Supplementary Information

Automated cassette-based production of high specific activity [^{203/212}Pb]peptide-based theranostic radiopharmaceuticals for image-guided radionuclide therapy for cancer.

Mengshi Li^a, Xiuli Zhang^b, Thomas P. Quinn^b, Dongyoul Lee^a, Dijie Liu^c, Falk Kunkel^d, Brian E. Zimmerman^e, Daniel McAlister^f, Keith Olewein^g, Yusuf Menda^h; Saed Mirzadehⁱ; Roy Coppingⁱ; Frances L. Johnson^{j,k}, Michael K. Schultz^{*a,c,h,j,l,m}

^aInterdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA; ^bDepartment of Biochemistry, University of Missouri, Columbia, MO USA; ^cStead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA; ^dEckert & Ziegler Radiopharma GmbH, Berlin, Germany; ^eNational Institute of Standards and Technology, Gaithersburg, MD USA; ^fEichrom Technologies, LLC, Lisle, IL USA; ^gLantheus Medical Imaging, North Billerica MA USA; ^hDepartment of Radiology, The University of Iowa, Iowa City, IA, USA; ⁱOak Ridge National Laboratory, The US Department of Energy, Oak Ridge TN USA; ^jViewpoint Molecular Targeting, LLC (Coralville, IA); ^kDepartment of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA USA; ⁱMedical and Radiation Biology Program), Carver College of Medicine, University of Iowa, Iowa City, IA USA; ^mDepartment of Chemistry, University of Iowa, Iowa City, IA, USA;

Running Title: Efficient automated synthesis of ^{203/212}Pb bioconjugates

***Corresponding Author:** Michael K. Schultz PhD, Associate Professor; Departments of Radiology, Radiation Oncology, Chemistry, and Pediatrics, The University of Iowa, ML B180 FRRBP, 500 Newton Road, Iowa City, IA 52240, Phone +1 (319) 335-8017; Email <u>michael-schultz@uiowa.edu</u>.

First Author: Mengshi Li MS. Graduate Researcher (PhD). Interdisciplinary Program in Human Toxicology, ML B180 FRRB, 500 Newton Road, Iowa City, IA 52240, Phone +1 (319) 383-5080, Email <u>mengshi-li@uiowa.edu</u>.

Nuclear and Decay Data

Half lives and all nuclear data (decay energies and branching ratios) were obtained from the National Nuclear Data Center, Brookhaven National Laboratory, and are based on the Evaluated Nuclear Structure Data File available through <u>www.nndc.bnl.gov</u>.

Cyclotron Production of ²⁰³Pb

Reactions: ²⁰³Pb for the current studies was produced on Lantheus cyclotrons using natural TI (^{nat}TI) targets at an approximate beam energy of 26.5MeV. There are two naturally occurring stable isotopes of TI (TI-203; ²⁰³TI and TI-205 ²⁰⁵TI), with abundances of ~29.5% and ~70.5% respectively.

The primary reaction of interest in the manufacture of ²⁰³Pb is:

(1) 205 TI (p, 3n) 203 Pb (T_{1/2} = 51.88 hours)

While co-produced stable metals can be removed easily *via* the pre-concentration step described herein, co-production of stable Pb isotopes must be controlled as excess stable Pb is an interference to the radiolabeling and ultimate specific activity of the radiopharmaceuticals prepared. Along these lines, important reactions to consider in the production ²⁰³Pb for radiopharmaceuticals include:

- (2) 203 Tl (p, 3n) 201 Pb (T_{1/2} = 9.33 hours)
- (3) 205 TI (p, 2n) 204m Pb (T_{1/2} = 1.12 hours)

Each of these Pb isotopes decays by electron capture (**ec**) or internal transition (**it**) to its corresponding Pb) or TI isotope according the following schemes:

- (4) 203 Pb (T_{1/2} = 51.92 hours) $\rightarrow ^{203}$ Tl Stable
- (5) 201 Pb (T_{1/2} = 9.33 hours) \rightarrow 201 Tl (T_{1/2} = 72.91 hours)
- (6) 204m Pb (T_{1/2} = 1.12 hours) $\rightarrow ^{204}$ Pb Stable

²⁰¹Pb produced *via* (2) is the primary radio-contaminant; and a hold time to allow for decay (approximately 90 h) is used to allow decay of Pb-201 (5). ^{204m}Pb (3, 6) is the primary metallic contaminant produced on the cyclotron and leads to the production of a small quantity of stable ²⁰⁴Pb; and the relationship of ²⁰³Pb production to co-production of ^{204m}Pb is under evaluation for a future publication.

Targetry and Purification: Highly pure ^{nat}TI (>99.99%) is purchased as thalium nitrate (Alfa-Aesar). The nitrate is dissolved using pure water. Plating additives (proprietary) are added to the dissolved TI to create the plating bath. The solution is transferred into the plating cell. The Cu cyclotron target is serially numbered and flashed with Ni prior to TI plating. The target is plated uninterrupted until bath depletion. The target is removed from the bath, dried, visually inspected and weighed. Acceptable targets masses are 2.5-9 grams with no visual damage or voids. ^{nat}TI target irradiations are performed on an Cyclone 30 (IBA RadioPharma Solutions) or C-28 Cyclotron (Cyclotron Inc.) for 6-24 h. The irradiated targets are transferred to high energy processing cells and held for approximately 90 hours to allow decay of ²⁰¹Pb (5). The TI metal target material is then dissolved from the cyclotron target using hot 1M HNO₃. The solution is filtered through a glass wool column and pH adjusted using concentrated NH₄OH and/or 1 M HNO₃ to a final value between pH 5-6. The adjusted solution is passed though a Chelex 100 (Bio Rad) ion exchange column (14 mL resin bed, ammonium form) and washed with 150-175 mL of 1 M NH_4NO_3 to remove residual TI metal. Cu, Ni, Fe, Zn and ²⁰³Pb are retained on the column. The 203 Pb is removed from the column using ~75 mL of hot (~85°C) 0.5 M NH₄OH. The ²⁰³Pb hydroxide solution is pH adjusted between 5-6 using 1

M HNO₃ and/or concentrated NH₄OH to a final value between pH 5 and pH 6. The adjusted solution is loaded onto a second Chelex 100 column. The column is washed with 150-175 mL of 1 M NaNO₃. The ²⁰³Pb is removed from the column using ~75 mL of hot (~85°C) 0.5 M NaOH. The ²⁰³Pb hydroxide solution is pH adjusted approximately 5-6 using 1 M HNO₃ and/or concentrated NH₄OH to a final value between pH 5.6. The column is washed with 150-175 mL of 1 M NH₄NO₃ followed by a 60 mL of pure water. The ²⁰³Pb is then stripped from the column with 10-20 mL increments of 1 M HNO₃ until the ²⁰³Pb is removed from the column. The ²⁰³Pb strip solution is reduced to dryness in a beaker on a hotplate. Approximately 10 mL in 2-3 mL increments of 0.5 M HCl is used to remove the ²⁰³Pb activity from the beaker and the stock is transferred to a 10 mL vial for final assay by dose calibrator (Capintec) to determine concentration according to the manufacturer's instructions.

Analytical Testing/Quality Control: Two samples for analytical testing are prepared from the assayed stock solution. The first sample is a serially diluted sample containing approximately 370 kBq of ²⁰³Pb is analyzed on NIST traceable high purity germanium detector (HPGe) (Canberra) for radio-nuclidic identification and purity. The other sample is prepared for inductively coupled plasma analysis (ICP-OES) (Varian) for trace metal and specific activity determination.

Radiochemical purity and HPLC isolation of radiopeptides from unlabeled precursors.

Instant thin layer chromatography (iTLC) imaging was also applied to confirm the achievable radiolabeling efficiency and radiochemical purity. For ²¹²Pb analysis, 2µl of ²¹²Pb labeled peptide and free ²¹²Pb²⁺ positive control was spotted on the iTLC strip (10cm×2cm) that was dried at 90°C for at least 2h before using. The sample strips were developed in the mobile phase 0.2M NaOAc with 20mM EDTA. After overnight equilibration, the strips were analyzed with a Typhoon FLA7000 phosphor-imager. The radiochemical purity was calculated by integrating the radioactivity counts at the solvent front (Rf=1) and comparing to the integrated counts at the origin (Rf=0). Radio-HPLC was used to determine radiochemical purity of ^{203/212}Pb labeled peptides using HPLC: Agilent 1200 Series; Radioactivity detector: IN/US system β-RAM Model 4, using a linear 16%-26% acetonitrile gradient in 20mM HCl over 20 minutes on a Vydac 218TP C18 column (4.6×150mm, 5µm) with 1mL min⁻¹ flow rate. By using the same radio-HPLC gradient, both radiolabeled peptides (i.e., DOTATOC and DOTA-PEG4-VMT-MCR1) were separated from excess unlabeled peptide to enhance the specific activity of final product. This separation was verified by co-injecting [²⁰³Pb]peptide with 10µg bulk unlabeled peptide and monitoring both UV and radio-detector traces. Theoretical specific activity was calculated as follows: The amount of purified radio-peptide from HPLC collection was estimated from measured radioactivity and λ for Pb-203. Stable Pb isotope impurity was referred from QC technical data sheet from manufacture. Final

specific activity was calculated by A/([²⁰³Pb+^{stable}Pb]peptide) and is expressed as MBq/nmol).

Figure S1. Elution and breakthrough of **(A)** Pb (as ²⁰³Pb); and **(B)** metallic interferences. A smaller (50 mg) resin bed was used to find breakthrough volumes; and 100 mg resin bed was used to understand the elution behavior. These figures suggest 5 mL of HCl load/rinse solution can be passed over the column before breakthrough of Pb would occur; Similarly, 5 mL of NaOAc buffer is sufficient to elute 100% of the Pb. Metal interferences can be removed with a 2-column-volume rinse. Solutions were collected dropwise and counted by gamma counter.

Metal	Before Pb-resin (µg)	After Pb-resin (µg)
Cu	0.3	0.2
Fe	46.2	0.74
Pb	1.74	1.7
Se	0.42	0.2

Table S1. Mass spectroscopy analysis of ²²⁴Ra/²¹²Pb generator eluate before and after Pb-resin purification.