &cmd($count cmd);
}
sub cmd {
  my(\c,) = @_;
  print "In ", cwd(), ":\n";
  print "$c\n";
  system($c) unless ($test);
}
     _____
#!/usr/bin/env perl
#
# parse bam from bwa
#
use strict;
use warnings;
use Getopt::Long;
my $test;
my $fix;
GetOptions ("test" => \$test,
         "fix" => \S fix,
         );
while (my li = >) {
  chomp($li);
  my (a)t = \operatorname{split}(\wedge t/, \$li);
# print "$t[2]\t$t[10]\n";
  if ($1i =~ /^\@/) {
       print "$li\n";
       next;
```

```
next if (soft clipping((a,t));
  my seq = t[9];
  my $seql = length($seq);
  #print "$seq\n";
  my (\$nm, \$as, \$xs, ) = (1000, 0, 0,);
  for (my i=10; i<0; i++) {
       if (t[i] = /^AS:i:(d+)/) {
                                        # Alignment score
          as = $1;
       } elsif ($t[$i] =~ /^XS:i:(\d+)/) { # Suboptimal alignment score
          xs = 1;
       elsif(t[i] = /^NM:i:(d+)/) 
          $nm = $1;
       }
  }
  print join("\t",
            "NM-AS-XS", $nm, $as, $xs, $as - $xs), "\n" if ($test);
  if ($fix) {
       if (\$nm < 3 \&\& (\$as - \$xs \ge 5))
          print "$li\n";
       }
  } else {
       my $nmperc = $nm / $seql;
       \#my \$asxsperc = (\$as - \$xs) / \$seql;
       if (\$nmperc < 0.02 \&\& (\$as - \$xs \ge 5))
          print "$li\n";
       }
  }
}
sub soft clipping {
  my($t, ) = @_;
  my c = t > 5;
  my (a) = split(/[0-9]+/, $c);
  shift(@l); #1st is empty
  my (a)d = \operatorname{split}(/[a-zA-Z]+/, \c);
  die "$#l != $#d" if (scalar @l != scalar @d);
  if ($test) {
       print "\t$c\n";
```

}

```
print "\t->\t", map(">$_< ", @d), "\n";
     print "\t=>\t", map(">$_< ", @l), "\n";
}
my (\text{$tot, $s, $h, } = (0, 0, 0,);
for (my $i=0; $i<@l; $i++) {
     t += d[$i];
     h += d[i] if (l[i] eq "H");
     $s += $d[$i] if ($l[$i] eq "S");
}
print join("\t", "\t", $tot, $s, $h, ),"\n" if ($test);
my perc = (h+s) / tot;
my $r;
if ($fix) {
     r = (h+s>=3)?1:0;
} else {
     r = (\text{perc} \ge 0.02) ? 1 : 0;
}
return $r;
```

Fig. S2. ERVmap core scripts.

}



**Figure S3. Confirmation of RNA sequencing data using qPCR.** 20 ERVs that were either highly expressed by all cell types or showed cell type-specific expression patterns were confirmed by qPCR for the indicated cell types. The graphs show SEM of technical replicates. nd, not detected.









**Figure S4. Histone modifications at highly transcribed ERV loci.** ChIP-seq data for each cell line were obtained through ENCODE, and IGV software was used to visualize the tracks for H3K4me3 (A), H3K27Ac (B), H3K9me3 (C), and H3K27me3 (D) at ERVK3-1, 4503, ERVH13q33.3, and 5875 loci. The level of ERV expression for each ERV per cell type is depicted as a bar graph.



**Figure S5. RepEnrich analysis of ERV expression in cell lines.** A) Heatmap of all RepEnrich reads for 550 LTR families for each cell line. B) Principle component analysis using the same set of data as (A).



**Figure S6. ERV reads compared across all cell types.** The sum of all ERV reads for all of the cell line and primary cell samples were plotted on the same graph. Cell types with multiple datasets were averaged. Error bars represent SEM.



**Figure S7. Distance matrix of ERVs in ERVmap database.** Pair-wise edit distance (Levenshtein distance) between all 3220 ERVs in ERVmap were calculated based on their DNA sequences. Heatmap was generated using the edit distance normalized to the length of each ERV locus. 0 (blue) corresponds to identical sequence pairs and 1 (red) corresponds to no matching sequence between sequence pairs.

 Table S1. Summary of LTR elements in Repeatmasker database

| Repeatmasker datab | ase, hg38 |
|--------------------|-----------|
|                    |           |

| Repeatingsher uatar | asc, ngoo      |
|---------------------|----------------|
|                     | # LTR elements |
| Family              | 10             |
| Subfamily           | 595            |
| Total # of copies   | 742621         |

| SLE<br>Donor | Age | Sex    | Race     |
|--------------|-----|--------|----------|
| 1            | 43  | female | White    |
| 2            | 60  | female | White    |
| 3            | 29  | female | Hispanic |
| 4            | 36  | female | Black    |
| 5            | 52  | female | Black    |
| 6            | 48  | female | Hispanic |
| 7            | 41  | female | Hispanic |
| 8            | 47  | female | Black    |
| 9            | 39  | female | Hispanic |
| 10           | 26  | female | Black    |
| 11           | 49  | female | Black    |
| 12           | 48  | female | Hispanic |
| 13           | 39  | female | Black    |
| 14           | 29  | female | Hispanic |
| 15           | 28  | female | Black    |
| 16           | 50  | female | Black    |
| 17           | 50  | female | Black    |
| 18           | 27  | female | Hispanic |
| 19           | 40  | female | Black    |
| 20           | 33  | female | Hispanic |

 Table S2: Demographic information for SLE patients and healthy donors

| Healthy<br>Donor | Age | Sex    | Race     |
|------------------|-----|--------|----------|
| 1                | 29  | female | Black    |
| 2                | 31  | female | White    |
| 3                | 34  | female | Hispanic |
| 4                | 41  | female | Hispanic |
| 5                | 22  | female | White    |
| 6                | 68  | female | White    |

## Table S3: Comparison of ERV databases

| ERV annotation | Author/Institution                                                                                                  | Description                                                                                                                                                                                                                                                                                                                                                      | Number of entries                                   | Ref. |
|----------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------|
| Repbase        | Genetic Information<br>Research Institute                                                                           | -Database of consensus sequences for repetitive or<br>mobile DNA elements for eukaryotic species.<br>-No genomic location associated with sequences.<br>-Largely non-autonomous LTR elements for ERVs.                                                                                                                                                           | -48860 total entries<br>-333 human ERV<br>sequences | (1)  |
| Repeatmasker   | Institute for Systems<br>Biology                                                                                    | -Program that annotates repetitive elements in the genome based on Repbase and Dfam databases.<br>-Provides exact genomic location.<br>-Mostly non-autonomous LTR elements.                                                                                                                                                                                      | -771,683 entries for hg38                           | (2)  |
| DFAM           | University of Montana<br>Institute for Systems<br>Biology                                                           | -Database of repetitive DNA elements for eukarytic genomes.<br>-Mostly non-autonomous LTR elements.                                                                                                                                                                                                                                                              | -4150 total entries<br>-540 human LTR elements      | (3)  |
| HERVd          | Ondrej Moravcik<br>Jan Paces<br>Dan Elleder<br>Institute of Molecular<br>Genetics of the<br>ASCR, Czech<br>Republic | <ul> <li>-Interactive database for human repetitive and mobile DNA elements.</li> <li>-Based on Repbase/Repeatmasker annotations.</li> <li>-Mostly non-autonomous LTR elements.</li> </ul>                                                                                                                                                                       | -5,317,386 total entries<br>-725,763 ERV entries    | (4)  |
| HERVgDB4       | Francois Mallet<br>Hospice Civils de<br>Lyon bioMerieux<br>Centre Hospitalier<br>Lyon Sud                           | -Database of ERVs, active LINE-1 elements, IncRNA,<br>infectious ERVs and human genes used for the<br>development of HERV-V3 hybridization assay.<br>-ERVs annotated based on protype ERV sequences.<br>-Also includes ERV elements annotated in Dfam.<br>-No information regarding genomic location or<br>sequence information on each ERV element<br>provided. | -428,301 ERV elements                               | (5)  |

| Reference viral<br>database (RVDB)              | Arifa S. Khan<br>U.S. FDA                                | -Databases of viral, virus-related, virus-like<br>nucleotide sequences.<br>-Based on sequences in GenBank.<br>-No genomic location for ERVs.<br>-Many are partial, fragmented or ERV-like<br>sequences.<br>-Unclear how many are unique sequences.                                                               | -561,676 total entries<br>-955 ERV sequences | (6) |
|-------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----|
| Human LTR-<br>retrotransposon<br>genome browser | Andrew Garazha &<br>Anton Buzdin<br>Cellgenetics, Russia | <ul> <li>-A web browser to visualize LTR elements that are bound by various transcription factors (TF) based on chromatin immunoprecipitation sequencing data on ENCODE.</li> <li>-LTR element annotation is based on Repbase/Repeatmasker annotations.</li> <li>-Mostly non-autonomous LTR elements.</li> </ul> | -717,612 ERV/LTR<br>elements                 | (7) |

#### **References:**

- 1. Bao W, Kojima KK, Kohany O (2015) Repbase Update, a database of repetitive elements in eukaryotic genomes. *Mobile DNA*:1–6.
- 2. Smit AFA, Hubley R, Green P (2013) RepeatMasker Open-4.0. Available at <u>www.repeatmasker.org</u>. Accessed Nov. 13, 2018.
- 3. Hubley R, et al. (2016) The Dfam database of repetitive DNA families. *Nucleic Acids Research* 44(D1):D81–D89.
- 4. Paces J, Pavlícek A, Paces V (2002) HERVd: database of human endogenous retroviruses. *Nucleic Acids Research* 30(1):205–206.
- 5. Becker J, et al. (2017) A comprehensive hybridization model allows whole HERV transcriptome profiling using high density microarray. 1–14.
- 6. Goodacre N, Aljanahi A, Nandakumar S, Mikailov M, Khan AS (2018) A reference viral database (RVDB) to enhance bioinformatics analysis of high-throughput sequencing for novel virus detection. mSphere 3:e00069-18.
- 7. Garazha A, et al. (2015) New bioinformatic tool for quick identification of functionally relevant endogenous retroviral inserts in human genome. *Cell Cycle* 14(9):1476–1484.