
SUPPORTING INFORMATION: Microrheology of DNA Hydrogels
Gelling and Melting on Cooling

I. POLYSTYRENE (PS) TRACERS IN WATER

To evaluate the optimal colloidal (tracer) volume fraction (φ), and to check the suitability of the instrumental set
up we performed a preliminar study with streptavidin coated PS colloids of nominal diameter 530 nm at different
values of φ in a buffer of H2O and 100 mM of NaCl.

The typical scattering volume in the DLS apparatus is estimated to be of the order of ∼ 10−6 cm3, assuming that
the laser beam is focused to 200 µm and the scattering angle is fixed to 90°. It is generally considered that 300
scatterers per scattering volume are required in order to guarantee gaussian statistics of the scattered field and to
properly apply the Siegert relationship1. This corresponds to a lower limit for the number density of roughly ∼ 108

particles/cm3 or to a lower limit for the volume fraction φ ∼ 10−5.

Fig. 1 shows the g1(t) autocorrelation function measured at T = 20°C and wave vector q = 0.0186 nm−1 for three
different values of φ. All curves are rather well described by a single exponential decay (black solid lines).
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FIG. 1. Autocorrelation function g1(t, q) for PS colloids at three different volume fractions φ in a buffer of water at 100 mM
NaCl. The black solid lines correspond to the best fitting curves of a single exponential function.

A proper passive microrheology experiments requires that the probe particles do not interact, such that the measured
scattering function is dominated by the self component. It is normally assumed that hard sphere particles do not
interact when the distance between them is larger than 20 times their diameter1. This factor 20 leads to a maximum
φ ∼ 6·10−3. Indeed, with the aim to minimise particle interactions and to guarantee the validity of this approximation
we select a volume fraction one order of magnitude lower (φ = 3.4 · 10−4). Under this condition, g1(τ) = exp(−q2 <
r2(τ) > /6), where < r2(τ) > is the mean square displacement of the probe particle. In addition, at this value, the
scattering intensity from the colloidal particles is observed to be more than twenty times larger than the one of a
DNA hydrogel sample. As a further check we evaluated the viscosity (η) of water at different T s ranging from 15°C
up to 52°C. The DLS results and the corresponding viscosities are shown in Fig. 2 together with the theoretical values
from the NIST database2. Finally, from the single exponential fittings of the autocorrelation functions presented in
Fig. 2(a) it is possible to estimate the hydrodynamic radius of the colloidal tracers. The average of the measurements,
using as reference η of water at the corresponding T s, it is estimated in ∼ 268± 5 nm.
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FIG. 2. (a) ACF g1(t, q) at different T s for PS colloids at a fixed volume fraction φ = 3.4 10−4 in a buffer of water at 100 mM
NaCl. The black solid lines correspond to the best fitting curves of a single exponential function. (b) Black circles indicate
the measured experimental η at different T s calculated from the data shown in Fig. 2. The dashed blue line represent the
theoretical values for η of water from the NIST database. The tracer hydrodynamic radius is estimated in ∼ 268 ± 5 nm.

II. DNA SEQUENCES

The tetrafunctional DNA particles of the first hydrogels system were prepared by diluting equimolar concentrations
of the sequences NS1-NS4

NS1. 5′-CTACTATGGCGGGTGATAAAAACGGGAAGAGCATGCCCATCCACGATCG-3′
NS2. 5′-GGATGGGCATGCTCTTCCCGAACTCAACTGCCTGGTGATACGACGATCG-3′
NS3. 5′-CGTATCACCAGGCAGTTGAGAACATGCGAGGGTCCAATACCGACGATCG-3′
NS4. 5′-CGGTATTGGACCCTCGCATGAATTTATCACCCGCCATAGTAGACGATCG-3′

where sequences with the same colour indicate complementary strands.
In the reentrant-gel system, four sequences (A1 − A4) are needed to form the tetrafunctional nanostar structures

and two single stranded sequences (B1 −B2) to form the so-called competitors:
A1. 5’-CTACTATGGCGGGTGATAAAAACGGGAAGAGCATGCCCATCCATGAGCGTACGCAAT-3’
A2. 5’-GGATGGGCATGCTCTTCCCGAACTCAACTGCCTGGTGATACGATGAGCGTACGCAAT-3’
A3. 5’-CGTATCACCAGGCAGTTGAGAACATGCGAGGGTCCAATACCGATGAGCGTACGCAAT-3’
A4. 5’-CGGTATTGGACCCTCGCATGAATTTATCACCCGCCATAGTAGATGAGCGTACGCAAT-3’
B1. 5’-ATTGCG-3’
B2. 5’-CGCTCA-3’

Here the nucleotides involved in the formation of the arms of the tetravalent nanostar are reported in blue, followed
by a 12-long sticky-end sequence. Competitor particles are designed to be complementary to different parts of the
nanostar sticky overhangs, being able to cap the nanostar sticky-ends at low T . The breaking of the inter nanostar
bonds results in the melting on cooling of the gel network. The characteristic re-entrant behaviour introduced by
the competition between the configurations stabilised by energy and those stabilised by entropy is discussed in more
detail in Ref. 3.

III. EVALUATION OF THE VISCOSITY FROM THE MSD USING PARTICLE TRACKING MICROSCOPY (PTM)

Calling (xa, ya) and (xb, yb) the discretized 2D trajectory of two tracked PS microspheres (whose relative distance
is always larger than 7 µm) we compute the MSDs along the x and y axis as:

MSDx(∆ti) =
∑
j (x(tj + ∆ti)− x(tj))

2 (1)

MSDy(∆ti) =
∑
j (y(tj + ∆ti)− y(tj))

2 (2)
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where x(t) ≡ (xa(t)− xb(t))/
√

2 and y(t) ≡ (ya(t)− yb(t))/
√

2). The sum runs over all the possible time origins for
which tj + ∆ti does not exceed the observation time. To properly cover the diffusive part of the trajectory we use
a frame rate between 10 and 50 frames per second, with a exposure time Te of 10 ms. This Te value allows us to
properly measure η but it prevents us from exploring the viscoelastic behaviour of the medium. Figures 3(a) and 3(b)
show the measured MSDx and MSDy at two different temperatures, 21°C and 39°C, respectively.

FIG. 3. MSD for (a) T = 21°C and (b) T = 39°C in independent directions x (black circles) and y (green circles). (c) x and y
trajectories for two temperatures T = 21.4°C (top) and T = 33.4°C (bottom). (d) MSD at T = 21.4°C (top) and T = 33.4°C
for a fixed ∆t = 0.2 s. The grey shaded area indicates the expected fluctuations.

Both independent directions provide the same MSD. The measured MSDs grow linearly with time, showing a finite
intercept at t = 0. Both MSDx and MSDy can be accurately fitted with a linear function MSD = 2Dt+ q, where D
and q are the fitting parameters.

Given the large distance between the two colloids, hydrodynamic interactions can be neglected. We thus assume
the microspheres’ Brownian displacements to be uncorrelated. In this case, eq. 1, for both x and y directions,
results in a MSD growing at long times as (Da + Db)t where Da and Db are the diffusion coefficients of the two
microspheres. Finally, considering an equal size of the microspheres’ (within a 5% uncertainty coming from colloids’
radii polydispersity), we identify Da = Db = D. Having access to two independent measurements of the MSD,
respectively along x and y directions, the precision of the fitting procedure can be estimated. Defining Dx and Dy

as the values corresponding to the fit of MSDx and MSDy, we estimate the relative error as the average value of
2|Dx −Dy|/(Dx +Dy) for all the investigated temperatures, resulting in a relative error of ∼ 10%. When computing
η via the Stokes-Einstein relation, we also take into account the 5% uncertainty on the microspheres’ radii, obtaining
a final 12% precision.

We note that with the selected experimental set-up, the value of q does not provide a measure of the squared size
of the typical cage confining the probe particle. Indeed, the value of q is affected by instrumental tracking artefacts
due to the finite camera exposure time, since the measured position of a colloid corresponds to the temporal average
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of the real trajectory during Te. Following Ref. 4, the experimentally observed mean square displacement MSDe at
time ∆t is related to the real MSD by an averaging procedure over the exposure time Te (that we assume larger than
the time the particle spends in the cage Tcage)

MSDe(∆t) =
1

T 2
e

∫ Te

0

dt′ [MSD(∆t+ t′) + MSD(∆t− t′)− 2MSD(t′)] (Te − t′) (3)

A detailed computation of MSDe is described in Ref. 4. Here, we will provide a back of the envelope evaluation of
MSDe for the case in which ∆t is larger than the caging time (∆t >> Te > Tcage). In Equation 3 we approximate
the (one-dimensional) MSD with the linear function

MSD(t) ≈ 2Dt+ ξ2. (4)

Correspondingly, we substitute MSD(∆t± t′) = 2D(∆t± t′) + ξ2 and MSD(t′) ≈ ξ2 where we assumed a relaxation
time in the cage Tcage shorter than Te. After integration we find MSDe(∆t) = 2D∆t leading to q ≈ 0. Therefore,
a finite exposure time Te > Tcage, leads to an error in the intercept of the order of the of the squared cage size.
Additionally, by taking into account the tracking error associated to the noise and pixelation of the camera (∼ 3 nm)
the experimental value q for the intercept becomes unusable. For this reason, the fitted intercept value from the MSD
curves displayed in Fig. 7 of the main text has been removed.

Errors on the MSD shown in Fig. 7 have been estimated by dividing the 10 minutes long trajectories into Nsub
subtrajectories of length Tsub = 100 s. For each subtrajectory we compute the MSD along a coordinate (x or y)
that we indicate with MSDi(∆t), where i = 1, 2, . . . , 6 accounts for the subset of trajectories. For each time ∆t we
compute the mean MSD = Nsub

−1∑
i MSDi(∆t). The standard error of the mean MSD at a selected lag time ∆t is

taken as the standard deviation of MSDi(∆t)/N1/2
sub .

In a similar way, in order to verify the stationarity of the diffusion process, again for each temperature, we plot the
MSDi(∆t) at a fixed ∆t (see Fig. 3). MSDi fluctuates around its mean value within the expected standard deviation,
confirming the stationarity of the diffusion processes.

IV. THEORETICAL BACKGROUND: DLS MICRORHEOLOGY

The g1(t) is related to the mean square displacement (MSD) of the colloidal tracer particle < ∆r2(τ) > by

g1(τ, q) = g1(0) exp

(
−q2 < ∆r2(τ) >

6

)
(5)

where the wave vector q is defined as

q =
4πn

λ
sin

(
θ

2

)
(6)

and n stands for the refractive index of the medium, λ is the laser wavelength and θ is the scattering angle.
DLS microrheology relies on the thermal energy kBT associated to the tracer colloids. According to the generalized

Stokes-Einstein (GSER) equation5, defined in a similar way to the Stokes-Einstein equation but as a function of
Laplace transformed quantities, it is possible to relate the diffusion coefficient (D) to the viscosity (η) of the material
as

D̃(s) =
kBT

6πasη̃(s)
(7)

where D̃(s) and η̃(s) are the diffusion coefficient and the viscosity as a function of the Laplace frequency s and a is the
tracer particle radius. From eq. 7, and assuming that inertial effects are negligible at the experimentally accessible
ω, the Laplace transformed of the complex modulus G̃(s) can be expressed as6

G̃(s) = sη̃(s) =
s

πa

[
kBT

s2 < ∆r̃2(s) >

]
(8)
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where < ∆r̃2(s) > represents the Laplace transform of the measured MSD. Then, the linear viscoelastic moduli as a
function of the frequency ω, G′(ω) and G′′(ω), can be obtained according to the frequency transformation s = iω and
to the relation G∗(ω) = G′(ω) + iG′′(ω)6–8. Here, G′(ω) and G′′(ω) represent the real and the imaginary part of the
complex modulus G∗(ω) which are related to the elasticity and the viscosity of the material, respectively. As a result

G∗(ω) =
kBT

πaiωF{< ∆r2(τ) >}
(9)

where F{< ∆r2(τ) >} is the one side Fourier transform of the MSD.
A convenient method to avoid spurious fluctuations in the Laplace and Fourier transforms has been developed in

Ref. [ 7, 4, 9 ] and often applied to soft-matter systems10. < ∆r2(τ) > is expanded locally around τ = 1/ω assuming

< ∆r2(τ) >=< ∆r2(1/ω) >

(
τ

1/ω

)α(ω)
(10)

where α(ω) is estimated as the local slope of the MSD logarithmic time derivative

α(ω) = |[∂ln < ∆r2(τ) > /∂lnτ ]|τ=1/ω. (11)

In purely viscous media α(ω) takes a value of 1, while if the particle is completely arrested in an elastic medium
the MSD slope would be 0. Therefore, in viscoelastic materials, α(ω) is expected to range within these two cases,
0 < α(ω) < 1. From eq. 10 and eq. 11, the GSER in the Fourier space can be expressed as

G′(ω) = |G∗(ω)| cos [πα(ω)/2] (12)

G′′(ω) = |G∗(ω)| sin [πα(ω)/2] (13)

where

|G∗(ω)| = kBT

πa < ∆r2(1/ω) > Γ [1 + α(ω)]
(14)

being Γ the gamma function. Two limits are worth discussing. If the MSD is time-independent (complete caging,
< ∆r2(τ) >= ξ20) then α(ω) = 0 and

|G∗(ω)| = kBT

πaξ20
, G′(ω) = |G∗(ω)| G′′(ω) = 0 (15)

If instead the MSD is scale invariant, < ∆r2(τ) >= ξ20

(
t
t0

)β
, as expected for simple diffusion (β = 1) and close to

percolation (β 6= 1) then α(ω) = β is frequency independent and

|G∗(ω)| = kBT

πa

1

ξ20

(
1
ωt0

)β
Γ[β + 1]

(16)

G′(ω) = |G∗(ω)| cos(βπ/2) G′′(ω) = |G∗(ω)| sin(βπ/2)

Hence G′ and G′′ are parallel power-law in ω. If β = 0.5 G′(ω) = G′′(ω).
Finally, η can be calculated equivalently as the limω→0G

′′(ω)/ω or from the long time limit of the MSD, exploiting
the Stokes-Einstein relation11

< ∆r2(τ) >= 6Dτ =
kBT

πηa
τ (17)
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V. STATISTICAL ERRORS FROM DLS MEASUREMENTS

In DLS microrheology both the mean-square displacement (MSD) and the viscoelastic moduli (G’ and G′′) are
directly calculated from the intensity autocorrelation functions. The latter are affected by statistical errors due to
the finite time of the measurements (tM ) that in consequence are propagated to the MSD and viscoelastic moduli.

Following the work of Degiorgio and Lastovka12 the statistical error of the intensity autocorrelation function g2(τ)
can be approximated by

∆g2(τ) ≈ 6

√
τ

tM
, (18)

where τ corresponds to the correlation time.
The field autocorrelation function g1(τ) is related to g2(τ) through the Siegert relation g1(τ) =

√
(g2(τ)− 1)/C ≈√

(g2(τ)− 1), where C ∼ 1 is a correction factor that accounts for the quality of the alignment and the geometry of
the optical experimental set-up.

The statistical error of g1(τ) can be then calculated as:

∆g1
g1

=
1

g1

∂g1
∂g2

∆g2 ≈
6

2g1
√
g2 − 1

√
τ

tM
≈ 3

g21

√
τ

tM

therefore,

∆g1 ≈
3

g1

√
τ

tM
(19)

From eq. 5 it is possible to derive the relative error associated to the MSD and from eq. 14 we will assume that
∆G∗/G∗ ≈ ∆MSD/MSD,

∆G∗

G∗
≈ ∆MSD

MSD
≈ 1

MSD

∂MSD

∂g1
∆g1 ≈

q2

6ln(g1)

6

q2g1

3

g1

√
τ

tM
≈ 3

g21ln(g1)

√
τ

tM
(20)
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