
Appendix A: Fractional Brownian Motion

A fractional Brownian motion is a continuous zero-mean Gaussian process that can be described
by the function in equation 2 [4]. In order to simulate such properties, it is sufficient to simulate
the increments on the profile, as described in equation 1.

ξ1 = BH
1 , ξ2 = BH

2 −BH
1 , ξN = BH

N −BH
N−1 (1)

These values form a stationary sequence of standard Gaussian variables with a covariance
described in equation 2. The vector ξ = (ξ1, ..., ξN)T , composed by the simulated increments, is
called fractional Gaussian noise and is a centred Gaussian array with covariance matrix Ω [5].

ρH(n) = E[ξ1ξn+1] =
1

2

(
(n+ 1)2H + (n− 1)2H − 2n2H

)
, n ≥ 1 (2)

Ω = Cov(ξ) =



1 ρH(1) ρH(2) · · · ρH(N − 2) ρH(N − 1)
ρH(1) 1 ρH(1) · · · ρH(N − 3) ρH(N − 2)
ρH(2) ρH(1) 1 · · · ρH(N − 4) ρH(N − 3)

...
...

...
. . .

...
...

ρH(N − 2) ρH(N − 3) ρH(N − 4) · · · 1 ρH(1)
ρH(N − 1) ρH(N − 2) ρH(N − 3) · · · ρH(1) 1


In order to solve this problem, we can, alternatively, convert the covariance matrix into a

circulant matrix. The circular matrix (Σ) has a known eigenvalues structure, making it easier
to solve the problem. Taking the relationship M = 2(N − 1), a circular matrix Σ is defined
based on the relations defined by equation 3.

c0 = 1,

ck =

{
ρH(n), n = 1, 2, ..., N − 1

ρH(M − n), n = N,N + 1, ...,M − 1

(3)

Σ = circ(c0, c1, ..., cM−1) =



c0 c1 c2 · · · cM−2 cM−1
cM−1 c0 c1 · · · cM−3 cM−2
cM−2 cM−1 c0 · · · cM−4 cM−3

· · · · · · · · · . . . · · · · · ·
c2 c3 c4 · · · c0 c1
c1 c2 c3 · · · cM−1 c0


We then seek for a factorisation described in the equation 4 [4]. The increments in the

simulated Brownian motion time series will be derived from the eigenvalues λ = (λ1, ..., λ4N2)T

arranged as a 2Nx2N matrix Λ. The variable P is the Kronecker product of two discreet
Fourier transform matrices given by P = F

⊗
F [4].

Σ = P ∗ΛP (4)

Fjk =
1√
2N

e−2πijk/2N , where j, k = 0, 1, ...2N − 1 (5)

The algorithm used to derive the fBm time series is available at https://github.com/

lucasfr/ModfBm and can be summarised in the following steps: First, we compute the covari-
ance matrix (Ω)(step 1) and build a 2Nx 2N circulant matrix (Σ) (step 2). For this operation,
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we just need the first row of the matrix Σ (step 3). The eigenvalues of matrix Λ can then
be obtained via Fourier transformation. Both real and complex parts will present a Gaussian
profile, however, it is enough to consider the real part of the eigenvalues (step 4).
The following step consists of multiplying the output of step 4 by random complex numbers
and applying the inverse Fourier transformation (step 5). We modified this step and added an
element of a function M that will be multiplied by these complex random values before apply-
ing the inverse Fourier transformation. From now on, this modified version will be denoted as
Modulated fractional Brownian motion (ModfBm)
The last step step consists of accumulating the values generated by the previous operation and
multiplying by a constant scaled by the the Hurst exponent H. The generated time series
should present scale properties according to the chosen H exponent and, for our ModfBm,
feature changes on its standard deviation.

We generated a time series of 1.843.200 points (1800 windows of 1024 points), corresponding
to a recording of an hour of duration with a sampling rate of 512 Hz - similar to the clinical
intracranial EEG segment from the patient ’NHNN1’. The time series was simulated with a
Hurst exponent H = 0.7, the value was chosen due to its persistent features, i.e., it generates a
time series with memory. Additionally, a modulating function M , for every 2 seconds window
w, described by 6 and shown in Fig. 3(C) was used to simulate the Modulated fBm.

M(w) =


1, w < 450

1 + (w − 449)0.01, 450 ≤ w ≤ 900

1, w > 900

(6)
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Appendix B: Characteristic time scale for other iEEG

subjects

All the following datasets analysed are taken from the iEEG database (https://www.ieeg.
org/). Study IDs are shown as on the database. The example channels we analysed were
labelled seizure onset zone channels. The analysis method is the same as for the main text
Fig. 7.
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Figure 1: I001 P010 D01. The three different channels are ’ITS 1’,’ITS 2’, ’LG 08’.
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Figure 2: I001 P034 D01. The two different channels are ’Grid22’ and ’Grid23’.
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Appendix C: Multifractal properties of sleep EEG

We applied multifractal analysis to scalp EEG obtained from subjects in a polysomnography
set-up. The main goal was to study the impact of the sleep phase on multifractal measures.
For this we used the Chhabra-Jensen method on time data that was epoch-wise standardised
and sigmoid transformed (i.e. the established pipeline we used in the main manuscript). Each
epoch was 10.24 seconds long, and the sampling frequency of the data was 100 Hz giving 1024
points per epoch.

The scalp EEG data studied are from the PhysioNet repository (https://physionet.org/)
[51][2] and were described in details by Kemp et al. [54][3]. This article reports analysis
performed on signals of five of these patients: ’ST7011J’, ’ST7022J’, ’ST7041J’, ’ST7052J’,
’ST7061J’. The signals were recorded at 100 Hz in a polysomnography set-up, this study focused
on the available EEG recordings only, with two different signals: Fpz-Cz and Pz-Oz.

Figure 1 shows the variation for ∆α† (panel B) and ∆f † (panel C) for two EEG channels:
Fpz-Cz and Pz-Oz. We also plotted the delta power in Figure 1(D) as reference, which is often
a proxy for slow wave sleep stages. To analyse the relationship between the sleep stages (shown
in Figure 1(A)) and the multifractal measures, we divided the segments according to the sleep
stages. A violin plots shows the distribution of ∆α†, ∆f †, and power in the δ band (Fig. 1E-J).
A clear drift in the ∆α† distribution can be observed that slowly changes from awake to REM
to S1, S2, S3 and S4 (Fig. 1E and H). This is in stark contrast to power in the δ band, where the
distributions between awake, REM, and S1 are very similar, and then become highly variable
in S2, S3 and S4 (Fig. 1G and J).

A dimensionality reduction technique called t-distributed stochastic neighbour embedding
(t-SNE) [6] was applied to the six variable collected from the two channels. Fig 2 shows the
projection into a two-dimensional space. Note that the information about the sleep stages
were not given to the tSNE algorithm. The projection shows one big cluster and two smaller
clusters. When applying the information about the sleep stages, it becomes clear that the two
smaller clusters are awake states, whereas the one big cluster shows a progression from REM
to S4. Note that there are also datapoints from the awake state in this cluster. Future work
will show if those datapoints are simply mislabeled, or in any way closer to sleep states. If so,
multifractal measures may be useful in devising a classifier for sleep stages in EEG.
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Figure 1: Impact Sleep phases. The figure features measures performed on a scalp EEG
recorded in a polysomnography in two montages Fpz-Cz and Pz-Oz for patient ST7011J. A)
Hypnogram with sleep phases marked by a specialist. B) Variation of the Multifractal spectra
width in time. C) Variation of the Multifractal spectra height in time. D) Variation of the
power of the δ band in time. E, F, G, H, I, and J) Violin plots of the estimated values of ∆α†

(E, H), ∆f † (F, I), and P (δ) (G, J) for both Fpz-Cz (E, F, G) and Pz-Oz (H, I, J) montages.
At visual inspection, ∆α† presents a behaviour similar to P (δ), following the variations of the
hypnogram. The violin plots show an increase in the measures towards more advanced sleep
phases for both ∆α† and P (δ), in both montages.
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Figure 2: Dimensionality reduction. t-distributed stochastic neighbor embedding of the
∆α†, ∆f †, and P (δ) variables for both Fpz-Cz and Pz-Oz channels in a two dimensional space.
The figure shows all sleep stages. It is possible to observe that the measures provide information
about the the sleep stage that could be used in order to devise a classifier.
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Appendix D: Hausdorff dimension

A formal definition of the Hausdorff dimension is given by Falconer (2003) [1] and it is based
on topology and sets theory. Taking U as a generic, non-empty, subset of n-dimensional Rn

space, its diameter can be defined as |U | = sup{|x − y : x, y ∈ U}. If {Ui} is a countable
collection of sets of diameter δ that covers F (a subset of Rn), it is called a δ-cover of F :

F ⊂
∞⋃
i=1

Ui with 0 ≤ |Ui| ≤ δ (7)

Supposing F is a subset of Rn and S is a non-negative number, for any δ > 0, it is possible
to define:

HS
δ (F ) = inf

{
∞∑
i=1

|Ui|s : {Ui} is a δ-cover of F

}
(8)

HS(F ) = lim
δ→0
HS
δ (F ) (9)

The quantity HS(F ) is called S-dimensional Hausdorff measure, in which S represents the
dimension of the measurement object and will impact on the obtained estimate. For any set
F ⊂ Rn and δ < 1, it is possible to assert that:∑

i

|Ui|t ≤
∑
i

|Ui|t
|Ui|S

|Ui|S
(10)

∑
i

|Ui|t ≤
∑
i

|Ui|t−S|Ui|S (11)

∑
i

|Ui|t ≤ δt−S
∑
i

|Ui|S (12)

And taking the infimum

inf

{∑
i

|Ui|t ≤ δt−S
∑
i

|Ui|S
}

(13)

Ht
δ(F ) ≤ δt−SHS

δ (F ) (14)

Taking the limit when δ → 0, it is possible to conclude that, if HS(F ) <∞, Ht(F ) = 0 for
t > S. There is a critical limit for S (Sc) in which HS(F ) changes from ∞ to 0 as S varies.
To this value is given the name of Hausdorff dimension, or Hausdorff-Besicovitch dimension,
Sc = dimHF . As shown in figure below.
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Figure 1: Transition on the value of the Hausdorff measure HS(F ) as the measure-
ment object’s dimension s changes . The plot exhibits a transition in which the value of
the Hausdorff measure goes from ∞ to 0 for Sc = dimHF
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Appendix E

Input:
  Timeseries (vector)
  qValues (vector index i)
  scales (vector index j)

Example:
  [1 2 1 5 3 2 9 1]
  [-3 -2 -1 0 1 2 3]
  [1 2 3]

Loop through
i, j until all qValues and scales 

For each qValue(i) and scales(j)
calculate matricies

Ma(i,j), Mf(i,j), Md(i,j)
Algorithm shown separately

Output:
α, f

Example:
α = [1.49 1.45 1.35 1.14 0.86 0.65 0.56]
f =[0.66 0.77 0.91 1  0.86 0.56 0.33]
D = [1.28 1.22 1.13 1  0.86 0.74 0.67]D= d

1-qValues

muScales(j) = -log10(2scales(j))

Regress the rows of Ma(i,:), Mf(i,:), Md(i,:) against 
muScales and obtain slopes α(i), f(i), D(i) for each row

0.5 1 1.5
α

0.2

0.4

0.6

0.8

1

f(α
)

%for the i-th qValue and j-th scale: 

window=2^scales(j);
q=qValues(i);
            
%break the time series into windows & sum
TimeseriesReshaped=reshape(Timeseries,[],window);
TimeseriesSummed=sum(Timeseries);
            
%calculate p
ps=sum(TimeseriesReshaped);
p=ps./TimeseriesSummed;
            
Nor=sum(p.^q);
mu=(p.^q)/Nor;

Md(i,j)=log10(Nor);
Ma(i,j)=sum(mu.*log10(p));
Mf(i,j)=sum(mu.*log10(mu));

Example for i=1, j=1:

window=2^1;
q=-3;
            

[1 2 1 5;                       3 2 9 1]’
1+2+1+5+3+2+9+1 = 24
            

[1+2+1+5=9          3+2+9+1=15]
[9/24=0.375           15/24=0.625]
            
0.375^-3+0.625^-3 = 23.059
[0.375^-3/23.059 = 0.8224  
 0.625^-3/23.059 = 0.1776]

log10(23.059) = 1.3628;
-0.3503 +  -0.0363 = -0.3866
-0.0698 +  -0.1333 = -0.2032

-3 -2 -1 0 1 2 3
q

0.6

0.8

1

1.2

1.4

D

Chhabra Jensen Algorithm for estimating multifractal spectra

Created by Yujiang.Wang@ncl.ac.uk January 2016 (with input from Louis Lemieux, Lucas Franca)

Figure 1: Flow-chart of the Chhabra-Jensen algorithm.
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Figure 2: Impact of sigmoid transformation on the signal. This function maps the
original (raw) time series into a sequence of elements ranging in between 0 and 1, allowing
the use of the Chhabra-Jensen method in recordings originally containing negative values. (A)
Sigmoid curves with different values of v. This parameter defines how shallow/steep the sigmoid
curve will be. (B) Effect of the sigmoid transform on an epoch extracted from an intracranial
EEG recording. Smaller values of the parameter v tend to flatten the curve.
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Figure 3: Assessment of parameters for sigmoid mapping function. (A) Variability
of ∆α† (0.1, 0.5 and 0.9 quantiles) as a function of the parameter v. (B) Pearson correlation
of the original series and the mapped one for the three types of signal (intracranial EEG, its
surrogate and a generated random time series). Based on the optimisation criterion - maximum
difference between the different signals and minimum distortion (maximum correlation) – the
value chosen was v = 1.
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Figure 4: Monofractal Analysis of seizure segment. Both Higuchi and DFA ap-
proaches exhibits similar patterns to the standard deviation of the signal, in ac-
cordance with the simulated data presented on the main text of this article. Our
signals from intracranial EEG shows a H = 1.2 (non-stationary) for interictal seg-
ments in patients with epilepsy. Thus the signal class is fractional Brownian motion
(Eke et al., 2000).
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Figure 5: Multifractal spectrum height and other signal property changes over time.
(A) A single channel intracranial EEG time series segment containing one seizure in the patient
NHNN1 (channel 1). The seizure onset and offset are marked by red lines. (B) Variation of
multifractal spectrum height (∆α) estimated on epochs of the EEG segment in (A). (C) Epoch-
wise normalised multifractal spectrum height (∆α†). (D) Standard deviation of the time series
for each epoch. (E) Line length of the signal for each epoch.
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Figure 6: Mutual Information of different measures. The MI measure shows higher values
for the pair ∆α/St. Dev. than to ∆α†/St. Dev., similar to the result in Fig. 5.
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Figure 7: Multifractal spectrum width (∆α†) for a single icEEG channel in the
patient NHNN1 (channel 1) around a seizure. Black line: moving average.
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Figure 8: Comparison of three multifractal spectrum estimation methods (with an epoch size
of 2048 points) (MF-DFA, MF-DMA and Chhabra-Jensen) for p-Model simulated time series.
(A) Time series simulated for p = 0.4. (B) Estimated multifractal spectra width ∆α† and (C)
height ∆f †. The result is similar to the one obtained for epochs of 1024 points in Fig. 3.
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Figure 9: Multifractal spectra from a segment obtained with standardisation procedure, vary-
ing the standard deviation s on sigmoid transformation. The standard deviation of the time
series (128.4839) was multiplied by a scaling factor ranging from 0.5 to 1.5 by steps of 0.1.
The scaling of the standard deviation changes the spectral features however f(α) for q = 2
(correlation dimension that is equivalent to monofractal dimension – highlighted by the cir-
cles) does not change significantly. The little change in the correlation dimension caused by
the standardisation procedure might explain why monofractal methods are not affected by the
sigmoid standardisation approach and still correlate with the variance of the signal.
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Figure 10: Evaluation of scaling function F for a signal simulated with p-model. The curves
were obtained for q ranging between -15 and 15 in unitary steps and scales from 4 to 256 points
in a dyadic scale. A) Series generate with p-model (p = 0.4). B) Fluctuation function for
MF-DMA method. C) Fluctuation function for MF-DFA method. The values obtained for
MF-DFA approach do not exhibit a linear pattern in the small scales. Such lack of linearity
causes the problems in obtaining the multifractal spectra by MF-DFA; a finding consistent with
those reported by Mukli et al. (2015).
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Appendix F: Patient information table

Table 1: Patient information table.
ID Age Sex Sampling rate Total length
NHNN1 28 M 512Hz 1 h
I001 P010 D01 – - 5000Hz 4 d 7 h 45 m
I001 P034 D01 33 F 5000Hz 1 d 8 h
Study 040 32 M 5000Hz 2 d 23 h
ST7011J 33 F 100Hz 9.97 h
ST7022J 26 F 100Hz 8.54 h
ST7041J 34 F 100Hz 8.66 h
ST7052J 28 F 100Hz 9.12 h
ST7061J 31 F 100Hz 9.05 h
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