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Figure S1. The effects of mutations in pfd-6, fat-7, C54C8.3 or ntl-2 on lifespan and those of
pfd-6 RNAI on fertility. (A and B) pfd-6(gk493446) (pfd-6(-)) (A) or fat-7(wa36) (fat-7(-)) (B)
mutations partially suppressed the long lifespan of daf-2(e1370) (daf-2(-)) mutant animals. (C
and D) C54C8.3(gk896531) (C54C8.3(-)) (C) or ntl-2(gk390728) (ntl-2(-)) (D) mutations had
small or no effects on the lifespan of wild-type or daf-2(-) animals. See Supplemental Table S2
for statistical analysis and additional repeats. (E) Fertility of wild-type and hsf-1(sy441) (hsf-
1(-)) mutant worms treated with control RNAI or pfd-6 RNAI on solid plates (three biological

repeats). Error bars represent SEM (two-tailed Student’s t-test, *p < 0.05, **p < 0.01).
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Figure S2. Evolutionarily conserved PFD-6 is required for the long lifespan of daf-2
mutants. (A) Percent homozygous pfd-6 deletion mutants that hatched were measured, by using
two strong loss of function alleles of pfd-6 that are balanced: pfd-6(tm3759)/hT2[bli-4(e937)
let-?(q782) qls48[Pmyo-2::gfp; Ppes-10::gfp; Pges-1::gfp]] and pfd-6(tm3510)/hT2. All the
homozygous mutant worms that hatched arrested as L2 or L3 larvae. Error bars represent SEM
using three biological repeats. (B) PFD-6 is conserved among various species. Amino acid
sequence alignment of C. elegans PFD-6, H. sapiens PFDN6 (41%), M. musculus PFDN6
(41%), D. melanogaster CG7770 (36%) and S. cerevisiae YKE2 (36%) was generated using
Clustal W2 and colored in box shades with asterisks (completely identical residues) or dots
(similar or identical residues). (C) Shown is a schematic diagram of exon and intron regions of
pfd-6. pfd-6(gk493446) mutation causes an amino acid substitution, T16 to I. (D) Phylogenic tree
of PFD-6 homologs in C. elegans, D. melanogaster, S. cerevisiae, M. musculus and H. sapiens.
(E) Predicted structure of PFD-6 presents a coiled-coil structure that is involved in substrate-
binding. (F and G) pfd-6 RNAI (F) or pfd-6 mutations (G) partially decreased the longevity of
daf-2 mutants in the absence of FUdR. (H) pfd-6 RNAI did not affect the longevity of hsb-
1(cg116) (hsb-1(-)) mutants. See Supplemental Table S3 for statistical analysis and additional

repeats.
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Figure S3. The expression patterns of pfd-6 during development and the effect of pfd-6
transgenes and RNAI on lifespan. (A) pfd-6 was expressed in multiple tissues throughout
development (scale bar: 100 um). (B) Two different lines of pfd-6p::pfd-6::gfp transgenes
restored long lifespan in pfd-6(gk493446); daf-2(e1370) (pfd-6(-); daf-2(-)) double mutants. (C)
Three different lines of pfd-6p::pfd-6::gfp transgenes marginally affected the lifespan of wild-
type. (D) pfd-6 RNAI did not affect the lifespan of RNAi-defective rde-1(ne219) (rde-1(-))
mutants, but marginally decreased the lifespan of rde-1(ne219); daf-2(e1370) (rde-1(-); daf-2(-))
mutants (3 out of 4 trials) (E) The lifespan of systemic RNAIi-defective sid-1(pk3321) (sid-1(-))
or daf-2(e1370); sid-1(pk3321) (daf-2(-); sid-1(-)) mutants was not changed by pfd-6 RNAI. See
Supplemental Table S4 for statistical analysis and additional repeats. (F) Fluorescence images
of unc-119p::pfd-6::GFP worms in neuron-specific RNAI backgrounds. (G) Quantification of
panel F (n > 26 from three independent trials). Error bars represent SEM (two-tailed Student’s t-
test, *p < 0.05). Please note that the RNAI efficiency in our study is similar to that shown by a
previous report that generated neuron-specific RNAI strain (Calixto et al. 2010). (H and I)
Photographs of muscle-specific RNAI strain expressing hlh-1p::pfd-6::RFP (H), and

quantification (n > 32, three biological repeats) (1).
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Figure S4. The effects of RNAI targeting components of R2TP/prefoldin-like complex and
prefoldin complex on lifespan. (A and B) gRT-PCR results after knocking down each of the
components in prefoldin and R2TP/prefoldin-like complexes in wild-type (A) and daf-2(e1370)
(daf-2(-)) (B) animals. Data were obtained from three biological repeats. Error bars represent
SEM (two-tailed Student’s t-test, ***p < 0.001) (C) F35H10.6/UXT RNAI did not influence the
lifespan of wild-type or daf-2(e1370) ((daf-2(-)) mutants. (D-G) Inhibition of ruvb-1 (D), ruvb-2
(E), uri-1 (F, one out of two trials), or F35H10.6/UXT (G) using RNAI did not affect the lifespan
of pfd-6(gk493446); daf-2(e1370) (pfd-6(-); daf-2(-)) animals. (H-K) RNAI targeting pfd-1 (H),
pfd-3 (1), pfd-4 (J) or pfd-5 (K) had no effect on the lifespan of wild-type or daf-2 mutant

animals. See Supplemental Table S5 for statistical analysis and additional repeats.
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Figure S5. daf-2 RNA. increases PFD-6 protein levels in an hsf-1-dependent manner.
Quantification of PFD-6::GFP levels in control RNAI- and daf-2 RNAI-treated animals under
control RNAI, hsf-1 RNAI, or daf-16 RNAI conditions (n > 25, three biological repeats). Error
bars represent SEM, and p values were calculated by using two-tailed Student’s t-test (n.s: not
significant, *p < 0.05, **p < 0.01, ***p < 0.001). Integrated pfd-6::GFP transgenic animals
(101249 yhls74[pfd-6p::pfd-6::GFP; odr-1p::RFP]) were used. Here, we performed double
RNAI experiments, as integrated pfd-6::GFP caused sterility in a daf-2(e1370) mutant

background.
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Figure S6. The effects of genetic inhibition of pfd-6 on the transcriptome of daf-2 mutants.
(A and B) Heat maps show different expression patterns between up- (A, fold change > 1.50 and
p value < 0.05) and down- (B, fold change < 0.67 and p value < 0.05, left) regulated genes in
daf-2(e1370) (daf-2(-)) mutants and wild-type animals compared with those in pfd-6(-); daf-2(-)
double mutants. (C and D) Venn diagrams show that the expression of 189 genes was up-
regulated (C) and that of 162 genes was down-regulated (D) by daf-2(-) mutations in a pfd-6-
dependent manner (RF: representation factor). p values for overlap of VVenn diagrams were
calculated with hypergeometric probability test. (E and F) Venn diagrams showing induced (E)
or repressed (F) genes by daf-2(-) mutations in a daf-16-dependent manner using two previously
published RNA-seq. data (Riedel et al. 2013; Chen et al. 2015). (G) Venn diagrams show an
overlap between genes repressed in daf-2(-) mutants that are dependent on PFD-6 and those that
are dependent on DAF-16 (Riedel et al. 2013). (H and 1) Venn diagrams indicate overlapping
genes between PFD-6-dependent and DAF-16-dependent genes (Chen et al. 2015), whose levels
are induced (H) or repressed (1) in daf-2(-) mutants. (J and K) Shown are the overlaps between
PFD-6 targets and SKN-1 targets (Ewald et al. 2015) (J), or PFD-6 targets and SMG-2 targets
(Son et al. 2017) (K), whose expression was repressed in daf-2(-) mutants. (L-N) mRNA levels
of nlp-35 (L), M02D8.6 (M) and nas-5 (N) were measured by using qRT-PCR (n > 3, error bars
represent SEM and p values were calculated by using two-tailed Student’s t-test, **p < 0.01,
***p < 0.001). (O and P) Shown are motifs containing oligolength of 6 (O) and 7 (P) that are
significantly overrepresented in 800 bp upstream of the coding regions of pfd-6-dependent up-
regulated genes in daf-2(-) mutants. We performed a DNA pattern search with known motifs of
transcription factors in insulin/IGF-1 signaling pathway; DAF-16-associated sites (also known as

PQM-1/GATA-like binding sites; GAKAAG: 41.3 %), DAF-16-binding element sites



(GTAAARA: 56.6 %), SKN-1-binding sites (WWTRTCAT: 41.8 %), and HSF-1-binding sites

(GGGTGTC and TTCTAGAA: 2.1% and 6.3%, respectively).
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Figure S7. Tissue-specific hsf-1 and daf-16 RNAI lifespan assays. (A and B) hsf-1 RNAI (A)
and daf-16 RNAI (B) did not affect the lifespan of RNAIi-defective rde-1(ne219) (rde-1(-)) and
rde-1(ne219); daf-2(e1370) (rde-1(-); daf-2(-)) mutants. (C and D) Muscle specific hsf-1 RNAI
(C) or daf-16 (D) RNAI decreased the longevity of daf-2(-) mutants. See Supplemental Table
S6 for statistical analysis and additional repeats. (E) DAF-16::GFP levels were decreased by pfd-
6(gk493446) (pfd-6(-)) mutations under daf-2 RNAi-treated conditions. 1J1058 (daf-16(mu86);
muls112[daf-16p::GFP::daf-16cDNA; odr-1p::RFP]) (control) and 1J1230 pfd-6(gk493446)
daf-16(mu86); mulsl12[daf-16p::GFP::daf-16cDNA; odr-1p::RFP] (pfd-6(-)) were used. (F)
Quantification of DAF-16::GFP levels in panel E (n > 22 from three independent experiments).
Error bars indicate SEM (two-tailed Student’s t-test, *** p < 0.001). Scale bars indicate 100 um.
(G) Western blot assays using 1J1058 and 1J1230 strains. DAF-16::GFP was barely detected.
WB: Western blot. (H) Western blot assays using TJ356 strain (zIs356[daf-16p::daf-
16a/b::GFP; rol-6]) and 101125 pfd-6(gk493446); zI1s356[daf-16p::daf-16::GFP; rol-6D]
indicated that mutations in pfd-6 did not decrease DAF-16::GFP levels under daf-2 RNAI
conditions (three biological replicates). We speculate that the difference between the results
shown in panels E and H may have originated from using two different daf-16::GFP transgenic
strains. Therefore, it will be important to measure endogenous DAF-16 levels in future studies.
(1) A schematic drawing showing a split GFP system for protein-protein interaction. PFD-6 fused
with the C-terminal part of GFP and protein X fused with the N-terminal part of GFP are co-
expressed. If PFD-6 and protein X interact with each other, green fluorescence is detected. (J)
Fluorescence images of the N-terminal domain of split GFP fused with DAF-16 isoform a (DAF-
16::spGFPN) and PFD-6 fused with the C-terminal domain of split GFP (PFD-6::spGFPC) in

daf-2 RNAI-treated conditions. Triangles indicate odr-1p::RFP, a co-injection marker for DAF-



16::spGFPN. Asterisks indicate unc-122p::RFP, a co-injection marker for PFD-6::spGFPC.

Arrows indicate DAF-16::GFPN and PFD-6:GFPC that bound in the nucleus.
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Figure S8. pfd-6 RNAI did not affect the enhanced maintenance of actin proteins in daf-2

mutants during aging.

(A) Lifeact::GFP, which binds actin filaments, was detected in the intestinal lumen. (B)
Fluorescence images of Lifeact::GFP-expressing worms in wild-type or daf-2(e1370) (daf-2(-))
backgrounds treated with pfd-6 RNAI during aging. (C) Quantification of panel B. Error bars

represent SEM (n > 18 from three independent experiments).
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Figure S9. PFD-6 binds HSP-90 and HSP-70.

(A-D) Pictures of worms expressing C-terminal GFP fused with PFD-6 (PFD-6::GFPC) and N-
terminal GFP fused with HSP-90::spGFPN (A), HSP-70 (HSP-70::spGFPN) (B), PFD-
2::SpGFPN (C) and spGFPN (D) (scale bars: 100 um). vha-6 promoter, an intestine-specific
promoter, was used for expressing split GFP-fused proteins. Triangles indicate odr-1p::RFP, a
co-injection marker for HSP-70::spGFPN, HSP-90::spGFPN, spGFPN or PFD-2::spGFPN.
Asterisks indicate unc-122p::RFP, a co-injection marker for PFD-6::spGFPC. (E) Co-
immunoprecipitation (Co-IP) assays with HA-HSP-90 and FLAG-PFD-6 using HEK 293T cells
(three independent repeats). WB indicates Western blot. (F) Western blot assays were performed
to determine the expression of HA-HSP-70 in cultured mammalian cells. The level of HSP-70
was very low, and therefore we were not able to perform co-immunoprecipitation assay with
HSP-70. We speculate that codon usage or other unknown factors may have affected the
expression of C. elegans HSP-70 in cultured mammalian cells. HA-HSP-90 was used as a

positive control.
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