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1. Multivariate CAR

The BYM model proposed by Besag et al. (1991) is assigned to ψ1qd + ψ2qd for district d:

ψ1qd|(ψ1ql, l 6=d) ∼ Normal

(∑
l∈N (d) ψ1ql

N (d)
,
σ2
ψ1q

N (d)

)
(1.1)

ψ2qd ∼ Normal(0, σ2
ψ2q

)

where ψ1qd is specified through the intrinsic conditional autoregressive model (iCAR) proposed by

Besag and Kooperberg (1995), while ψ2qd follows a normal distribution with a common variance

σ2
ψ2q

. For the qth confounder, a local smoothing is provided by ψ1qd based on the values of the set

of neighbours N (d) and a global smoothing is included through ψ2qd based on the values of all the
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units. Note that the iCAR is improper, as it is possible to add a constant to each ψ1qd without

changing the distribution, so a global intercept αq needs to be added as well as a sum-to-zero

constraint. We followed the specification provided in Lunn et al. (2012) pag 264 and on αq we

specified a flat distribution between ±∞, leading to the joint prior of the intercept and random

effects to be equivalent to specify an iCAR prior on the random effects without constraint.

A correlation structure between the confounders should be included to allow borrowing of

strength, as some might have been collected on several years, thus being available for many

individuals, while other might not. We extend σ2
ψ1q

in (1.1) to Σψ1
and equivalently σ2

ψ2q
to

Σψ2
; the diagonals model the variances for each confounder (spatially structured and non), while

the off diagonal identifies the covariances among confounders. This specification leads to the

multivariate BYM model (MVBYM). See Gamerman et al. (2003), Thomas et al. (2004) for

details and applications of MVBYM.

2. The specification of RW(2)

We choose a T-state RW(2) as f() in the imputation model. First, each continuous variable Cp

from (2.3) in the main text is converted into a categorical variable by cutting its space into T

equally spaced states (t = 1, . . . , T ), so that each Cip becomes Ccat(ti)p. Then the non-linear

relationship between Cp and EPS is approximated by Ccat(ti)p and st where st is the value

estimated by RW(2) on the tth state, i.e. f(Ccat(ti)p); RW(2) links 1st and 2nd order neighbours

of st through the following conditional distribution:

st|s−t ∼


Normal(2st+1 − st+2, σ

2) for t = 1
Normal( 2

5st−1 + 4
5st+1 − 1

5st+2,
1
5σ

2) for t = 2
Normal(− 1

6st−2 + 2
3st−1 + 2

3st+1 − 1
6st+2,

1
6σ

2) for t = 3, ..., T − 2
Normal(− 1

5st−2 + 4
5st−1 + 2

5st+1,
1
5σ

2) for t = T − 1
Normal(−st−2 + 2st−1, σ

2) for t = T

(2.2)

The same specification is considered for the link between EPS and λ in the analysis model

(Equation 2.4 in the main text).
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3. The simulation process

The data simulation process is described below:

1. Simulate one set of ecological variables X,C = (C1,C2),M = (M1,M2,M3,M4). Let i

denote the area index with i = 1, . . . , 300 (i ∈ S ∪ I). Simulate C based on the expit trans-

formation of Normal(0, 1), and generate correlated M based on the expit transformation

of bivariate normal distribution:(
logit(M1i)
logit(M2i)

)
∼MVN2

([
0
0

]
, σ2

[
1 0.3

0.3 1

])
(

logit(M3i)
logit(M4i)

)
∼MVN2

([
0
0

]
, σ2

[
1 0.3

0.3 1

])
where σ = 1. Then the exposure X is produced through a Bernoulli distribution:

Xi ∼ Bernoulli(P (Xi = 1|Ci,Mi))

logit(P (Xi = 1|Ci,Mi)) = θ1 +CT
i θC +MT

i θM

EPSi =MT
i θM

where θC = (θ2, θ3) and θM = (θ4, θ5, θ6, θ7). The true values for θ are set to be the

following:

θ1 = 0; θ2 = 0.5; θ3 = −0.5; θ4 = 1; θ5 = −0.6; θ6 = 0.5; θ7 = −0.4

Suppose the expected count E is the same across all areas, i.e. Ei = 100 ∀ i = 1, . . . , 300,

then the observed count O is simulated through:

Oi ∼ Poisson(Eiλi)

log(λi) = β1 + β2Xi +CT
i βC +MT

i βM (3.3)

The true values for β1, β2, βC = (β3, β4) and βM = (β5, β6, β7, β8) are:

β1 = 0;β2 = 0.5 or 0;β3 = 0.2;β4 = −0.2;β5 = 0.2;β6 = −0.2;β7 = 0.2;β8 = −0.2
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2. Simulate n values for the individual variables m = (m1,m2,m3,m4):

mqij ∼ Bernoulli(Mqi), q = 1, ..., 4, j = 1, ..., n

where n is chosen to be 5, 10, 20 and 100 for the different simulation scenarios.

3. The following MAR criterion is then applied to remove M or m from around 50% of the

areas:

li = Bernoulli(P (li = 1)) (3.4)

logit(P (li = 1)) = 0.2C1i − 0.2C2i

where li is the indicator for the missingness of Mi or mi. The complete cases are defined

as the areas with Mi or mi available (li = 0, i.e. i ∈ S), while the remaining areas have

missing Mi or mi, i.e. i ∈ I.

The simulation result with true β2 = 0 is shown in Table 1.



Ecological Propensity Score for Small Area Studies 5

Table 1: EPS performance and comparison with MICE on the simulation study (true β2 = 0, 100
simulated datasets).

Adjustment/ Posterior Bias RMSE CI95 CI95
Imputation Mean for β2 width coverage

Scenario 1: M are available in all areas
Direct adj 0.00 0.00 0.02 0.060 0.94
EPS adj 0.00 0.00 0.02 0.064 0.93

Näıve case: Ignoring M
NA 0.28 0.28 0.28 0.054 0.00

Scenario 2: M are only available in some areas

Case 2.1: Analysis on i ∈ S EPS adj 0.00 0.00 0.03 0.093 0.91

Case 2.2 : Analysis on MICE 0.03 0.03 0.04 0.104 0.81
i ∈ S ∪ I EPS imput -0.01 -0.01 0.03 0.088 0.89

Scenario 3: M are NOT directly available, but m are available in some areas
Sample size n=5
Case 3.1.1: Analysis on i ∈ S EPS adj 0.09 0.09 0.11 0.087 0.24

Case 3.2.1: Analysis on MICE 0.13 0.13 0.14 0.142 0.18
i ∈ S ∪ I EPS imput 0.08 0.08 0.08 0.092 0.31

Sample size n=10
Case 3.1.2: Analysis on i ∈ S EPS adj 0.09 0.09 0.11 0.088 0.40

Case 3.2.2: Analysis on MICE 0.13 0.13 0.13 0.139 0.45
i ∈ S ∪ I EPS imput 0.08 0.08 0.08 0.091 0.56

Sample size n=20
Case 3.1.3: Analysis on i ∈ S EPS adj 0.08 0.08 0.10 0.085 0.54

Case 3.2.3: Analysis on MICE 0.10 0.10 0.11 0.139 0.50
i ∈ S ∪ I EPS imput 0.07 0.07 0.08 0.089 0.62

Sample size n=100
Case 3.1.4: Analysis on i ∈ S EPS adj 0.02 0.02 0.05 0.091 0.74

Case 3.2.4: Analysis on MICE 0.06 0.06 0.06 0.126 0.61
i ∈ S ∪ I EPS imput 0.01 0.01 0.04 0.089 0.83

4. Simulation study to compare EPS imputation specification

There are two ways to include the information of X in the imputation model:
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1. including X as a predictor (PredX):

EPSi = η1 + γXi + f(,Ci) + φdi (4.5)

2. including X as a response variable (RespX):

logit(P (Xi = 1|Ci,EPSi)) = θ1 +CT
i θC + EPSi (4.6)

EPSi = η1 + f(Ci) + φdi

The former (PredX) is a standard way of including covariates in the imputation model (Kenward

and Carpenter, 2007), whereas the latter (RespX) is used by McCandless et al. (2012) to define

the relationship between EPSi and X. RespX is natural for EPS imputation since it follows the

EPS estimation model, but the specification of RespX requires an additional logistic regression

(4.6), which is computationally less efficient than PredX.

4.1 The simulation to compare RespX and PredX

It seems little research has been done on the comparison of these two different specifications

involving exposure X in modelling missing EPS, and so the following simulation study is designed

to compare the performance of PredX and RespX.

4.1.1 Simulation design The simulation uses the datasets generated from Section 3 with the

true imputation model specified as EPSi = −3+|C1i|+|C2i|+Normal(0, 0.5) and with true Y gen-

erated from Yi = Xi+C1i−C2i+0.2(EPSi+2)2+Normal(0, 2). The following missing probability

model is specified to create around 50% of the missing EPS: logit(P (EPSi = NA|Xi,Ci, Yi)) =

0.2C1i − 0.2C2i. Each scenario contains 100 datasets, and four statistics (mean, RMSE, CI cov-

erage and CI width at 95% level) are computed for the estimated β2.

The simulation initially assesses whether X should be included in the imputation process in

the case where the imputation function f() linking confounders C is either truly specified or
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ignored. Then it compares two specifications of X in the imputation model: PredX (treat X as

a predictor) and RespX (treat X as a response variable). To focus on the comparison of PredX

and RespX, the true link function h() = 0.2(EPSi + 2)2 is used.

4.1.2 Simulation results The simulation results are shown in Table 2. The simulation shows that

it is important to include the information of X in the imputation process, either through PredX

or RespX, especially in the case where the imputation function f() is not correctly specified (in

reality, the imputation function f() is indeed unknown). For example, the first three rows show

that the bias of β2 is reduced from 0.84 to a negligible value by including the information of X.

The simulation also suggests that the format of including the information X is not critical due

to the largely indistinguishable results between PredX and RespX.

Table 2: The comparison of the specification of PredX and RespX based on the estimation of β2
on 100 simulated datasets

Link
func.
g()

Imputation model
True
value of
β2

Posterior Mean Bias RMSE CI95 coverage CI95 width

True h() Ignore. f(C) 1 1.84 0.84 0.88 0.18 1.20
True h() Ignore. f(C) + PredX 1 0.98 -0.02 0.30 0.95 1.24
True h() Ignore. f(C) + RespX 1 1.04 0.04 0.28 0.95 1.21

True h() True f(C) 1 1.04 0.04 0.28 0.98 1.10
True h() True f(C) + PredX 1 0.95 -0.05 0.29 0.96 1.11
True h() True f(C) + RespX 1 0.95 -0.05 0.28 0.96 1.12

5. Simulation study designed to assess the model performance in presence of

spatial structure and non-linearity

We designed and run an additional simulation study to assess the performance of our model in

presence of spatial structure and non-linear relationship between unmeasured confounding factors

and the health outcome. The synthetic data are generated broadly following the main simulation

design presented in Section 3, with few exceptions. In particular, in the interest of simplicity, we
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assume only one ecological confounder C and to allow for spatial structure and non-linearity we

assume that two of the four unmeasured ecological confounders are continuous instead of binary.

We simulate 100 replicated data sets as follows:

1. Simulate a spatial region comprising 300 areas on a regular 20 × 15 grid and construct a

binary 300 × 300 spatial neighbourhood matrix for this region based on spatial adjacency.

Generate a spatial random effect ϕ using a Gaussian process representation with zero

mean and covariance function described by an exponential model (e.g. Banerjee et al.,

2014). Simulate a high-order 4 × 5 super-grid that incorporates the original grid cells in

cluster of 15 cells. This mimic the real-world application presented in the main paper,

where larger spatial units (i.e. local authority districts) are used for modelling spatially

structured random effects in the EPS estimation and imputation to overcome the issue of

spatial sparsity at ward level.

2. Simulate a set of ecological variables X, C,Mi = (Mi1, . . . ,Mi4) for each area i = 1, . . . , 300

(i ∈ S ∪ I). In particular, simulate (i) C from an independent standard normal, (ii)

Mi1:2 from the expit transformation of a bivariate normal distribution (as specified in

Section 3 of Supplementary Material), (iii) Mi3 from a Normal(ϕi, 0.32), and (iv) Mi4 from

Normal(0, 0.32). Then, simulate the exposure X from a Bernoulli with parameter distribu-

tion depending from C and Mi (similarly to Section 3).

3. Fit a non-linear sine curve to Mi4, such that s(Mi4) = sin(3πMi4) exp(−Mi4) and simulate

the health response O assuming a Poisson likelihood with parameter of the distribution

being a log-linear function of X, C, Mi1:3 and s(Mi4). In this way, the model is still a linear

functions of the parameters, but is non-linear with respect to the input variable Mi4. Here,

the inclusion of a random effect exhibiting spatial structure is not needed as Mi3 induces

spatial autocorrelation into the health response. The Moran’s I (Moran, 1950), that is a
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global test of autocorrelation, confirms that the response O hold a spatial structure (p-value

< 0.01 for all the data sets).

4. For each area i, simulate n = 20 values for the individual variables mqi = (mqi1, . . . ,mqin).

In particular, simulate m1:2ij from a Bernoulli distribution based on the proportion of M1:2i

and generate m3:4ij from a normal distribution with location parameter derived from M3:4i.

5. Then, use a MAR mechanism (depending on C) to remove mqi from around 50% of the

areas, according a binary missing value indicator: li ∼ Bernoulli(pi) with logit(pi) = 0.2Ci.

In this simulation study, we keep the set of the true parameter values as described in Section

3 (note that for the ecological confounder C we use the coefficients used in Section 3 for C1).

The analyses performed for the EPS estimation, imputation and adjustment follow the mod-

elling approach described in Sections 2 of the main paper. Table 3 presents the results of this

simulation study, assuming the true value of β2 = 0.5. Using direct adjustment we can appreciate

that if the non-linearity in the relationship between M4 and Y is ignored the RMSE increases

and the coverage decreases. At the same time scenario 2 shows that there is bias of 0.11 and a

RMSE of 0.12 when only C and X are included in the analyses. Scenario 3 shows that the EPS

framework returns unbiased results; the root mean square error increases slightly with respect

to the direct adjustment, but the coverage increases to 72% when the spatial structure is also

considered in the model from 62% seen for the direct adjustment when M4 is included as linear.
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Table 3: Performance of the EPS framework when spatial structure and non-linear relationship
between unmeasured confounding variables and health outcome are present.

Adjustment Posterior Bias RMSE CI95 CI95
Mean for β2 width coverage

Scenario 1: M are available in all areas
Direct adj (Mi1:4 included in the
health model as linear)

0.50 0.00 0.03 0.046 0.62

Direct adj (Mi1:3 included in the
health model as linear, Mi4 as Fourier
sine transformed)

0.50 0.00 0.02 0.045 0.96

Scenario 2 (Näive case): Ignoring Mi

NA 0.61 0.11 0.12 0.041 0.00

Scenario 3: Mi are NOT directly available, but mij are available in some areas
EPS adj accounting for the spatial
structure in the imputation model

0.50 0.00 0.04 0.059 0.72

EPS adj ignoring the spatial structure
in the imputation model

0.50 0.00 0.04 0.062 0.67

6. Air pollution and Health in Greater London

6.1 Convergence

The following figure shows the potential scale reduction factor (R̂); it represents how the credible

intervals would be reduced if the MCMC simulation were to run forever. It is recommended as a

measure of parameter convergence (Gelman and Hill, 2006) and the usual practice is to continue

the simulation until R̂ < 1.1. We can see that for our analysis R̂ is always smaller than 1.1,

suggesting good convergence.
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Figure 1: R̂ for all the parameters estimated through our proposed modelling framework in the
illustrative example.
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6.2 Changing the exposure threshold

Table 4: Relative risk (RR) of hospital admission: PM10 threshold equal to 24µg/m3 or 26µg/m3

(25% or 75% of the PM10 distribution) in Greater London. The table shows that the results are
consistent with what we obtain using a 50% threshold on the distribution of PM10.

Areas Data used 24µg/m3 threshold 26µg/m3 threshold
(> 5 subjects) > 5 subjects

RR (CI95) CI95
width

RR (CI95) CI95
width

i ∈ S X,C 0.95 (0.88-0.99) 0.11 0.94 (0.89-1.00) 0.11
X,C,EPS 1.05 (0.97-1.13) 0.16 1.08 (1.01-1.15) 0.14

i ∈ S∪ I X,C 0.94 (0.89-1.00) 0.11 0.88 (0.83-0.93) 0.10
X,C,EPS 1.02 (0.95-1.09) 0.14 1.03 (0.96-1.09) 0.13
X,C,MICE 0.94 (0.90-0.99) 0.10 0.91 (0.85-0.97) 0.12
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