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Experimental Section

General Considerations. All manipulations were carried out inside a N»-filled Innovative Technologies glovebox
unless otherwise stated. Tetrahydrofuran (THF), benzene, toluene, n-hexane, and diethyl ether were purchased
from Sigma-Aldrich, then purified through drying columns from Innovative Technologies solvent purification
system, and stored over activated 3 A molecular sieves. Dimethylsulfoxide-ds (DMSO-ds) was purchased from
Cambridge Isotope Laboratories and used without further purification. C¢Ds was purchased from Cambridge Iso-
tope Laboratories, dried over CaH, under reflux, then distilled and degassed and stored over 3 A molecular sieves.
FesBrsL, FesXsL (X =H, F, S), FesH,(HCOO)L, (FeCO),Fe(us-H)L, Fe;Bra(us-N)L, and [FeCIL'], were synthe-
sized as reported previously.'™

"H Nuclear Magnetic Resonance ('"H NMR) spectra were recorded on a Varian Inova 500 MHz spectrometer or a
Mercury operating at 300 MHz equipped with a three-channel 5 mm indirect detection probe with z-axis gradi-
ents. Chemical shifts were reported in § (ppm) and were referenced to solvent resonances oy = 7.16 ppm and 2.50
ppm for benzene-ds and dimethylsulfoxide-ds, respectively. FT-IR spectra were collected on drop-casted samples
using a ThermoFisher Scientific Nicolet iS5 spectrometer equipped with an iD7 ATR stage and using the OMNIC
software package at 1.0 cm-1 resolution and 32 scans per sample. Mass spectrometry data were collected using an
Agilent 6220 ESI-TOF on samples prepared in THF or MeCN at analyte concentrations of 16.0 uM. Gas chroma-
tography was performed using a Shimadzu GC-2014 instrument equipped with a Quadrex fused silica capillary
column (Methyl 5% Phenyl Silicone, length: 30 m, inner diameter: 0.25 mm, film thickness: 0.25 pm). The in-
strument.

Reductions of Fe;Br;L with 3 or 6 equivalents of KCs. Fe;Br;L (20.0 mg, 18.2 umol) was combined with 3 or
6 equivalents of KCs as solids and cooled down to -34 °C. To the solids, 8 mL of the desired solvent (toluene,
THF, or Et,O) was added at -34 °C under stirring using a glass stirbar. The mixture was kept at -34 °C under stir-
ring for 16 h, then filtered over a Nylon membrane in which the black residue was washed with 2 mL of the corre-
sponding solvent. The combined amber filtrate was evaporated under reduced pressure to afford brown solids that
were assessed by 'H-NMR.

Stoichiometric reductions of triiron complexes with 6 equivalents of KCs. In a typical experiment, triiron
complex (22.0 umol) was combined with 6 equivalents of KCs as solids at ambient temperature To the solids, tol-
uene (3.4 mL) and then 6 equivalents of Me;SiCl was added under stirring using a glass stirbar. The mixture was
kept at ambient temperature under stirring for 24 h, and then the mixture was filtered through a toluene rinsed
plug. The combined amber filtrate was evaporated under reduced pressure and was assessed by 'H-NMR.

Catalytic N, silylation to tris(trimethylsilyl)amine using Fe;Br;L. KCs (45.0 mg, 333 pmol) was suspended in
1.80 mL of the desired solvent (toluene, THF, or diethyl ether) under stirring with a glass stirbar. To this slurry,
chlorotrimethylsilane (Me;SiCl, 42.2 uL, 333 pmol) was added followed by 0.200 mL of a 3.3 mmol L™ solution
of Fe;BrsL in toluene. The system was kept at room temperature for 24 h, then filtered to afford a clear filtrate.
The presence of N(SiMes)s in the filtrate was confirmed by gas chromatography (Figure S11). To the filtrate,
0.100 mL of a 4 mol L' HCI solution in 1,4-dioxane was added and, after 5 min, volatiles were removed to afford
white solids. The resulting solid was dissolved in dimethylsulfoxide-ds with 1,3,5-trimethoxybenzene as an inter-
nal standard to quantify ammonium. The experiments were performed in triplicate for the values presenting an
error bar.

Filtration experiments. KCs (11.2 mg, 83.2 umol) was suspended in 1.80 mL of the desired solvent (toluene or
diethyl ether) under stirring with a glass stirbar. To this slurry, Me;SiClI (10.5 pL, 83.2 umol) was added followed
by 0.200 mL of a 3.3 mmol L™ solution of Fe;BrsL in toluene. The system was kept at room temperature for 6 h,
then filtered to afford a dark residue and a pale yellow filtrate. To the isolated residue and filtrate, KCg (33.8 mg,
250 umol) and MesSiCl (31.5 pL, 250 pmol) were added. To the residue, 1.80 mL of the desired solvent was also
combined. Both systems were kept under stirring at room temperature for an extra 18 h. Ammonium was quanti-
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fied as described above. In toluene, the filtrate and residue resulted in 25 and 7 NH4" equiv./Fe, respectively (22%
of heterogeneous activity). In diethyl ether, the filtrate and residue resulted in 64 and 10 NH4" equiv./Fe, respec-
tively (13% of heterogeneous activity).

The same procedure was followed with an equimolar amount of iron as [FeCIL’],. In toluene, the filtrate and resi-
due resulted in 20 and 7 NH4" equiv./Fe, respectively (26% of heterogenous activity). In diethyl ether, the filtrate
and residue resulted in 37 and 19 NH," equiv./Fe, respectively (34% of heterogeneous activity).

Catalytic N silylation to N(SiMe;); using other triiron compounds. An analogous procedure was used by us-
ing 3.3 mmol L' solutions of the desired complexes in place of the Fe;Br;L solution. The reaction was stopped
after 24 h at room temperature. Ammonium was quantified as described above. The experiments were performed
in triplicate.

Synthesis of Fe;(pu3-N)L. A 20 mL scintillation vial was charged with Fe;Br(us-N)L (300 mg, 295 pumol), 15 mL
PhMe, and a Pyrex magnetic stir bar. To this was added 600 uL (0.600 mmol) KHB(sec-Bu); (1.0 M in THF) and
immediate effervescence was observed. The reaction was allowed to stir at room temperature for 4 h, upon which
a gradual color change from dark orange-red to dark yellow-orange was observed. The reaction mixture was fil-
tered through a Celite plug and volatiles removed under reduced pressure to yield a tacky brown solid. The solid
was extracted with 2 x 5 mL n-hexane and dried under reduced pressure. The resulting solid was dissolved in the
minimum amount of benzene and lyophilized to yield a brown flocculent powder. Single crystals suitable for X-
ray diffraction were obtained vial slow evaporation from either a saturated benzene solution or saturated toluene
solution. "H NMR (500 MHz, CsDs, 298 K): & = 54.0 (s, br, 3H), 29.8 (s, 18H), 16.5 (s, br, 12H), -20.0 (s, br,
18H), -71.9 (s, br, 12 H). petr (CsDs, 298 K) = 5.70 pp. ATR-IR (cm™) 2950(s), 2940(s), 2864(s), 1525(s),
1458(vs), 1431(s), 1399(vs), 1374(s), 1336(s), 1014(w), 929(vw), 770(vw), 735(vw).

Synthesis of Fe;O3;L. A 50 mL Schlenk flask was charged with FesHs;L (240 mg, 280 pmol), a Teflon-coated stir
bar, and THF (20 mL). The solution was degassed by the freeze-pump-thaw method and then exposed to a slow
flow of O, for 2 minutes with stirring. The flask was closed and the reaction was stirred for 2 hours. A rapid color
change from dark red-orange to dark red occurring upon stirring. After this time the reaction was evaporated and
the residue was dissolved in boiling toluene. Cooling the solution to -35 °C yielded dark red crystals (63.5 mg,
25%) after 2 d. '"H NMR (500 MH, THF-ds, 298 K): § = 42.6 (12H), 6.88 (12H), 1.27 (18H), 1.19 (18H), -14.2
(3H). perr (THF-ds, 298 K) = 4.4 uB. ATR-IR (cm™): 1528, 1463, 1430, 1396, 1374, 1336, 1018, 748, 729. UV-
vis (THF; nm (g, M'em™)): 315 (3.20(4) x 10%), 405 (1.28(2) x 10%), 545 (2.3(3) x 10%*). HRMS (ESI+) m/z calcd
for (M+H") [CssHesFesNgO3]": 904.3083, found 904.2939.

Synthesis of Fe;CLI:L. A 20 mL scintillation vial was charged with HsL (100 mg, 145 umol), a Teflon-coated stir
bar, and THF (4.0 mL) and sealed with a Teflon-coated cap. The suspension was added BnK (60.0 mg, 0.460
mmol) at ambient temperature and stirred for 15 min. At this point, the reaction was charged with FeCl2¢1.5THF
(110 mg, 0.467 mmol) rapidly turning orange-red and stirred at ambient temperature for 12 h. The suspension was
filtered through a plug of celite, evaporated, dissolved in benzene, and filtered through a second plug of celite.
Slow evaporation of this solution yielded orange crystals (45.7 mg, 33%) after 4 weeks. The solid-state structure
illustrates an idealized C»y species at 100 K, while the compound is D3, on the 'H NMR method timescale at am-
bient temperature. "H NMR (CsDs): & = 182 (12H), -7.98 (18H), -14.0 (12H), -43.1 (18H), -51.7 (3H). petr (CsDs,
298 K) = 7.2 up. ATR-IR (cm™): 1518, 1456, 1429, 1391, 1372, 1329, 1067, 1015, 733, 723 cm™". UV-vis (THF;
nm (g, M-1cm-1)): 318 (1.23(3) x 10°%), 413 (4.0(5) x 10%). HRMS (ESI+) m/z caled (M+H,0-CI")
[C45H65C12F63N60]+2 943.2640, found 943.2558.



Characterization of New Compounds
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Figure S1. ESI-MS spectrum of Fe;(u3-N)L in THF (positive mode).
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Figure S2. "H NMR spectrum of Fe;(p3-N)L in CgDs.
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Figure S3. ATR-IR spectrum of Fes(us3-N)L, synthesized from KHB(sec-Bu)s in toluene, recorded as a thin film.
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Figure S5. Cyclic Voltammetry (CV) of Fes(us-N)L.

Arrows indicate scan direction and origin. Working electrode: Pt button. Auxiliary Electrode: Au ribbon. Refer-
ence Electrode: Ag/AgCl wire. Analyte Concentration: 2.0 mM.
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Figure S11. UV-Vis spectrum of Fe;Cl;L in THF.

12



-4 2 0 2 4
Velocity (mm/s)

Figure S12. Mossbauer spectrum of Fe;OsL recorded at 80 K and zero-applied field.

Black bars and colored lines represent the experimental and simulated quadrupole doublets, respectively. Solid
black line is a composite spectrum obtained by combining individual doublets. The data suggest a Cy-symmetric
compound by this method and on this timescale.
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Figure S13. Single-crystal structure of FesCl;L at 50% thermal ellipsoid.

The hydrogen atoms and benzene solvent molecules have been omitted for clarity. C, N, Cl, and Fe are depicted
as grey, blue, green, and orange, respectively.
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Table S1. 80 K Mossbauer parameters of complexes used as silylation catalysts.

complex® o AEq r Fe centers Oxidation
P (mm/s) (mm/s) (mm/s) /3 number

FesBrsL 1.02 1.79 0.40 1 Fe"
0.95 2.32 0.40 1 Fe"
0.90 2.78 0.38 1 Fe"
FesFsL 1.00 2.54 0.35 3 Fe!!
FesHsL? 0.77 2.26 0.35 3 Fe!!
Fe;H,(0,CH)L® 0.82 245 0.35 2 Fe'
0.77 2.26 0.35 1 Fe!!
(FeCO),Fe(us-H)L®  0.66 2.60 0.31 2 Fe'
0.98 2.15 0.27 1 Fe"
Fe;OsL 0.34 1.82 0.30 2 Fe'!
0.38 1.26 0.60 1 Fe'!
FesS;L° 0.28 1.33 0.29 3 Fe'!

*We report only the complexes whose Mossbauer spectra could be entirely
accounted for as the superposition of three quadrupole doublets with equal
integrations, which we could confidently assign. °These parameters have
already been reported in previous work (ESI references 3, 4, and 5).
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Catalytic silylation data
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Figure S14. '"H NMR of the reaction between 500 equiv. KCs and 500 equiv. Me;SiCl with 0.2 mol % Fes(us-
N)L in Et,O in DMSO-d; after HCI quenching.

Peaks at 6.09 and 3.71 ppm indicate 1,3,5-trimethoxybenzene internal standard. 'Jx.u =51 Hz.
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Figure S15. Gas chromatogram of the reaction mixture using 500 equiv. KCg and 500 equiv. MesSiCl with 0.2
mol % Fe;Br;L in Et,O after 24 h.
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The red trend line indicates the fit of the experimental data to a logarithmic growth curve. Reaction conditions:
500 equiv. KCs and 500 equiv. Me3SiCl (0.2 mol% catalyst loading) in toluene at room temperature.
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the corresponding yields based on KCs. Reaction conditions: 500 equiv. KCs and 500 equiv. MesSiCl (0.2 mol%
catalyst loading) in Et;0O:PhMe = 9:1 at -34 °C.



Table S2. Catalytic performance of reported iron-based complexes for the silylation of Na.
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Nishibayashi 2012
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P'Bu,
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P'Bu,

Cc

Fe;BrsL B Nishibayashi 2016
This work Peters 2014
PMe;
MesP, | PMe;
VA
SAr HH M N
\\\\\\\\\\\\\ N
R3P~‘§ /H\ :_PR; MesPy 2 /H\ _PMe, thQP{‘ “PPhy R_Si— ‘ Jil'\iel\?
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SAr H H H G
D JFeL Mockz017 Nishibayashi 2017
Ohki 2017 Me;P™ = "PMes
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E
Ohki 2017
Reaction conditions
PN: Time . + . Yield on KCs
Complex Solvent (atm) Temp. (h) KCs or Na equiv. | NH4" equiv./Fe (%) Ref.
Toluene 1 r.t. 24 500 11 20
Et,O 1 r. t. 24 500 21 38
FesBr;L Et,O 1 r. t. 24 1800 27 13 This work
Et,O 1 -34°C 24 500 8 14
Et,O 1 -34°C 96 500 29 52
A THF 1 r.t. 20 600 25 12 7
B Et,O 1 r. t. 24 600 24 12 g
Et,O 1 -78 °C 24 600 7 3
C THF 1 r. t. 20 600 21 10 9
D
(PRy=PMe3) DME 1 r.t. 100 2400 31 16
(PR3=I?Me2Ph) DME 1 rt | 100 2400 40 20
D 10
(PR+=PEL;) DME 1 r. t. 100 2400 40 20
E DME 1 r.t. 100 3600 31 15
THF 1 r.t 100 3600 13
Toluene 1 r.t 24 500 11
F Toluene 20 .t 24 500 22 13 1
Toluene 100 r.t 24 500 38 23
Toluene 100 r.t. 24 1000 65 19
G THF 1 r. t. 20 600 15 7 12
THF 1 r.t. 20 600 26 13
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Table S3. Catalytic performance of selected complexes for the silylation of N, containing other metals.

Et, Ny Et, e jiprz PCy
P, P L iPrp ~
F'e 11, | \\\\\ r( | \\\\,\>Pr2 | \\\PzMe:;
@—Et/ | \Et_© N | ~ . Me"'Si—Co—-N=N
2 N2 2 N[I‘uﬁ PCy,
; 0
Yoshizawa 2011 J
| Nishibayashi 2017
Lu 2015
Bn,
. T™MS ™S N\Nz I?h
DIPP\N_ ’Pipl’z N ~N MS Ph\P“ _\\\P7
L | L<\ /N\ Bn\NJ uA s N—Bn
o " .\n PN
illj:y MS ~N Pr \__N—/ Ph
2 TMS ™S | gn
N
K L
Masuda 2018 Nishibayashi 2017 M
Mock 2018
Reaction conditions
PN: Time . + . Yield on KCs
Complex (M) | Solvent (atm) Temp. (h) KCs or Na equiv. | NH4" equiv./M (%) Ref.
THF 1 r. t. 100 4000 150 11
H (Mo) 13
THF 1 r.t. 200 8000 226 8
THF 1 r.t. 12 2000 97 29
I (Co) 14
THF 1 r. t. 24 4000 163 24
J (Co) THF 1 r.t. 40 600 41 20 12
THF 1 -40 °C 240 1500 200 40
K (Co) 15
THF 1 -40 °C 312 3000 270 27
L (V) THF 1 r. t. 20 600 24 12 16
THF 1 r. t 16 100 11 32
THF 1 r.t. 16 100000 17 0.05
M (Cr) 17
THF 1 r. t. 72 100000 21 0.06
THF 1 r.t. 32 200000 34 0.05
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Reactivity of triiron compounds under reducing conditions
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Figure S19. '"H NMR spectra in C¢Ds of FesBr;L with 3 equiv. of KCs in toluene (bottom), THF (middle), and
Et,O (top).
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Figure S20. 'H NMR spectra in C¢Ds of Fe;BrsL with 6 equiv. of KCs in toluene (bottom), THF (middle), and
Et,O (top).
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Figure S21. "H NMR spectra in CsDs of Fe;Br;L with 6 equiv. of KCs and MesSiCl in toluene at 25 °C after 24 h.
The peaks indicated with N are assigned to Fes(us-N)L.
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Figure S22. 'H NMR spectra in C¢Ds of Fe;FsL with 6 equiv. of KCs and 6 equiv Me;SiCl in toluene at 25 °C
after 24 h.

The peaks indicated with F and N are assigned to Fes(us-N)L.
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Figure S23. "H NMR spectra in CsDs of Fe;Cl;L with 6 equiv. of KCs and 6 equiv. of Me3;SiCl in toluene at 25 °C
after 24 h.

The peaks indicated with N are assigned to Fe;(us-N)L.

26



-l -l -d —
= == =
3 58 3
w L wa 6000
o ™ < NN 1 Mmoo r
G SovHdanN VoY * NN oM Y oYM - Nao
N s maN i pr e il HEadne M Ba o
W ONNOI OO N ~ - 1
" 25688 88R 0 CRAANRAN rpgQqQq T pww 5500
l l\\“\\\ " K“i’r”‘ | r"’ r”’ l—”(‘ /‘ t ' ~ ‘r r”‘ I N l\r

110 90 70 50 30 10 -10 -30 -50 -70
f1 (ppm)
Figure S24. 'H NMR spectra in CsDs of Fe;S;L with 6 equiv. of KCs and 6 equiv. of Me;SiCl in toluene at 25 °C

after 24 h.
The peaks indicated with S and N are assigned to Fe;S;L and Fes;(u3-N)L, respectively.
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Figure S25. '"H NMR of the reaction between Fe;(u3-N)L, 1 equiv. KCs and 1 equiv. MesSiCl in THF at —35 °C
recorded in C¢De.
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Figure S26. '"H NMR of the reaction between Fe;(p3-N)L, 3 equiv. KCs and 3 equiv. MesSiCl in THF at —35 °C
recorded in C¢De.
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Figure S27. '"H NMR of the reaction between Fe;(p3-N)L, 20 equiv. KCs and 20 equiv. Me;SiCl in THF at —35
°C recorded in CgDes.
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Crystallographic data

Table S4. Crystal data for Fe;Cls;L.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 25.242°
Absorption correction
Refinement method

Data / restraints / parameters
Goodness-of-fit on F?

Final R indices [[>2sigma(])]
R indices (all data)

Extinction coefficient

Largest diff. peak and hole

bk102a Om

C57 H75 CI3 Fe3 N6

1118.13

100(2) K
0.71073 A
Triclinic

P-1
a=12.6922(5) A
b=13.0313(5) A
¢ =16.6470(6) A

a= 76.0639(7)°.
b= 84.1498(7)°.
g = 84.0536(7)°.

2649.46(17) A3

2

1.402 Mg/m’

1.006 mm'

1176

0.138 x 0.130 x 0.088 mm’
1.264 to 29.999°.
J17<=h<=17, -18<=k<=18, -23<=l<=23
65920

15433 [R(int) = 0.0897]

100.0 %

None

Full-matrix least-squares on F*
15433/0/ 634

1.002

R1=0.0570, wR2 =0.1025
R1=0.1038, wR2 =0.1130
n/a

1.491 and -0.876 e.A”
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