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S1. Full derivation of kinetics

We specify a general model for kinetics of our chemical system,
under the following assumptions: (1) All molecules are ideally
gaseous; (2) the whole system is kept at constant pressure P°
and temperature T™; (3) every possible reaction in the system
is elementary.

Reaction rate of synthesis reaction. For synthesis reaction i +

Jj — i+ 7, its reaction rate is ryi;; = ki - [i] - [j], where
ki is the reaction rate constant, [i] is the concentration of
component i, and [4] is the concentration of component j (1).
Note that the reaction rate ri;; is in unit mol - m~3.s”

We have [i] = n;/Vior where n; is the amount of 7 and Vi, is
the volume of the whole system. Since all molecules are ideally
gaseous, we apply the ideal gas law Piot - Viot = nitor - RT,
where Py, is the total pressure of the system, R is the gas
constant, T is the temperature of the system, and nio is
the amount of all the molecules in the system. Therefore,
[i] = ni/Ntot - Piot/(RT). Since the whole system is kept
at pressure P° and temperature T, that is, P, = P° and
T =T, we thus have
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According to transition state theory (1), the reaction rate
constant is
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where N4 is the Avogadro constant, h is the Planck constant,
and AGLJ is the energy barrier m?lecgle i and j have to
overcome in order for the reaction i + j — i+ j to occur,
named as Gibbs energy of activation. Then, we have
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For simulation, we need the expression of reaction rate in
unit s7*, denoted as v+;;. Therefore, we have
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Fig. S1. Diagram of Gibbs energy for a synthesis reaction i + j — i+ j. ltis
similar with Fig. 4 in the main text, but to be clearer, we add GfA in this figure to
indicate the Gibbs energy of formation of the transition state. (a) For the case that the
synthesis reaction is spontaneous, i.e., G7 + G§ > Gy, ;. (b) For the case that it is
non-spontaneous, i.e., G7 + G5 < G7, ;.

where 8 = RT*/(Nah), K = 1/(RT™"), N; is the number of
molecules 7 in the system, N, is the number of 5, and Ny is the
number of all molecules in the system. Note that the formula
is more convenient to use if we separate solvent molecules from
other molecules. Here we can consider the solvent molecules as
a special type of gaseous molecules 0, which never reacts with
any molecule. The number of solvent molecules is denoted by
S. Finally, we have

Yiij = Bexp (—kAGY,,) - Ni - Nj /(S + N)

where N = Zl>0 N is the number of all the molecules except
for solvent molecules.

Now we explain how to calculate the value of AGL ;- Bach
type of molecule i has its own standard Gibbs energy of forma-
tion Gy (the superscript ° stands for “standard”, i.e., under
the pressure P°; the conventional notation of the standard
Gibbs energy of formation is AG$;, but here we denote it
simply). So there are two cases, as illustrated in Fig. S1.
One is that the total standard Gibbs energy of formation of
the reactants is greater than that of the products, namely
G7 + G5 > G7,;. Tt is thus a spontaneous reaction. The other
case where GY 4+ G5 < Gj; is non-spontaneous.

Based on transition state theory (1), AGiij is determined
by a transition state, which can be considered as a short-
lived compound associated with molecule 4, j and i + j (the
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superscript 1 denotes a transition state associated). We assume
that the transition state also has a specific Gibbs energy of
formation ij. Then AGLJ. is defined as the difference of
Gibbs energy of formation between the transition state and
the reactants, namely AGLj = G';tj — (G + G5). Instead
of using the absolute quantity ij to calculate AGLJ-, we
use another relative quantity v;;, as shown in Fig. S1. It is
defined as the difference between G;Fj and the higher of the
two: Gibbs energy of all the reactants and that of all the
products. Therefore,

t ij,
AG+ij = {¢'~+G9 _
27 i+7

if G7 + G5 > Gjyy
— (G} +G3), ifG;+G; <GPy
Note that 1;; is always positive and finite. The advantage of
using ;; instead of ij is that by setting ;; large or small, we
can easily make the reaction pair i4+j — i + jand i +j — i+J
low-barrier or high-barrier, without considering the relative
height of Gibbs energy of formation of the transition state,
reactants and products.

Reaction rate of decomposition reaction. The same derivation
applies to all the decomposition reactions i + 5 — ¢ + 5. The

reaction rate is, in unit mol - m~3. sil,
k P° Ni+j
T—ij = K—ij :
RT* Ntot

and the reaction rate constant is

RT* AGLJ‘
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Note that the unit of k_;; and ki;; are different. That is

because 7_;; = k—;;[i + j] (where [i + j] is the concentration
of molecules 7 + j) while r4;; = k44;[1][], but r—;; and ry;;
have the same unit. The ultimate reason is that no matter for
a synthesis reaction or a decomposition one, the equilibrium
constant is always dimensionless (1).

Likewise, for simulations we need the reaction rate in unit

571, denoted as v—ij. Therefore, we have
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Note that it has nothing to do with N and S. And we have
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S2. Gillespie Algorithm

We use the standard Gillespie Algorithm to simulate the dy-
namics. The steps are as follows:

1. Set up the system as described in the main text section
“Theory: Simulation of dynamics”. Set ¢ = 0.

2. Decide the time interval until the next event, A¢. It is a
random number drawn from an exponential distribution
with the parameter mean being 1/7:0¢+ where yio is the
sum of the reaction rate (in unit s™*) of all the possible
reactions in the current step.

3. Randomly choose one reaction. The probability it is cho-
sen is proportional to its reaction rate. Then implement
this chosen reaction, i.e., update the number of its reac-
tants and products, and then update reaction rates for
all possible reactions.

4. Update time t = ¢t + At, and repeat from step 2.

S3. Ordinary differential equations (ODEs)

We also construct ODEs to describe the mean-field dynamics
of a chemical reaction system. Still take the citric acid cycle
(Scheme 1 in the main text) as an example, with the same
setup. As set, always N2(t) = @, so we do not need the
equation for N2(t). Then based on the formulas of reaction
rates, Ni(t), N3(t), Na(t), N5(t) and Ng(t) can be written as
(omit to write the variable t)

dN1/dt =w_14- N5 +w_15 - Ns

N3 /dt = 0

dN4/dt = —w424 - QN4 /(S + N) + w_14 - N5
dNs/dt = —w_14 - N5 +w_15 - Ng

dNg/dt = —w_15 - No + wy24 - QN4/(S + N)

(S1]

where N = Q + N1 + N3 + Na + N5 + Ng and w+;; =
B exp (—/-@AGLJ.). For low-barrier reactions, always AG’iij =
10 kJ/mol, so these w+;; appeared in Eq. (S1) are all identi-
cal, thus denoted as w. The initial condition for Eq. (S1) is
N4(0) =1 and N1(0) = Ng(O) = N5(0) = NS(O) = 0. Then
we can numerically solve the equations.

Note that when we construct this equation system, we
neglect all the high-barrier reaction pairs since their reaction
rates are too small. Also, we neglect the non-spontaneous
reaction in each low-barrier reaction pair (e.g., here we did
not consider reaction 6 — 2 + 4), due to the fact that its
reaction rate is much smaller than that of the spontaneous
one. However, because ;; for these reaction pairs is low, if
there are lots of reactants present, the reaction rate of the non-
spontaneous low-barrier reaction could be comparable with
the spontaneous low-barrier one. Therefore, if beforehand we
know that there would be lots of reactants of non-spontaneous
low-barrier reactions, we have to take them into account when
construct the equations.

S4. Detailed dynamics of the citric acid cycle

Fig. S2a shows the dynamics of the citric acid cycle, Scheme
1 in the main text. It shows that the number of molecule 1
increases linearly. The intermediate molecule 4,5 and 6 are
involved in a cycle of reaction, but the total number of them
keeps constant, i.e., always Na(t) + Ns(t) + No(t) = 1.

The solutions of the corresponding ODEs are shown in
Fig. S2b, which are consistent with the simulation. Note
that although Ni(t) shows itself as a straight line, Ny (¢) =
at + b (where a and b are constants) is actually not an exact
solution for the ODEs. The linearity is an approximative and
asymptotical behavior.
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Fig. S2. Dynamics of the citric acid cycle, Scheme 1 in the main text. (a) The outcome of the simulations. The numbers of intermediate molecule 4,5 and 6 are always 0 or 1,
which is hard to see. (b) Solutions of ODEs for this system, with the same setup. After a very short transient time in the beginning, N4 (t), N5 (t) and Ng(t) always stay at
around 0.998, 9.96 x 104 and 9.96 x 10~ *, respectively, which are very hard to see from the figure.

In the system, reaction 2 — 1 + 1 itself is high-barrier
(namely 111 = 100), so its reaction rate is extremely low
(although it is spontaneous since G} = —780, G5 = —500 and
thus G5 > G + G7). In this particular experimental setting
~v_11 ~ 1.88 x 1072 s~!. However, through these low-barrier
reactions, the actual rate of the overall reaction (which can
be considered as 2 — 1 + 1) becomes 1.09 x 10% s71. It is
calculated from Fig. S2a, corresponding to half of the slope
of the linear curve of Ni(t). Tt is 5.80 x 10° times larger than
the original reaction rate.

S5. Any single catalytic reaction can be written as a
collectively-catalytic system

In living systems, many metabolic reactions are catalytic
reactions. Although we did not explicitly include catalysts
in our model, we find that catalysis is an emergence. For
example, the catalytic reaction

24547 [S2]

(meaning that 4 is the catalyst) can be written as the following
collectively-catalytic system:

2+4—6
1 =447
54+6—11

[S3]

In fact, any single catalytic reaction can be written as a
collectively-catalytic system. In order to show this, we need
to discuss the three general types of reactions: synthesis,
decomposition and replacement reactions.
Firstly, a catalyzed synthesis reaction can be generally
written as
A+B S (AB)

where A stands for a type of molecule (the same for other
capital letters), and (AB) stands for a compound consisting
of A and B. If we write this reaction step by step, it can be
written as Eq. (S4), which is actually a collectively-catalytic

system. We can always work out a one-to-one representation
of the molecules. One example (often the representation is not
unique) is Eq. (S5), where 2 stands for A, 3 for B, 4 for C, 5
for (AB), 6 for (AC) and 9 for (ABC), respectively.

A+ C — (AO) 2+4—6
B+ (AC) — (ABC) [S4] 3+6—9 [S5]
(ABC) — C + (AB) 9—54+5

Secondly, a catalyzed decomposition reaction can be gener-
ally written as

(DE) 5D+ E

Then it can be written as a collectively-catalytic system
Eq. (S6), and one example of the one-to-one representation
of the molecules is shown in Eq. (S7), where 2 stands for F,
4 for E, 5 for D, 7 for (DF), 9 for (DE) and 11 for (DEF),
respectively.

(DE) + F — (DEF) 9+2 11
(DEF) — (DF)+E  [S6] M—-7+4 [S7]
(DF) - D+ F 7T—5+2

Lastly, a catalyzed replacement reaction can be generally
written as

G+rHE T+ K

Then it can be written as a collectively-catalytic system
Eq. (S8). Note that there are conservations between the
reactants and products, e.g., the mass sum of G and H is
equal to the mass sum of J and K. That is why we have
the reaction (GPH) — (PJ) + K in Eq. (S8). One example
of the one-to-one representation of the molecules is shown in
Eq. (S9), where 3 stands for J, 4 for G, 5 for H, 6 for K, 7 for
P, 10 for (PJ), 11 for (GP) and 16 for (GPH), respectively.
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Fig. $3. Dynamics of the formose reaction, Scheme 2 in the main text. (a) Solutions of ODEs in log-normal scale, i.e., x-axis is in normal scale and y-axis is in logarithmic
scale. It only shows the solutions larger than 10°, where we are interested as the number of molecules can only be natural numbers. The inset shows the complete
solutions. (b) The number of reactions occurred in the system per time interval 2.28 x 10~? s (this value is chosen such that there are 100 data points in this figure). In the
beginning, the reaction occurs slowly. So for some time intervals in the beginning, there is no reaction occurred, and consequently, the corresponding y-coordinates should be
log;(0) = —oo. Those corresponding points are not drawn. That is why it is sometimes discontinuous in the beginning.

G+ P — (GP) 44711
(GP)+ H — (GPH) 58] ﬁ+§~>§ 9
(GPH) — (PJ) + K 16> 10+6
(PJ)y—>P+J 10-7+3

Note that for metabolic reactions in living systems, the
catalysts such as enzymes are always highly specific, i.e., one
type of enzyme always only catalyzes one specific reaction.
For example, if the reaction Eq. (S2) is a metabolic reaction,
the catalyst 4 most likely only interacts with 2 even though
there are lots of other types of molecules around. Therefore,
if we want to replace Eq. (S2) with the collectively-catalytic
system Eq. (S3), we should make sure that 4, 6 and 11 do not
interact with other molecules in this chemical universe.

S6. Detailed dynamics of the formose reaction

For the formose reaction (Scheme 2 in the main text), we can

also construct ODEs. As set, always Ni1(t) = Q. Then,
dNs /dt = w(—QN2/(S + N) + 2N4)
dNs /dt = w(~QNs /(S + N) + QN2 /(S + N))
dNy/dt = w(—Ns+ QN3/(S + N))

[S10]

The solutions are shown in Fig. S3a, which are consistent with
the simulation. We also observe that N4(t) grows exponentially
but is kept at small numbers (two or three magnitudes fewer
than N2(¢) and N3(t)). That is why it is hard to see the
exponential growth in Fig. 2 in the main text. Note that the
exponential growth of 2 (namely Nz(t) = c-e®!), as well as
that of 3 and 4, is not an exact solution for Eq. (S10) (we
can clearly see the super-exponential growth at the beginning,
from the inset of Fig. S3a). The exponential dynamics is an
approximative and asymptotical behavior.

The overall reaction of the system is helpful to understand
the system. In this case the number of times each low-barrier

reaction occurs is not the same, so the overall reaction can
only be obtained by adding up these reactions weighted by the
number of times of occurrence. Till the end of the simulation,
reaction 1+ 2 — 3 occurs 24253 times, reaction 1+ 3 — 4
occurs 17133 times, and reaction 4 — 2+2 occurs 17126 times.
Then we have

(24253 + 17133) - T+ 24253 - 2+ 17133 - 3+ 17126 - 4
— (17126 x 2) - 2 4 24253 -3+ 17133 - 4

where the numbers before each molecule represent how many

times it appears. Then we cancel 24253 - 2, 17133 - 3 and
17126 - 4 on both sides, and get the overall reaction

41386 -1 — 9999 -2 4+ 7120-3+7-4

We find that there are net productions of molecule 2, 3 and
4. That is why Na(t), N3(t) and Na(t) grow exponentially,
rather than Nz (¢) alone.

Fig. S3b shows the number of reactions occurred during ev-
ery certain time interval. It explicitly shows that the reactions
become faster and faster.

S7. Dynamics of a super-exponential growing self-
replicating system

Exponential growth is one of the dynamics self-replicating

systems have. Some other self-replicating systems have super-

exponential growth. Take the following self-replicating system
(given the resource molecule 6) as an example,

p)
1 [S11]

Similarly, we setup the system: G = —150, G5 = —530, G§ =
—410, Gy = —1170, G2 = —570, Gg = —230, G5 = —950,
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Fig. S4. Dynamics of the self-replicating system Eq. (S11) in log-normal scale. (a) Results of simulations. (b) Solutions of the ODEs. It only shows the solutions larger than
10°, where we are interested. Note that Ng(t), N3 () and N5 (t) are always the same.

Gg = =780, Ns(t) = Q, N2(0) = 1 and N:(0) = N3(0) =
N4(0) = N5(0) = N7(0) = Ng(0) = 0.

The results of simulation are shown in Fig. S4a. We see
that N1(t), N2(t) and Ny(t) grows faster than exponential. As
shown in Fig. S4b, the solutions of the corresponding ODEs
are consistent with the simulations.

S§8. Non-sustaining system

Here we show an example of the non-sustaining system (an-
other group of self-driven system). The system is Eq. (S12),
given the resource molecule 4,
T+1—>2
1+3—14
6—-1+5
24+4—-6
63+3

[S12]

Similarly, we setup the system: G = —130, G5 = —370, G5 =
—770, G; = —1050, G5 = —1490, Gg = —1430, N4(t) = Q,
NQ(O) =1and Nl(O) = Ng(O) = N5(0) = NG(O) =0.

The dynamics (figure not shown) shows that these low-
barrier reactions cannot practically occur. So the system
cannot proceed in the time scale of occurrence of low-barrier
reactions. The reason is that: even if 4 is supplied, the system
still needs 2 to proceed; while the molecules 2 produced by
reaction I1+1 — 2 are not enough to fully provide the molecule
2 that is needed. Even if we set N2(0) = 100, the system will
still become practically static after 2 is consumed up. We call
this kind of self-driven system as non-sustaining system.

S9. Stoichiometry and classification for self-driven
systems

Stoichiometry. In general, stoichiometry is not enough to dis-
cern whether a self-driven system is collectively-catalytic, self-
replicating, or non-sustaining (instead, one has to check its
dynamics). There are two examples of such systems.

The first one is the chemical reaction system Eq. (S13),
given the resource molecule 3. By checking the stoichiometry,

self-replicating
systems

those satis. cond.
overproduction
& no-overintake

non-sustaining
systems

Fig. S5. The classification for self-driven systems. The dark blue disk represents the
collectively-catalytic systems which satisfy the criterion for balanced-cancelling. The
dark yellow disk represents the self-replicating systems which satisfy the criteria for
overproduction and for no-overintake.

we find that it satisfies the criterion of self-driven. But it
does not satisfy the criterion for balanced-cancelling, since the
number of times the intermediate molecule 1 appears on the
reactant side and that on the product side are different, as
well as for 4. So we cannot discern whether it is collectively-
catalytic. Now we check the criteria for overproduction and
no-overintake. The number of times the intermediate molecule
T appears on the reactant side is less than that on the product
side, which means that the criterion for overproduction is
satisfied; while the number of times the intermediate molecule
4 appears on the reactant side is larger than that on the
product side, which means that the criterion for no-overintake
is violated. Therefore, we cannot discern whether this system
is self-replicating neither.

After checking its dynamics, we find that it is collectively-
catalytic. The mechanism underlying is that the number of
times the low-barrier reaction 1+ 3 — 4 occurred is twice as
many as that of the other three low-barrier reactions (those
three reactions occur for the same number of times). So in
order to obtain the overall reaction, we should weight T+3 — 4
twice, as shown in Eq. (S14). The overall reaction is then
obtained by adding up these reactions, that is, 3 +3 — 6



Table S1. Number of physically possible artificial chemistries that contain self-driven, collectively-catalytic or self-replicating systems

L|ch'l 0o 1 2 3 4 5 6 7 8 9 10 11 12 Total
4 AR |1 8 24 32 16 - - - - - - - - 81
Py | 1 8 24 32 14 - - - - - - - - 79
sp* |0 0 0 4 4 - - - - - - - - 8
ccs | o o 0 0 0 - - - - - - - - 0
SR |0 O 0 2 0 - - - - - - - - 2
5 | Al 1 12 60 160 240 192 64 - B B B B B 729
Phy | 1 12 60 160 234 168 46 - - - - - - 681
sb |0 o0 0 12 52 64 24 - - - - - - 152
cc |o o 0 4 1 0 0 - - - - - - 5
SR |0 o0 0 4 5 1 0 - - - - - - 10
6 | Al 1 18 144 672 2,016 4,032 5,376 4,608 2,304 512 - B - | 19,683
Phy | 1 18 144 672 2,002 3,892 4,822 3,584 1,446 244 - - - | 16,825
sb |0 o0 0 28 200 1,144 2,168 2,082 988 186 - - - 6,886
cc |o o 0 10 6 5 0 0 0 0 - - - 21
SR |0 o0 0 9 27 29 9 0 0 0 - - - 74
7 Al 1 24 264 1,760 7,920 25,344 59,136 101,376 126,720 112,640 67,584 24,576 4,096 | 531,441
Phy | 1 24 264 1,760 7,804 24,928 56,208 89,806 99,550 74,328 35,602 9,874 1,206 | 401,445
sD |0 o0 0 52 860 5,866 21,596 47,266 64,132 54,652 28,614 8,438 1,076 | 232,552
cc |o o 0 28 57 79 17 3 0 0 0 0 0 184
SR |0 o0 0 12 85 190 189 103 53 10 0 0 0 642

! Number of low-barrier reactions chosen.

2 Number of all alternative chemical universes, in another term, different artificial chemistries.

3 Number of physically possible artificial chemistries.

4 Number of physically possible artificial chemistries that contain self-driven systems.
5 Lower bound on the number of physically possible artificial chemistries that contain collectively-catalytic systems.
6 Lower bound on the number of physically possible artificial chemistries that contain self-replicating systems.

_ o 25141
2—=>1+1 _ _
_ 1+3—4
1+3—4 _
_ _ [S13] 1+3—4 [S14]
8—>2+6 _ _
_ 8—2+6
444 —8 o
444—-8

collectively catalyzed by the intermediate molecule 1, 2, 4 and
8.

The second example is the following self-driven system,
given the resource molecule 2,

1+1—-2
4—51+3

N N
- -
| oy Wl
L1
wl NI oY
+
I

For the intermediate molecule 1, the number of times it appears
on the reactant side is larger than that on the product side,
so the criteria for balanced-cancelling and for no-overintake
are violated. We thus cannot discern just by stoichiometry
whether this system is collectively-catalytic or self-replicating.
By checking its dynamics, it turns out to be a self-replicating
system.

Classification. For a chemical reaction system, we can discern
whether it is self-driven just by stoichiometry, as the definition.
But as we said, generally we need to check its dynamics to
discern whether it is collectively-catalytic, self-replicating, or
non-sustaining. Fortunately, a self-driven must be collectively-
catalytic if it satisfies the criterion for balanced-cancelling;

while it must be self-replicating if it satisfies the criteria for
overproduction and for no-overintake. Fig. S5 is a diagram
for the complete classification.

Now we investigate how common these systems are. As we
have mentioned in the main text, we define L to be the mass
of the largest molecule in the particular artificial chemistry in
question. Then there are L types of molecules 1, 2, ..., L, and
L?/4 reaction pairs if L is even or (L? — 1)/4 reaction pairs if
L is odd. For example L = 6, then there are 9 reaction pairs.
Note that (1) we are interested in the artificial chemistries
that contain self-driven, collectively-catalytic or self-replicating
systems, rather than the artificial chemistries that themselves
are self-driven or etc., and (2) although by stoichiometry, the
exact numbers of such systems cannot be obtained, we can at
least give a lower bound on those numbers. Table S1 shows
the numbers for different L (a detailed version of Table 1 in
the main text).

$10. Dynamics of the self-replicating system where en-
tropy is decreased, Scheme 5 in the main text

For the self-replicating system Scheme 5 in main text, results
of simulation and solutions of the corresponding ODEs are
shown in Fig. S6. They are consistent with each other. We
see that Ns5(t) and Ng(t) also increase exponentially, but they
are always extremely small (in this case, always under 10).

Now we show how Gibbs energy of the system changes
with taking into account the Gibbs energy contribution of the
gas-mixing process. Here we first presume that molecule 1
(the waste) is separated from other molecules. In the constant
temperature and pressure scenario, the Gibbs energy of mixing
perfect gases is given by the formula (1)

RT D;  D;
¢ Na Z(D np)
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Fig. S6. Dynamics and Gibbs energy of the self-replicating system Scheme 5 in the main text. (a) Results of simulations. (b) Solutions of the ODEs. It only shows the solutions
larger than 10°, where we are interested. (c) Time series of Gibbs energy of the system, with taking into account the Gibbs energy contribution of the gas-mixing process. This
figure is very similar with Fig. 3 in the main text. (d) Time series of A.,ix G (£)/Gljying ()-

where D; represents the number of gas component i and
D = 21 D; is the sum. So in this system, Gibbs energy
of the self-replicating part gets additional terms

6
G:"eplicating (t) = Z N; (t) : Gzc
i=3
RT* S .S <

+

TR IO R0

where B(t) = S+ Z?:z N;(t), and S, as we introduced before,
is the number of the solvent molecules (in this case, S =
1 x 106). The other Gibbs energy Gresource(t) and Guwaste(t)
stay the same as in the main text, Gliying (t) = Grepricating (£)+
Gresource (t), and Gloyaq(£) = Gliging () + Guasie (t). Fig. Sbc
shows the time series of Gibbs energy. They have very similar
trends as Fig. 3 in the main text.

Now we go back to the actual situation where molecules 1
are not automatically separated from other molecules. In this
case, energy is needed to separate them. The minimum energy

molecules 1 with others (denoted as A,,;,G), and we have

_ RT" S S = Ni(t), Ni(t)
BmiaG(0) = B0 (7 0 55+ 2 Ty )

RT* S S = Ni(t)
- N O e +; o

N;(¢)
Ok

needed is the Gibbs energy difference before and after mixing

where C(t) = S + Z?:1 N;(t). Fig. S6d shows the times
series of ApizG(t)/Gliying(t). We see that it is always very
small, i.e., always Gl ing(t) > AmizG(t). So, it is possible
that some portion of the living system’s Gibbs energy is used
to separate molecule 1 (although here we do not talk about
how). Therefore, we can still conclude that it is possible for
a self-replicating system to spontaneously increase its Gibbs
energy or at least keep it unchanged.

1. Atkins P, de Paula J (2014) Atkins’ physical chemistry. (Oxford University Press), 10th edition,
pp. 185, 894-900.
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