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1 Morphometrics

1.1 NeuroSTR morphometrics

We computed ‘standard’ morphometrics with the NeuroSTR neuroanatomy library (see Table 1). These include
branch length and bifurcation angles, arbor height and width, and topological features such as vertex ratio. We
mainly summarized part-of-tree analyses (i.e., those computed for a section of an arbor, such as a branch or
segment) by computing their average, using the median, standard deviation, or maximum statistics only when we
deemed it justified (e.g., for maximum arbor distance to soma). We also computed some morphometrics specific
to axonal terminal branches (e.g., mean terminal branch length).

Table 1: NeuroSTR morphometrics. For part-of-tree morphometrics, suffixes avg, med, sd, and max denote the
mean, median, standard deviation, and maximum, respectively. Detailed documentation for NeuroSTR features is
available online: https://computationalintelligencegroup.github.io/neurostr/doc/measures/prebuilt.html.

Morphometric Axon Terminal Dendrite
centrifugal_order.avg X X
centrifugal_order.max X X
centrifugal_order.sd X X
euclidean_dist.avg X X
euclidean_dist.max X X
euclidean_dist.sd X X
height X X
length.avg X X X
length.med X X X
length.sd X X
N_bifurcations X X
N_stems X
partition_asymmetry.avg X X
path_dist.avg X X
path_dist.max X X
path_dist.sd X X
remote_bifurcation_angle.avg X X X
remote_tilt_angle.avg X X X
remote_torque_angle.avg X X X
terminal_degree.avg X X
tortuosity.avg X X X
tortuosity.med X X
total_length X X
tree_length.avg X
vertex_ratio X
width X X
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1.2 Custom-implemented

We used 48 axonal and dendritic custom-implemented morphometrics (see Table 2).

Table 2: Custom morphometrics.

Type Morphometric Axon Dendrite
Arbor density density_area X X
Arbor density density_bifs X X
Arbor density density_dist X X
ChC arborization pattern short_vertical_terminals X
Dendritic displaced displaced X
Dendritic polarity insert.eccentricity X
Dendritic polarity insert.radial X
Laminar l1_prob X
Laminar translaminar X X
MC arborization pattern l1_bifs X
MC arborization pattern l1_gx X
MC arborization pattern l1_gxa X
MC arborization pattern l1_width X
XY distribution / Axon origin axon_above_below X
XY distribution / Axon origin axon_origin X
XY distribution / Grid grid_area X X
XY distribution / Grid grid_density X
XY distribution / Grid grid_mean X X
XY distribution / Moments ratio_x X X
XY distribution / Moments ratio_y X X
XY distribution / Moments x_mean X X
XY distribution / Moments x_mean_abs X X
XY distribution / Moments x_sd X X
XY distribution / Moments y_mean X X
XY distribution / Moments y_mean_abs X X
XY distribution / Moments y_sd X X
XY distribution / Moments y_std_mean X X
XY distribution / Moments y_std_mean_abs X X
XY distribution / PCA eccentricity X X
XY distribution / PCA radial X X

1.2.1 Distribution along X and Y axes

Each neuronal reconstruction consisted of points with Euclidean coordinates, with the center of gravity of the
soma located at coordinates (0, 0, 0). Thus, computing, e.g., the standard deviation along the X axis provided an
estimate of arborization extent in the horizontal direction.

1.2.1.1 PCA-derived

Following Yelnik et al. (1983) we used principal component analysis (PCA) to quantify possible preferential
orientation of an arbor along either the X or Y dimension. We set the Z coordinates to zero and quantified such
preference with the index of axialization measure of Yelnik et al. (1983), calling it eccentricity:

e = 1− s2

s1
,

where s1 and s2 are standard deviations of the first and second principal components, respectively (thus,
s1 ≥ s2 ≥ 0). An e towards 1 indicates a strong preference for one axis, whereas an e towards 0 indicates a circular
arbor. We used the angle θ of the main axis (i.e., the first principal component) to a positive X axis passing
through the center of mass to quantify the degree of radial or tangential orientation of the arbor, namely,

r = (|y| − |x|)× e,
where y and x are the loadings of the first component on the Y and X axes, respectively, and correspond to
| sin θ| and | cos θ|. Thus, r is positive if the tree is ascending or descending, and close to -1 if it mainly arborizes
horizontally. To reduce its magnitude for trees that did not have a preference for one of the two directions, we
factored in the degree of eccentricity, e (which is always positive).
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1.2.1.2 Moments along the axes (distribution around the soma)

We computed the mean, standard deviation, and the standardized mean (i.e., the ratio of the mean to the
standard deviation) along the X and Y axes. The sign of y_mean and y_std_mean, for example, may help
distinguish between arbors that ascend towards the pial surface or descend towards the white matter; unlike
y_mean, y_std_mean is dimensionless and expresses the arborization preference in terms of the Y extent of the
arbor. We also computed the means of |x| and |y| so as to not distinguish between arbors skewed towards the
right or the left (or above or below) of the soma, but instead between those arborizing close and far from soma,
both horizontally and vertically. The standard deviations indicate the extent along an axis and are very correlated
with the height and width morphometrics. Finally, we computed the ratio of the range along an axis and the
standard deviation along that axis (ratio_x and ratio_y).

1.2.1.3 Grid analysis

We split the X and Y plane into 20µm by 20µm squares, and computed the number of branches in each square. We
recorded the number of non-empty squares (i.e., those containing at least one branch; grid_area), as an estimate
of the arbor’s area, and the mean (grid_mean) branch count per non-empty square. Finally, we computed the
ratio of non-empty 100µm by 100µm squares and grid_area, to quantify arborization density (grid_density),
i.e., arbors that tend to occupy a large of portion of a given 100µm by 100µm square.

1.2.1.4 Axon origin

In order to distinguish axons that originate from below the soma from those that originate above it, we recorded
the Y coordinate of the first axonal bifurcation (axon_origin), as well as the difference between the minimal
path distance from the soma among points more than 100µm below the soma (Y < 100 µm) and those at least
100µm above the soma (Y > 100 µm; axon_above_below); a positive value would suggest that the arborization
begun on the upper side of the soma.

1.2.2 Laminar distribution

Since we did not know the exact location of the soma within a layer, we could only estimate axonal projection
across the layers. For these estimates we relied on layer thickness data from Figure 3 of Markram et al. (2015),
shown in Table 3, assuming that the thickness Tl of layer l follows a Gaussian distribution, N (mtl, stl), where
mtl and stl are the mean and standard deviation of Tl (given in Table 3).

The probability of an axon reaching L1 depends on axonal height above the soma, ha, and the distance D from
the soma to the center of L1, c1. We modelled D as a sum of two independent random variables, D = Dl + P ,
where Dl is the distance from cl, the center of the soma’s layer l, to c1, and P the position of the soma with
respect to cl (considering, in both cases, only the Y dimension). Assuming layers’ thicknesses are independent,
Dl ∼ N (mdl, sdl), where

mdl = mt1
2 +

l−1∑
k=2

mtk + mtl
2 ,

and

sdl =

√√√√st21
4 +

l−1∑
k=2

st2k +
st2l
4 ,

where the summation term is omitted for L2 (i.e., l = 2). Assuming that P follows N (0, mtl4 ), the sum Dl + P

follows N (mdl,
√
sd2
l + (mtl4 )2) and the probability l1_prob of an axon reaching L1 is that of drawing a value

equal or greater than ha from this distribution. Thus, for example, for an L4 cell with its axon extending 500µm
above its soma, the probability of reaching L1 was 0.0005, whereas for one with length 700µm was 0.6450, i.e.,
65% (md4 = 679.5; see Table 3).
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Table 3: Layer thickness data from Markram et al. (2015) and the estimated distance from the layer’s center to
the center of L1.

Layer Thickness Distance to L1 (mdl ± sdl)
1 165 ± 13
2/3 502 ± 27 333.5 ± 15
4 190 ± 7 679.5 ± 28
5 525 ± 33 1037.0 ± 33.1
6 700 ± 48 1649.5 ± 49.9

We estimated the probability pa of an arbor extending into the layer above as the probability of drawing ha from
a Gaussian distribution N (mtl2 , mtl4 ), where ha is the arbor’s height above the soma, and mtl, as above, the mean
thickness of the soma’s layer l. We computed the probability pb of reaching the layer below analogously, setting it
to 0 for layer L6. The probability of an arbor being translaminar (i.e., not confined to a single layer) was given
by max{pa, pb}.

1.2.3 MC arborization pattern

To estimate axonal width in L1 (l1 width; MC cells’ axons tend to spread out horizontally in this layer), we
computed its width in the upper 165µm (i.e., the thickness of L1) of its arborization and multiplied it with the
probability of having reached L1 (l1_prob). In an analogous way we estimated the total number of bifurcations in
L1 (as a proxy for total arbor extent in that layer). We also estimated the extent to which this arborization grew
horizontally (l1_gx) and away from the soma (l1_gxa), following the assumption that the axon rises vertically
approximately above the soma, and ramifies in both horizontal directions in layer L1. l1_gx is the sum of all
segments’ X-axis projections, whereas l1_gxa equals l1_gx minus the X-axis projections of all segments directed
towards the soma (i.e., their initial X coordinate is further from the soma than their terminal coordinate).

1.2.4 ChC arborization pattern

Since ChC cells’ axons have short vertical terminals (Markram et al., 2004; Somogyi, 1977), we counted the number
of terminal branches with an extent along the Y axis < 50µm (Somogyi (1977) reports ChC vertical terminals from
10µm to 50µm long) and at least twice as large as the extent along the X axis (short_vertical_terminals).

1.2.5 Arbor density

We quantified arbor density with a number of ratios involving arbor length as the denominator: the ratio of the
number of bifurcations and arbor length (density_bifs), proportional to the inverse of branch length; the ratio
of area and arbor length (density_area), and, finally, the ratio of average Euclidean distance and total length
(density_dist).

1.2.6 Dendritic bipolarity

We quantified whether the dendrites stemmed from opposite ends of the soma and whether those ends are located
along a radial (i.e., parallel to the Y) axis, as is the case with bipolar and bitufted dendrites. We did this
by applying the above-described PCA-derived analysis to the dendrite insertion points on the soma’s surface,
after having replicated every insertion point once for each whole µm of the corresponding dendrite’s length, so
as to give more weight to insertion points of longer dendrites, and having set the Z coordinates to 0. A high
insert.eccentricity thus indicated insertion points along an axis, rather than spread-out across the soma’s
surface, whereas a high insert.radial suggested that the axis was parallel to the Y axis. For cells with a single
dendrite insertion point we set insert.eccentricity and insert.radial to 0.
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1.2.7 Displaced dendritic arbor

To quantify whether the dendritic arbor was displaced (DeFelipe et al., 2013) from the axonal one, we averaged
the distance to the closest axonal reconstruction point for each point of a dendritic arbor (displaced).

1.3 Implementation

NeuroSTR is available at https://github.com/ComputationalIntelligenceGroup/neurostr. The code for computing
custom-implemented features is available at https://github.com/ComputationalIntelligenceGroup/neurostrplus.

2 Supervised classification

2.1 Overview

We considered eight separate classification scenarios, one for each interneuron class (including the basket
‘superclass’) versus all others joined together. Most of these classification tasks were highly imbalanced, with one
class much scarcer than the other. For each task, we carried out the same learning procedure —univariate feature
selection, under- and over-sampling, and classifier learning— and estimated its performance with cross-validation.

More precisely, we first standardized the predictors over the entire data set, i.e., prior to cross-validation. Cross-
validation then split the data sample into k training and test subsets. We performed feature selection and
data sampling on the training data alone, and separately for each training subset. For each training subset,
we performed, in the following order: 1) feature selection; 2) data under- and over-sampling; and 3) classifier
learning, where we considered a number of different learning algorithms. Steps 1 and 2 were optional, giving the
four combinations considered: feature selection followed by classifier learning (without data sampling); feature
selection followed by data sampling and then classifier learning; classifier induction without sampling or feature
selection; and finally, classifier induction without feature selection but with data sampling. We evaluated the
induced classifiers on the k test subsets.

Besides the performance of supervised classification, we looked at the results of feature selection. We ranked and
selected features according to the Kruskal-Wallis (KW) test and random forest balanced variable importance (RF
BVI), a variation of the well-known random forest variable importance metric, defined below.

2.2 Notation and terminology

We denote the vector of n predictor variables or features with X = (X1, . . . , Xn) and the class variable with C.
Lowercase x and c each denote a single assignment to the predictors X and the class C, respectively. In our setting,
x ∈ Rn while c ∈ {c0, c1}, the positive and negative classes. We have a data set D = {(x(i), c(i))}N1 consisting
of N instances or data points (i.e., interneurons) x(i) with their label (interneuron class) c(i). A classifier is a
function f : Rn → C. A learning algorithm produces f from a training set of observed values of X and C. We may
use the terms classifier, learning algorithm, and model interchangeably.

2.3 Supervised classifiers

We applied a number of state-of-the-art classifier learning algorithms (Murphy, 2012; Hastie et al., 2009). They
are all listed in Table 2 in the main text, along with the abbreviations that we will use to refer to them in the
following sections. Below we briefly describe them.

2.3.1 CART

The CART algorithm (Breiman et al., 1984) produces a decision tree by recursively partitioning the training
samples according to a single predictor at a time. For each node a of the tree, CART selects the splitting predictor
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Xj , and its threshold value t, by minimizing ‘class impurity’ G,

min
j,t
{G(Dajt) +G(Da \ Dajt)},

where Da is a subset of D at node a, while Dajt and Da \ Dajt are the left and right splits, respectively, of Da
according to Xj and threshold t,

Dajt = {(x(i), c(i)) : x(i)
j ≤ t,x

(i) ∈ Da}.

One measure of impurity is the Gini criterion,

G(Da) =
k∑
l=1

PDa(cl)(1− PDa(cl)),

where PDa is the empirical probability of class cl in Da. Deep trees can overfit the data, and options for regulating
complexity include |Da|, the minimum size of Da required in order to attempt a split, and |Dl|, the minimum size
of some leaf node Dl.

2.3.2 Random forest

A CART tree can overfit the training data. Besides pruning, another way to reduce variance is to use an ensemble
of trees, such as the random forest classifier (RF; Breiman, 2001). One draws T bootstrap (Efron, 1979) samples
(size N samples from D with replacement), and on each learns an unpruned CART tree. At each split, consider
only m ≤ n randomly selected features. To make a prediction, choose the majority class among the T trees. Due
to averaging over bootstrap samples, the RF is generally robust to overfitting.

2.3.3 AdaBoost

Like random forest, AdaBoost (Freund and Schapire, 1997) is an ensemble of classification trees. The first tree is
trained in regular fashion, with all instances having the same weight. For each following tree, the weight of the
instances misclassified by the previous tree is increased. This way even weak individual trees can be combined
into an accurate ensemble. Parameters of the method include the depth d of the individual trees, a regularization
parameter s ∈ [0, 1], and the number of trees T .

2.3.4 Naive Bayes

The naive Bayes (Minsky, 1961) is a simple approximation to the joint probability distribution P (C,X). It
assumes that predictors are conditionally independent given the class and classifies an instance according to

c∗ = arg max
c

P (c|x) ∝ P (c)
n∏
j=1

p(xj |c).

Here we assume that each p(Xj | c) is a Gaussian probability density with mean µj,c and variance σ2
j,c. Albeit a

simple model, the naive Bayes often performs well, generally due to its low variance.

2.3.5 k-nearest neighbors

kNN (Fix and Hodges, 1951) classifies an instance x according to its nearest neighbors in feature space, by
choosing the most common class label among them. The number of neighbors k is a parameter to the model,
with a lower value reducing bias but increasing variance (a lower k fits the training data better). The neighbors
are usually identified using a variant of the Minkowski distance, such as Euclidean distance. A common extension
is to predict c∗ by giving more importance to the points that are closer to the target point. Kernel functions are a
common means of expressing such weight functions, with weights decreasing smoothly with distance from the
target point x (see, e.g., Hechenbichler and Schliep, 2004).
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2.3.6 Regularized logistic regression

According to the (binomial) logistic regression model (e.g., Hastie et al., 2009, Chapter 4), the log odds of a class
c0 and class c1 are a linear function of x:

ln P (c0 | x)
P (c1 | x) = β0 + βTx,

where β0 and β are the model’s coefficients. While the β can be fit by maximum likelihood estimation, regularizing
the model by shrinking them can reduce variance. The lasso (Tibshirani, 1996) regularization finds the β by
maximizing:

max
β0,β

1
N

N∑
i=1

logP (c(i) | x(i))− λ
n∑
j=1
|βj |,

where P (c(i) | x(i)) is the probability, under the model, of c(i) given x(i) , while λ specifies the degree of penalty
on the magnitude of the coefficients. The lasso tends to shrink some coefficients to zero, effectively selecting, for
interpretation purposes, the non-zero coefficient variables (features with βj = 0 are effectively omitted from the
model). The β coefficients are straightforward to interpret: keeping all other predictors fixed, a unit increase in a
standardized predictor Xj increases the log-odds of the positive class by βj . Thus, the higher |βj |, the more useful
is Xj . For groups of correlated predictors, lasso tends to keep a single non-zero coefficient and shrink the rest to
zero. Implementations such as the glmnet package (Friedman et al., 2010) can efficiently optimize λ according to
the cross-validated estimate of a loss function such as classification error.

2.3.7 Single-layer neural network

A single-layer neural network (Bishop, 1995) models P (c | x) as a linear combination of derived features, also
called hidden neurons, each of which is, in turn, a linear combination of x. With the number of derived features
h = 0, the neural network corresponds to a linear model such as logistic regression. Increasing h makes the model
more flexible, with a sufficiently high h allowing it to represent any piecewise continuous function. The model is
trained with an algorithm that minimizes cross-entropy loss.

2.3.8 Support vector machine

The SVM (Boser et al., 1992; Cortes and Vapnik, 1995) finds the maximal margin hyperplane that separates the
two classes. It uses kernel functions to project the data onto a higher dimensional space, where they are more
likely to be linearly separable. It searches for a separating hyperplane, determined by a coefficient vector β and
an intercept β0, by finding

min
β0,β,ξ

1
2βTβ +R

N∑
i=1

ξ(i)

subject to ξ(i) ≥ 0, c(i)φ(βTx(i) + β0) ≥ 1− ξ(i), ∀i,

with c(i) ∈ {−1, 1}, ξ(i) = 0 if x(i) is on the correct side of the hyperplane, and R > 0 is the complexity parameter,
with larger values narrowing the margin and yielding less training set misclassifications, while φ maps x to a
higher dimensional space. φ is given by a kernel function K such that K(x,x′) = φ(x)Tφ(x′). A common example
is the radial basis function, K(x,x′) = exp

(
−γ||x− x′||2

)
, whose parameter γ > 0 indicates spread from the

target instance x.
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2.3.9 Linear discriminant analysis

Like multinomial regression, the LDA (Fisher, 1936; Rao, 1948) is a linear classifier, with piecewise hyperplanar
decision boundaries. It assumes p(x | cl) = N (µl,Σ), that is, multivariate normal class-conditional distributions,
with an µl mean vector for each class cl and a shared covariance matrix Σ, equal for both classes.

2.4 Undersampling and oversampling

Most classifiers implicitly optimize classification accuracy, and with high class imbalance, this can lead to a poor
prediction of the minority class. A standard technique for reducing this bias towards the majority class is to
undersample or oversample the training data (He and Garcia, 2009) in order to achieve a more balanced training
set.

Oversampling augments the training set with instances of the minority class. The SMOTE (Chawla et al., 2002)
method creates a synthetic instance of the minority class by randomly choosing a point on the line between some
minority class instance x and one of its k nearest neighbors from the minority class. Undersampling, on the
other hand, involves removing a number of instances from the majority class. We combined both under- and
over-sampling (as in, e.g., Estabrooks et al., 2004), using random undersampling followed by SMOTE oversampling.
Finally, one has to determine the number of instances to add to (remove from) the training set; albeit a balanced
training set is usually desirable, many synthetic minority class instances can lead to overfitting, while losing many
majority class instances can mean losing valuable information (He and Garcia, 2009).

2.5 Feature selection

In small-sample class-imbalance settings, univariate feature selection (Guyon et al., 2006) can improve predictive
performance more than over- and under-sampling, at least for the SVM (Wasikowski and Chen, 2010). We used
the Kruskal-Wallis hypothesis test to identify univariately useful features. While not a commonly used feature
selection technique (some examples are Golugula et al. (2011); Christin et al. (2013)), we expect it to be relatively
insensitive to class imbalance. In addition, as a statistical hypothesis test, it provides a straightforward cut-point
to discern relevant predictors from irrelevant ones: the p-value and a significance level, α, most commonly set to
0.05. We also used a multivariate feature ranking based on RF-derived variable importance (see below).

2.5.1 Kruskal-Wallis test

The null hypothesis of the Kruskal-Wallis test (Kruskal and Wallis, 1952) is that the medians of k samples are
the same. In our case, these samples correspond to the k different classes. It is a non-parametric procedure
and as such it does not assume that the data follow a particular distribution. Its special case for k = 2 is the
Mann-Whitney-Wilcoxon test (Wilcoxon, 1945; Mann and Whitney, 1947). The test statistic Hj , for some feature
Xj , is

Hj = (N − 1)
∑k
l=1 Nl(r̄l· − r̄)2∑k

l=1
∑Nl

i=1(rli − r̄)2
,

where rli is the rank of i-th sample in class cl, r̄l· is the average rank of samples in class cl, r̄ is the average rank,
and Nl is the number of instances in class cl. Hj asymptotically follows the χ2 distribution and thus we compute
the test’s p-value as P (χ2

k−1 ≥ Hj). With small Nl, the χ2 approximation is less accurate and results in reduced
test power (Sheskin, 2003). We adjusted the p-values (obtained with the χ2 test) for multiple testing by using the
false discovery rate procedure (Benjamini and Hochberg, 1995).

2.5.2 RF variable importance

Variable importance (VI) is given by the out-of-bag (OOB) accuracy of the trees in the forest. An OOB sample for
a tree t consists of instances which were not in the bootstrap subsample from which t was learned. Let at be the
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percentage of correct classifications in the OOB sample for tree t, and aptj the percentage of correct classifications
after randomly permuting the values of Xj in the OOB sample. Then,

V I(Xj) = 1
T

T∑
t=1

(atj − aptj),

where atj = aptj = 0 if Xj is not in tree t; otherwise atj = at; T , as mentioned in Section 2.3.2, is the number
of trees in the ensemble. Alternatively, one can compute per-class VIs by measuring changes in class-specific
accuracies.

VI can loosely be interpreted as the feature’s effect on accuracy and it provides a ranking of the features (obtained
in a multivariate way). Useful features will have positive values whereas useless ones will have VIs around or
below zero. A drawback is that the VI ranking tends to favor correlated predictors, especially for low values of m
(i.e., the number of features considered at each split; see Strobl et al., 2008). Because the ranking is stochastic, it
is important to use enough trees for it to stabilize.

The above-described VI is less effective in imbalanced settings, as misclassifications due to imbalance can overcome
those due to class label permutation. While Janitza et al. (2013) proposed a VI derived from the change in area
under the ROC curve (Swets, 1988; Fawcett, 2006), rather than the change in accuracy, so as to balance both
types of errors (i.e., false positives and false negatives), we did not use it as it is only implemented for the RF
variant based on conditional inference trees (Hothorn et al., 2006). Instead, we used the arithmetic mean of the
per-class VI values provided by the randomForest R package, and refer to this as the balanced VI (BVI)1.

Finally, given a VI-based ranking, it is not straightforward to determine the cut-point that separates useful features
from useless ones. While Breiman (2001) suggests a statistical test for the purpose, it has some undesirable
statistical properties (i.e., its power increases with the number of trees and decreases with sample size) and is thus
not recommended (Strobl and Zeileis, 2008)2. Alternatives include permutation tests (Wang et al., 2010; Altmann
et al., 2010) and methods based on OOB accuracy of nested RF models, corresponding to different cut-points
along the ranking (Svetnik et al., 2003; Díaz-Uriarte and De Andres, 2006; Genuer et al., 2010). We used a simple
heuristic and selected only features with a BVI above 0.01.

2.6 Detecting mislabelled examples

Wrong class labels may arise due to issues such as lack of relevant information, subjectivity, or simple human
mistakes (Frénay and Verleysen, 2014). We followed the approach by Brodley and Friedl (1999), considering cells
misclassified by different models as possibly mislabelled. It is beneficial for the models to belong to different
paradigms, such as nearest neighbors and decision trees, so that their biases differ. The misclassifications
correspond to cross-validation rather than resubstitution.

2.7 Unsupervised preprocessing

We standardized all predictors to zero mean and unit variance. This gives equal weight to all predictors for the
kNN classifier, and allows us to interpret the magnitude of the coefficients of the linear models, while it does not
affect the remaining models.

2.8 Assessing performance

On imbalanced data sets, a model can be accurate by simply predicting the majority class. We thus complemented
the accuracy metric with the F-measure (Baeza-Yates and Ribeiro-Neto, 1999) score:

F-measure = 2 · TP
2 · TP + FN + FP ,

1The VIs of the majority class are expected to be lower (Janitza et al., 2013) and using a harmonic or geometric mean, instead of
the arithmetic, would further decrease the estimate, obfuscating possible effects in the minority class.

2The test is based on a scaled version of VI, divided by its standard error. The scaled VI also increases with the number of trees.
We used the un-scaled version.
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where TP, FP, and FN are entries of the confusion matrix, namely the true positives, the false positives, and
false negatives, respectively. The F-measure thus balances different aspects of positive class prediction, namely
the true positives, false positive, and the false negatives. In our case, the positive class was always the class of
interest, e.g., when classifying ChC versus all other types, the positive type was ChC. Except for BA, the positive
class was always considered the minority class (i.e., there were more BA than non BA cells).

We estimated the accuracy and F-measure with cross-validation (CV). Because over- and under-sampling introduced
stochasticity into the learning process, we repeated CV a number of times and averaged to get the final estimates.
Note that, unlike for classification accuracy, one cannot get an unbiased estimate of F-measure by averaging
over the k test samples (Forman and Scholz, 2010); thus, we computed the F-measure of a CV run from the full
confusion matrix, obtained by aggregating the true labels and predictions from the k test folds. That is, the
F-measure estimate for a run of cross-validation was not the average of k per-fold F-measure scores, but rather
the single value computed from the aggregated confusion matrix.

2.9 Parameters

We set the classifiers’ parameters (see Table 2 in main text) on the basis of available recommendations (Boulesteix
et al., 2012; Hsu et al., 2003) or we used the defaults in the software implementation. For kNN we used k = 5,
and, similarly, for CART we set |Dl| = 5; while this might be too coarse-grained for ChC, as there are at most six
ChC cells per training set, we sought to avoid overly complex models (with a lower k). Note that the m =

√
n

parameter for RF was recomputed on every training set; thus, it was adjusted each time feature selection reduced
n. For RF, we set T = 2000 and chose the standard value of m =

√
n.

For KW feature selection, we set the significance level α = 0.05, whereas for RF BVI ranking we selected
features with BVI ≥ 0.01 and kept m =

√
n, although it can yield a BVI ranking that prefers correlated features

(Nicodemus et al., 2010), while we increased the number of trees, T , to 20000, as that produced stable BVI values
(a higher T does not increase model variance nor presents any other drawback besides longer computation time).

For undersampling, we randomly removed up to a half of the majority class instances, keeping at least three
majority class instances per each one of the minority class (thus, for the imbalance ratios minority:majority
above (i.e., less pronounced than) 1:3 we did not undersample). More precisely, after undersampling there were
N

(u)
M = max (min (3Nm, NM ), 0.5NM ) majority class instances, where NM is the number of samples from the

majority class and Nm that of the samples from the minority class. We then run SMOTE on the undersampled
data set, adding up to three synthetic instances per each minority class example; thus, after oversampling there
were N (o)

m = min (N (u)
M , 3Nm) minority class examples. Therefore, for large imbalances (e.g., a ratio 1:10) most

balancing was due to undersampling, potentially reducing imbalance down to a ratio of to 1:3, with SMOTE
oversampling then further reducing the ratio towards 1:1.

We evaluated the learning procedures with stratified 10-fold cross-validation, except for ChC versus rest, where
we used seven folds (in order to have at least one ChC instance in each test set). When sampling the training
data, we repeated CV 10 times and averaged the results. When computing F-measure, we always considered
the minority class as the positive one, except for BA versus rest, when we considered BA, the majority class,
as the positive one. We looked for mislabelled cells by collected misclassifications over 30 runs of ten-fold cross
validation. Tables 2 and 3 in the main text list all the parameters.

2.10 Implementation

We implemented all the data analysis and classification in the R programming language (R Core Team, 2015).
We used the mlr (Bischl et al., 2015) for classifier learning and evaluation, feature selection, oversampling
and undersampling, extending it to compute a global F-measure for an entire cross-validation run and adding
the FDR p-value correction to the KW feature selection method. All code and data are available at https:
//github.com/ComputationalIntelligenceGroup/bbp-interneurons-classify.
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3 Morphology quality

3.1 Reconstruction differences

We found that the cells differed in mean axonal segment length and that this difference could be related to the
internal ids (e.g., C010600B1 and MTC070301B_IDC) of the cells. Out of the seven different initial letters of
these ids, cells whose id begun with a letter C (88 of them) had shorter, as well as thicker, axonal segments than
the remaining 131 cells (see Figure 5 in main text). As branch and total arbor length did not differ between the
two groups, this meant that the C-prefixed cells had fewer long and thick segments per branch, whereas the non-C
cells contained more short and thin ones, suggesting that they were simply reconstructed at a finer granularity.
We found that the C-prefixed cells were deposited at Neuromorpho.org repository (Ascoli et al., 2007) earlier than
the non-C ones, meaning they may have been reconstructed at an earlier stage.

More morphometrics, such as axonal remote tilt angle (remote_tilt_angle.avg), arbor depth (depth), and
tortuosity (tortuosity.avg), also differed between the two groups, albeit with much less statistical significance
(see Table 4) than thickness and segment length. We suspect that only some of these, such as possibly tortuosity
(the non-C cells have lower tortuosity, i.e., they are less straight, which seems logical given that they are broken
into more segments) had been affected by differences in branch reconstruction granularity; others might have
differed due to others causes, such as different proportion of interneuron types in the two groups, or the different
laminar distribution (see Figure 1).
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Figure 1: The branches of non-C cells’ (those whose ids do not begin with a C) were less straight (i.e., their
tortuosity values were lower), even after accounting for interneuron type and layer.
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Table 4: Morphometrics that differed between the cells whose id begins with a C and the rest, according to a
Kruskal-Wallis test at α = 0.05, with the p-value corrected for multiple testing with the false discovery rate
procedure (Benjamini and Hochberg, 1995).

Morphometric Axon Dendrite
compartment_length.avg 1.3 × 10−27

diameter.avg 5.3 × 10−26 9.5 × 10−3

N_nodes 6.2 × 10−22

remote_tilt_angle.avg 4.4 × 10−6 2.6 × 10−2

depth 2.5 × 10−5

tortuosity.avg 8.6 × 10−5

tortuosity.med 3.8 × 10−4 8.9 × 10−3

l1_gx 4.9 × 10−4

x_sd 1.4 × 10−3

density_area 3.2 × 10−3 1.9 × 10−4

l1_bifs 6.7 × 10−3

local_tilt_angle.avg 8.9 × 10−3

height 1.3 × 10−2 8.0 × 10−4

width 2.0 × 10−2 2.0 × 10−2

l1_gxa 2.1 × 10−2

euclidean_dist.max 2.3 × 10−2 1.2 × 10−4

y_mean 2.9 × 10−2

grid_area 3.8 × 10−2 2.6 × 10−2

density_dist 1.5 × 10−2

euclidean_dist.avg 3.2 × 10−3

euclidean_dist.sd 2.5 × 10−5

path_dist.avg 3.8 × 10−2

path_dist.max 1.6 × 10−3

path_dist.sd 4.1 × 10−4

ratio_x 2.6 × 10−2

remote_torque_angle.avg 1.2 × 10−2

terminal_degree.avg 1.6 × 10−3

x_mean_abs 2.3 × 10−2

y_sd 8.3 × 10−3

3.2 Two cloned cells

We visually identified two cells as possible modified duplicates of another pair of cells (see Figure 2). They differed
in most axonal and dendritic morphometrics, including the number of branches or axonal length, but were similar
in axonal height and total dendritic length and height, suggesting how cells which are similar to the eye are not so
according to most of the morphometrics that we are using. We then ran hierarchical clustering on all cells using
these variables (i.e., axonal height, dendritic length and height) but found no additional pairs of duplicated cells.

4 Feature selection results

Table 5 shows the sizes of the feature subsets selected by the different methods and their performance.
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Figure 2: Cells OG061201A1-8_IDA and OG061201A3_CH1_IN_H_ZK_60X_1 (above), and OG061201A1-
8_IDE and OG061201A6_CH5_BC_H_ZK_60X_1 (below) which seemed very similar by visual inspection.
Axons are drawn in blue and dendrites and somata in red. There are 100µm between consecutive grid lines.
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Table 5: Number of selected morphometrics with the different methods. The color indicates the best F-measure
obtained with the corresponding feature selection method. Best F-measure ≥ 0.75 are shown in green; best
F-measure ≥ 0.60 in orange; and the rest in red. CART and RMLR refer to the embedded feature selection
performed by those models. Filter feature selection followed by embedded selection is denoted with a +, e.g.,
KW followed by CART is denoted with KW + CART. CART and RMLR are only considered in absence of prior
sampling. There are no entries for RF BVI + RMLR for the BTC as RMLR could not be fit due to too few
features being selected by the RF BVI.

Class KW KW + CART KW + RMLR RF BVI RF BVI + CART RF BVI + RMLR CART RMLR
ChC 15 2 5 3 1 1 2 11
BTC 7 5 3 2 2 4 22
DBC 61 3 15 6 2 4 3 17
SBC 39 5 9 7 5 4 5 24
NBC 57 5 19 9 3 5 4 27
MC 62 6 22 8 5 6 5 28
LBC 32 9 17 4 4 4 8 38
BA 68 11 27 6 5 5 10 31

Table 6 shows the logistic regression model for MC.

Table 6: The logistic regression model for MC. The β were estimated from the standardized data set, after feature
selection with KW.

Morphometric β
y_std_mean 1.44
ratio_y -0.88
remote_bifurcation_angle.avg 0.79
path_dist.max 0.63
d.displaced -0.63
l1_width 0.59
d.total_length 0.47
translaminar 0.43
radial 0.31
d.N_stems -0.30
d.terminal_degree.avg -0.24
density_bifs -0.23
l1_bifs 0.22
d.path_dist.avg -0.22
path_dist.avg 0.14
t.tortuosity.avg -0.14
d.y_std_mean_abs 0.13
x_mean -0.11
d.insert.radial -0.09
t.length.med -0.09
l1_prob 0.01
grid_density 0.00

Table 7 shows the 88 features selected by KW for at least one of the types, showing the corresponding p-values.
Each column corresponds to a one-versus-all classification setting. Overall, the single most relevant feature was
path_dist.avg for BA, with a p-value of 3.6× 10−17, and the strongest dendritic predictor was the number of
dendrites (d.N_stems) also for BA, with p-value 5.3× 10−14. Table 8 shows the features selected by RF BVI for
the different classification settings, along with their RF BVI values. Overall, RF BVI selected only one dendritic
morphometric, for the BTC type, and picked only axonal features for all remaining types.

Table 7: Morphometrics that differed most between the given class and the remaining classes joined together,
according to the Kruskal-Wallis test. Empty entries mean that the p-value was above 0.05. Morphometrics that
were significant for most classes are shown in the upper rows.

Morphometric ChC BTC DBC SBC NBC MC LBC BA
1 height 3.8 × 10−3 8.3 × 10−3 2.4 × 10−7 5.5 × 10−7 4.2 × 10−6 8.1 × 10−3 2.7 × 10−7

2 d.displaced 5.0 × 10−2 8.5 × 10−4 1.3 × 10−4 2.2 × 10−4 4.7 × 10−2 3.0 × 10−10

3 d.insert.eccentricity 4.3 × 10−2 1.5 × 10−3 8.6 × 10−4 2.6 × 10−3 4.5 × 10−2 7.9 × 10−10
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4 euclidean_dist.max 3.6 × 10−3 2.7 × 10−8 1.1 × 10−10 3.4 × 10−10 2.0 × 10−2 4.1 × 10−12

5 grid_density 4.8 × 10−2 3.1 × 10−4 2.2 × 10−2 1.7 × 10−4 1.3 × 10−4 1.6 × 10−8

6 grid_mean 2.1 × 10−3 1.2 × 10−2 8.6 × 10−9 2.0 × 10−2 2.5 × 10−6 3.2 × 10−7

7 terminal_degree.avg 4.5 × 10−2 7.3 × 10−3 3.5 × 10−8 2.0 × 10−7 4.5 × 10−2 2.7 × 10−9

8 t.length.avg 3.8 × 10−3 7.0 × 10−3 7.3 × 10−3 1.5 × 10−7 2.4 × 10−3 1.1 × 10−2

9 t.length.med 5.8 × 10−4 4.3 × 10−3 5.6 × 10−7 1.8 × 10−3 2.9 × 10−4 2.1 × 10−8

10 translaminar 5.5 × 10−3 9.4 × 10−4 1.2 × 10−5 3.1 × 10−9 7.0 × 10−8 8.2 × 10−10

11 y_sd 3.8 × 10−3 1.1 × 10−3 9.5 × 10−8 6.3 × 10−9 9.6 × 10−11 2.5 × 10−12

12 d.centrifugal_order.avg 2.7 × 10−3 1.7 × 10−5 5.6 × 10−7 2.2 × 10−2 3.1 × 10−13

13 d.centrifugal_order.sd 1.0 × 10−2 2.8 × 10−2 7.0 × 10−4 6.9 × 10−4 7.9 × 10−8

14 d.density_bifs 3.7 × 10−3 1.4 × 10−5 2.2 × 10−4 2.8 × 10−3 3.3 × 10−11

15 density_area 3.8 × 10−3 3.2 × 10−6 3.4 × 10−3 1.4 × 10−5 1.5 × 10−6

16 density_bifs 2.1 × 10−3 2.4 × 10−3 3.5 × 10−10 1.4 × 10−2 4.5 × 10−2

17 density_dist 8.2 × 10−7 3.1 × 10−6 5.5 × 10−7 5.0 × 10−2 3.6 × 10−13

18 d.insert.radial 2.8 × 10−3 7.7 × 10−4 9.0 × 10−7 2.8 × 10−2 4.0 × 10−9

19 d.N_bifurcations 3.8 × 10−2 1.9 × 10−4 1.3 × 10−7 2.8 × 10−2 1.8 × 10−11

20 d.N_stems 6.9 × 10−4 2.3 × 10−5 5.0 × 10−6 3.5 × 10−4 5.3 × 10−14

21 d.path_dist.avg 5.2 × 10−3 2.6 × 10−2 9.1 × 10−3 1.3 × 10−2 3.0 × 10−5

22 d.terminal_degree.avg 1.4 × 10−3 3.0 × 10−4 1.1 × 10−3 2.8 × 10−2 3.4 × 10−9

23 d.tree_length.avg 9.4 × 10−3 8.1 × 10−4 3.3 × 10−7 1.3 × 10−2 1.2 × 10−11

24 euclidean_dist.avg 1.5 × 10−3 6.1 × 10−9 1.2 × 10−10 1.2 × 10−13 6.7 × 10−17

25 euclidean_dist.sd 7.8 × 10−4 6.1 × 10−9 4.0 × 10−11 7.1 × 10−13 3.5 × 10−15

26 length.avg 2.1 × 10−3 2.4 × 10−3 3.5 × 10−10 1.4 × 10−2 4.5 × 10−2

27 length.med 2.4 × 10−3 1.6 × 10−2 1.5 × 10−7 1.1 × 10−2 2.8 × 10−3

28 length.sd 2.1 × 10−3 4.9 × 10−4 3.5 × 10−10 4.9 × 10−6 2.4 × 10−6

29 path_dist.avg 7.5 × 10−3 3.2 × 10−6 3.8 × 10−10 6.8 × 10−14 3.6 × 10−17

30 path_dist.max 4.1 × 10−2 5.5 × 10−7 1.1 × 10−10 4.0 × 10−13 8.2 × 10−15

31 path_dist.sd 1.3 × 10−3 2.3 × 10−7 1.2 × 10−10 1.4 × 10−13 6.7 × 10−17

32 radial 4.6 × 10−8 4.3 × 10−2 3.1 × 10−6 1.8 × 10−4 9.8 × 10−9

33 remote_bifurcation_angle.avg 3.1 × 10−4 3.4 × 10−4 1.2 × 10−5 3.7 × 10−8 7.8 × 10−15

34 t.remote_bifurcation_angle.avg 1.3 × 10−4 1.3 × 10−4 5.2 × 10−6 6.9 × 10−8 3.4 × 10−15

35 y_mean_abs 1.2 × 10−3 8.3 × 10−4 5.3 × 10−8 1.0 × 10−10 2.1 × 10−15

36 y_std_mean_abs 1.7 × 10−2 5.9 × 10−4 1.7 × 10−4 4.7 × 10−2 1.6 × 10−8

37 centrifugal_order.max 2.9 × 10−2 1.3 × 10−5 2.5 × 10−3 5.5 × 10−4

38 centrifugal_order.sd 7.7 × 10−4 5.5 × 10−7 3.9 × 10−5 1.3 × 10−7

39 d.centrifugal_order.max 3.1 × 10−3 1.7 × 10−4 2.9 × 10−5 5.4 × 10−10

40 d.euclidean_dist.avg 5.1 × 10−3 1.2 × 10−2 1.6 × 10−2 6.0 × 10−4

41 d.path_dist.max 9.4 × 10−3 1.8 × 10−2 4.0 × 10−2 3.7 × 10−3

42 d.y_sd 3.1 × 10−4 1.2 × 10−2 8.5 × 10−3 7.2 × 10−3

43 eccentricity 4.6 × 10−8 7.2 × 10−8 1.4 × 10−3 5.3 × 10−8

44 grid_area 1.3 × 10−4 1.1 × 10−6 1.4 × 10−3 3.9 × 10−5

45 N_bifurcations 1.1 × 10−2 5.8 × 10−4 4.4 × 10−2 1.2 × 10−2

46 partition_asymmetry.avg 2.0 × 10−4 8.2 × 10−7 3.9 × 10−5 1.9 × 10−9

47 ratio_y 3.3 × 10−3 4.4 × 10−6 1.1 × 10−10 5.0 × 10−12

48 vertex_ratio 9.8 × 10−4 5.5 × 10−6 5.7 × 10−4 1.9 × 10−7

49 width 1.9 × 10−6 2.1 × 10−4 2.0 × 10−3 3.8 × 10−3

50 x_sd 1.9 × 10−6 3.4 × 10−4 3.1 × 10−3 4.6 × 10−3

51 y_mean 5.8 × 10−4 9.1 × 10−3 9.7 × 10−14 1.4 × 10−3

52 centrifugal_order.avg 3.5 × 10−5 2.7 × 10−4 1.9 × 10−4

53 d.eccentricity 4.9 × 10−5 2.5 × 10−3 1.8 × 10−2

54 d.euclidean_dist.max 5.6 × 10−3 1.1 × 10−2 1.6 × 10−2

55 d.grid_area 4.0 × 10−3 3.3 × 10−3 3.1 × 10−2

56 d.grid_mean 3.8 × 10−2 1.3 × 10−2 5.8 × 10−3

57 d.height 1.1 × 10−3 1.2 × 10−2 3.1 × 10−2

58 d.length.avg 4.4 × 10−2 7.3 × 10−3 7.4 × 10−4

59 d.path_dist.sd 3.4 × 10−2 2.3 × 10−2 2.8 × 10−2

60 d.radial 8.2 × 10−7 6.9 × 10−4 1.2 × 10−3

61 d.ratio_y 1.5 × 10−3 2.7 × 10−2 3.6 × 10−5

62 l1_bifs 4.2 × 10−3 1.2 × 10−7 1.0 × 10−3

63 l1_gx 2.2 × 10−2 1.3 × 10−6 2.4 × 10−3

64 l1_gxa 8.7 × 10−4 3.2 × 10−9 4.5 × 10−5

65 l1_prob 7.0 × 10−4 2.2 × 10−8 4.9 × 10−5

66 l1_width 4.1 × 10−4 1.0 × 10−10 5.7 × 10−6

67 remote_tilt_angle.avg 1.4 × 10−3 3.4 × 10−6 3.9 × 10−2

68 short_vertical_terminals 2.7 × 10−3 5.2 × 10−3 1.3 × 10−3

69 tortuosity.avg 4.1 × 10−2 2.7 × 10−2 5.0 × 10−4

70 t.remote_tilt_angle.avg 1.2 × 10−2 4.6 × 10−6 1.6 × 10−3

71 t.tortuosity.avg 2.2 × 10−2 4.5 × 10−2 6.7 × 10−4

72 y_std_mean 5.6 × 10−4 1.6 × 10−10 2.7 × 10−2

73 axon_above_below 4.0 × 10−2 1.7 × 10−2

74 axon_origin 1.6 × 10−2 5.0 × 10−6

75 d.euclidean_dist.sd 2.4 × 10−2 1.8 × 10−2

76 d.length.med 4.4 × 10−2 1.3 × 10−3

77 d.length.sd 3.6 × 10−2 4.7 × 10−2

78 d.total_length 3.3 × 10−2 1.4 × 10−3

79 d.y_mean_abs 4.1 × 10−2 1.8 × 10−2

80 tortuosity.med 5.0 × 10−2 4.0 × 10−3

81 total_length 6.5 × 10−6 4.0 × 10−3

82 x_mean 5.6 × 10−4 2.1 × 10−2

83 d.density_dist 1.9 × 10−3

84 d.partition_asymmetry.avg 2.4 × 10−3

85 d.translaminar 4.5 × 10−3

86 d.width 2.9 × 10−3

87 d.x_sd 8.5 × 10−4

88 d.y_std_mean_abs 1.6 × 10−2
Dendritic 1 2 26 12 21 17 11 26
Total 15 7 61 39 57 62 32 68

16



Table 8: Morphometrics that differed between the given class and the remaining classes joined together, according
to the RF BVI ranking. Empty entries mean that the RF BVI for that class was above 0.01. Morphometrics that
were relevant to most classes are shown in the upper rows.

Morphometric ChC BTC DBC SBC NBC MC LBC BA
1 density_bifs 0.02 0.03 0.01
2 euclidean_dist.avg 0.02 0.02 0.01
3 euclidean_dist.sd 0.02 0.04 0.02
4 length.avg 0.02 0.03 0.01
5 path_dist.sd 0.02 0.01 0.01
6 euclidean_dist.max 0.03 0.01
7 length.sd 0.01 0.02
8 path_dist.avg 0.02 0.02
9 path_dist.max 0.02 0.01
10 remote_bifurcation_angle.avg 0.02 0.02
11 t.length.avg 0.01 0.01
12 t.remote_bifurcation_angle.avg 0.02 0.02
13 y_mean 0.03 0.03
14 y_std_mean 0.01 0.01
15 axon_origin 0.01
16 d.insert.radial 0.01
17 eccentricity 0.04
18 l1_gxa 0.01
19 l1_width 0.01
20 length.med 0.01
21 radial 0.02
22 ratio_y 0.01
23 translaminar 0.01
24 width 0.02
25 x_sd 0.02
26 y_mean_abs 0.01
27 y_sd 0.02

Dendritic 0 1 0 0 0 0 0 0
Total 3 3 6 7 9 8 4 6

5 Classification results

Figures 3 to 10 show all classifiers’ F-measure for all eight classification tasks. For ChC and BTC the results
depended more strongly on sampling, with some samplings providing better and other worse results (e.g., for
ChC, the F-measure of RF BVI + SVM ranged from 0.13 to 0.57; see Figure 3), as in these settings the amount
of removed instances was highest. Perhaps an informed, rather than random, undersampling scheme could have
improved the results.

5.1 Multi-class

We carried out multi-class classification by combining one-versus-all models. Figure 11 shows the accuracies of
the different methods while Table 9 is the confusion matrix of the most accurate method, RF with KW feature
selection and data sampling.
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Figure 3: ChC versus rest. Violin plot of 7-fold cross-validation estimates of F-measure. Above: seven CV
repetitions when under- and over-sampling training data; below: a single CV repetition with no data sampling.
Vertical rows of panels correspond to the feature selection methods applied: none, KW, and RF BVI.

Table 9: Confusion matrix for a one-versus-all combination of the RF with KW feature selection and sampling.
For each row, the positives are instances of the corresponding type whereas negatives are instances of all remaining
types.

ChC BTC DBC SBC NBC MC LBC F-measure TPR TNR
1 0 0 5 0 0 1 0.22 1 / 7 209 / 210
0 6 2 1 1 3 2 0.46 6 / 15 197 / 202
0 1 17 0 0 3 1 0.74 17 / 22 188 / 195
1 0 0 20 5 2 0 0.67 20 / 28 177 / 189
0 1 0 2 37 0 4 0.8 37 / 44 162 / 173
0 1 2 2 0 42 3 0.82 42 / 50 157 / 167
0 2 3 2 5 2 37 0.75 37 / 51 155 / 166

6 Neuroscientists’ F-measure for the MC type

42 neuroscientists classified 320 cells in DeFelipe et al. (2013). For 299 those cells, at least 22 (half + one) of them
agreed on single type, which we then considered as the true type of that interneuron; 48 of those cells were MC
and 251 non-MC. We computed the F-measure of each neuroscientists with respect to the determined true type.
The average F-measure was 0.72, minimal 0.12 and maximal 0.89, with only three neuroscientists performing
better than our best MC model (F-measure 0.81).
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Figure 4: BTC versus rest. Violin plot of 10-fold cross-validation estimates of F-measure. Above: ten CV
repetitions when under- and over-sampling training data; below: a single CV repetition with no data sampling.
Vertical rows of panels correspond to the feature selection methods applied: none, KW, and RF BVI.
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Figure 5: DBC versus rest. Violin plot of 10-fold cross-validation estimates of F-measure. Above: ten CV
repetitions when under- and over-sampling training data; below: a single CV repetition with no data sampling.
Vertical rows of panels correspond to the feature selection methods applied: none, KW, and RF BVI.
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Figure 6: SBC versus rest. Violin plot of 10-fold cross-validation estimates of F-measure. Above: ten CV
repetitions when under- and over-sampling training data; below: a single CV repetition with no data sampling.
Vertical rows of panels correspond to the feature selection methods applied: none, KW, and RF BVI.
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Figure 7: NBC versus rest. Violin plot of 10-fold cross-validation estimates of F-measure. Above: ten CV
repetitions when under- and over-sampling training data; below: a single CV repetition with no data sampling.
Vertical rows of panels correspond to the feature selection methods applied: none, KW, and RF BVI.

20



None KW RF_BVI

S
am

pling
N

one

ADA
CART

kNN
LDA

NB NNET

RF RM
LR

SVM
ADA

CART

kNN
LDA

NB NNET

RF RM
LR

SVM
ADA

CART

kNN
LDA

NB NNET

RF RM
LR

SVM

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Classifier

ADA

CART

kNN

LDA

NB

NNET

RF

RMLR

SVM

Figure 8: MC versus rest. Violin plot of 10-fold cross-validation estimates of F-measure. Above: ten CV repetitions
when under- and over-sampling training data; below: a single CV repetition with no data sampling. Vertical rows
of panels correspond to the feature selection methods applied: none, KW, and RF BVI.
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Figure 9: LBC versus rest. Violin plot of 10-fold cross-validation estimates of F-measure. Above: ten CV
repetitions when under- and over-sampling training data; below: a single CV repetition with no data sampling.
Vertical rows of panels correspond to the feature selection methods applied: none, KW, and RF BVI.
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Figure 10: BA versus rest. Violin plot of 10-fold cross-validation estimates of F-measure. Above: ten CV
repetitions when under- and over-sampling training data; below: a single CV repetition with no data sampling.
Vertical rows of panels correspond to the feature selection methods applied: none, KW, and RF BVI. KW feature
selection improved the performance of multiple models, most notably kNN, LDA, and SVM.
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Figure 11: Multi-class classification by combining one-versus all models. Violin plot of 7-fold cross-validation
estimates of F-measure. Above: ten CV repetitions when under- and over-sampling training data; below: a single
CV repetition with no data sampling. Vertical rows of panels correspond to the feature selection methods applied:
none, KW, and RF BVI. Entries are missing for ADA, NNET, and RMLR as their execution did not complete.
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