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SUMMARY

The aberrant expression of squamous lineage
markers in pancreatic ductal adenocarcinoma (PDA)
has been correlated with poor clinical outcomes.
However, the functional role of this putative transdif-
ferentiation event in PDA pathogenesis remains
unclear. Here, we show that expression of the tran-
scription factor TP63 (DNp63) is sufficient to install
and sustain the enhancer landscape and transcrip-
tional signature of the squamous lineage in human
PDA cells. We also demonstrate that TP63-driven
enhancer reprogrammingpromotesaggressive tumor
phenotypes, including enhanced cell motility and
invasion, and an accelerated growth of primary PDA
tumors and metastases in vivo. This process ulti-
mately leads to a powerful addiction of squamous
PDA cells to continuous TP63 expression. Our study
demonstrates the functional significance of squa-
mous transdifferentiation in PDA and reveals TP63-
based reprogramming as an experimental tool for
investigating mechanisms and vulnerabilities linked
to this aberrant cell fate transition.

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDA) is an aggressive

malignancy that typically presents at an advanced stage and is

refractory to most available treatments, with a median 5-year

survival rate of <8% (Siegel et al., 2018). This malignancy is typi-

cally initiated by an activating mutation in KRAS in a ductal or an

acinar cell of the pancreas, which collaborates with the loss of

tumor suppressor genes to drive PDA progression (Aguirre

et al., 2003; Hingorani et al., 2003, 2005). Despite our deep

understanding of the genetic drivers and the molecular patho-

genesis of PDA, pathway-specific targeted therapies have yet

to be implemented in the management of disease. Among the

numerous challenges in advancing targeted therapies in PDA
Cell Repo
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is the profound heterogeneity of tumor cell phenotypes within

the current histology-based definition of this disease, which

limits our ability to predict responses to targeted agents.

Dynamic transitions in cell fate are one important source of in-

ter- and intra-tumoral heterogeneity in PDA. For example, exper-

iments in mouse models have shown that PDA can originate in a

pancreatic acinar cell, which transdifferentiates into a ductal cell

following the introduction of mutant Kras (Ferreira et al., 2017;

Guerra et al., 2007). In later stages of disease progression, it is

known that PDA can transiently lose the expression of epithelial

cell markers and gain mesenchymal features, in association with

metastatic spread (Genovese et al., 2017; Krebs et al., 2017;

McDonald et al., 2017; Rhim et al., 2012). Moreover, a subset

of PDA tumors exhibit epigenetic silencing of endodermal cell

fate determinants, including hepatocyte nuclear factor 1 homeo-

box A (HNF1A), HNF1B, HNF4A, and Kruppel-like factor 5

(KLF5), in association with a stable epithelial-to-mesenchymal

fate transition (David et al., 2016; Diaferia et al., 2016). We

have recently shown that mouse and human PDA tumors can

upregulate the pioneer factor Forkhead box A1 (FOXA1), which

leads to the activation of an embryonic foregut endoderm

enhancer landscape to endow tumor cells with metastatic po-

tential (Roe et al., 2017). Collectively, these studies highlight

aberrant cell fate transitions as a hallmark property of PDA,

which can be understood mechanistically by epigenomic map-

ping of the global enhancer configuration.

It has long been recognized that a subset of PDA tumors ac-

quire features of the squamous epithelial lineage (Morohoshi

et al., 1983), although the clinical relevance of this aberrant cell

fate transition is not well understood. Squamous epithelial cells

are a specialized cell type found in the epidermis, oropharynx,

and other anatomical locations, but this cell type does not exist

in the normal pancreas (Basturk et al., 2005). Nonetheless, histo-

logical analyses have revealed that a subset of human PDAs

possess an adenosquamous cell morphology, which is invari-

ably associated with the expression of TP63, a master regulator

of the normal squamous lineage (Mills et al., 1999; Soares and

Zhou, 2018). Recent transcriptome profiling of human tumor

specimens revealed that squamous lineage markers are ex-

pressed in as much as 25% of PDA tumors, which includes the
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Figure 1. DNp63 Is Necessary and Sufficient to Drive Progenitor-to-Squamous Transcriptional Reprogramming in Human PDA Cells

(A and B) Transcription factor expression in squamous and progenitor subtypes of PDA. Scatterplots show expressed transcription factors ranked by their mean

log2 fold change in squamous versus progenitor patient samples from (A) Bailey et al. (2016) and (B) The Cancer Genome Atlas Research Network (2017).

(C) TP63 expression in human organoids derived from normal pancreatic tissue or PDA tumor samples at the indicated disease stage. Data are from the study by

Tiriac et al. (2018). *p < 0.05, **p < 0.01, ***p < 0.001 by unpaired Student’s t test. See also Table S1.

(D) Survival curve of patients from the indicated study stratified according to high or low TP63 expression and for which survival data were available (Moffitt et al.,

2015). Samples were designated as TP63high or TP63low based on Z score expression values >0.35 or <0, respectively. p value was calculated using the log rank

(Mantel-Cox) test.

(E) Squamous-PDA and progenitor-PDA identity signatures defined from patient samples. The top 500 protein coding genes in squamous (n = 25) or progenitor

(n = 30) patient samples from the study by Bailey et al. (2016) were used to define the respective signatures. Heatmap shows expression levels of signature genes.

Scale bar indicates the standardized expression value. See also Table S2.

(F) TP63 expression in human PDA cell lines. Heatmap (top) shows RNA-seq analysis of human PDA cell lines ranked according to fold change in the median

expression level of genes corresponding to the squamous-PDA versus progenitor-PDA identity signatures; scale bar indicates log2 fold change. Bar chart

(middle) and western blot analysis (bottom) show TP63 expression in the indicated human PDA cell lines.

(legend continued on next page)
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adenosquamous tumors as well as specimens that lack clear

evidence of this cell morphology (Bailey et al., 2016). These

squamous-like PDAs are associated with an inferior prognosis

when compared to tumors lacking this transcriptional signature.

While the origin of a squamous identity in this disease is poorly

understood, it has been recognized that squamous-like PDAs

are enriched for loss-of-function mutations in the tumor-sup-

pressor genes TP53, KDM6A, KMT2C, and KMT2D (Andricovich

et al., 2018; Bailey et al., 2016).

A recent study used genetically engineered mice to show that

inactivation of the histone demethylase geneKdm6a, in conjunc-

tion with a KrasG12D mutation, led to the emergence of aggres-

sive PDAs that express squamous lineage markers (Andricovich

et al., 2018). In addition, it was shown that Kdm6a loss led to the

aberrant activation of enhancers at the Trp63 (the mouse ortho-

log of TP63), Runx3, and Myc loci. While this important study

validates Kdm6a as a genetic driver of PDA progression and

establishes a model system for interrogating this disease sub-

type, it did not address whether squamous transdifferentiation

was a cause or a consequence of the aggressive tumor pheno-

type. This is particularly relevant because KDM6A is a general

chromatin regulator, whichmay perform tumor-suppressor func-

tions irrespective of cell lineage (Ezponda et al., 2017).

In this study, we show that the DN isoform of the transcription

factor TP63 (DNp63) is a master regulator that specifies squa-

mous cell identity in PDA through dynamic regulation of the

enhancer landscape. Based on this observation, we use DNp63

to introduce squamous lineage characteristics into otherwise

isogenic PDAcell lines, whichwe use to interrogate the functional

consequences of this cell fate transition in vitro and in vivo. These

experiments implicate DNp63-driven enhancer reprogramming

as a mechanism that promotes PDA progression by endowing

tumors with enhanced growth and invasive potential. In addition,

we identify a network of oncogenic target genes sustained by

DNp63 that operate in the squamous subtype of PDA. In addition

to validating the functional significance of squamous transdiffer-

entiation in PDA, our study suggests that targeting the DNp63

transcriptional network may have therapeutic potential in this

aggressive disease subtype.

RESULTS

TP63 Is Expressed in a Subset of Pancreatic Tumors that
Display a Squamous-like Transcriptional Signature and
Inferior Overall Survival
Prior studies have noted the expression of squamous lineage

markers in a poor-prognosis subtype of PDA (Bailey et al.,

2016). To investigate the functional importance of this cell fate
(G and H) TP63 knock out in BxPC3 cells. (G) GSEA plots evaluating the sq

(H) Representative western blot analysis for the indicated proteins. RNA was extra

post-infection with sgRNAs, 3 days post-selection with G418.

(I and J) DNp63 expression in SUIT2 cells. (I) GSEA plots evaluating the squa

(J) Representative western blot analysis in SUIT2 cells for the indicated protiens

analyses on day 7 post-infection, 5 days following G418 selection.

(K and L) Acute DNp63 expression in progenitor-like PDA cells. (K) Representat

(L) Table summarizing RNA-seq data evaluating the squamous-PDA identity sign

extracted and whole-cell lysates were prepared for the respective analyses 48 h

See also Figure S1.
transition, we first sought to identify the master regulator tran-

scription factor (TF), whose presence is sufficient to confer squa-

mous cell identity in PDA. To this end, we evaluated existing

transcriptome analyses of PDA tumors in search of TFs that

are selectively expressed in the squamous-like subtype of this

disease (Bailey et al., 2016; The Cancer Genome Atlas Research

Network, 2017). Among all of the TFs expressed in PDA, we

recovered TP63 expression as the most highly enriched in squa-

mous-subtype tumors, which is in accordance with prior obser-

vations and the known role of this TF in normal and neoplastic

squamous lineage contexts (Figures 1A, 1B, S1A, and S1B) (An-

dricovich et al., 2018; Bailey et al., 2016). In addition, we found

that endodermal TFs GATA6, HNF1A, HNF1B, and HNF4A are

often silenced in TP63-expressing tumors, which is consistent

with the mutually exclusive classification of PDA into progenitor

and squamous subtypes (Bailey et al., 2016). Notably, TP63 is

expressed at low levels in normal human and mouse pancreatic

epithelial cells, but it is aberrantly upregulated in 15%–26% of

primary human PDA tumors and metastatic lesions (Figures

S1C–S1F) (Boj et al., 2015; GTEx Consortium, 2015). To further

corroborate this finding, we turned to our recently established

collection of 56 human organoid cultures derived from normal

pancreatic tissue or PDA tumors (Tiriac et al., 2018). Using

RNA sequencing (RNA-seq) analysis, we verified that �20% of

PDA organoids express TP63, which increases in a stage-

dependent manner (Figure 1C; Table S1). Using RT-PCR anal-

ysis, we determined that the DN isoform of TP63 (DNp63) is

specifically expressed in these samples, which is known to be

the oncogenic form of this TF (Figure S1G) (Rocco et al., 2006).

TP63 expression in PDA tumors was associated with an inferior

overall survival across each study analyzed (Figures 1D, S1H,

and S1I). Considering the known link between DNp63 and squa-

mous cell carcinoma (Keyes et al., 2011), we investigated

whether manipulating this TF would allow us to understand the

importance of squamous lineage characteristics in PDA.

Ectopic Expression of DNp63 Is Sufficient to Drive
Squamous Transcriptional Reprogramming in PDA Cell
Lines
To evaluate lineage reprogramming in PDA, we used transcrip-

tome analysis of PDA tumors from Bailey et al. (2016) to define

gene expression signatures that discriminate squamous from

progenitor cell identity in this disease (Figure 1E; Tables S2

and S3). The squamous-PDA identity signature includes known

markers of the squamous cell lineage, including TP63, KRT5,

KRT6A, S100A2, and PTHLH (Kaufmann et al., 2001; Shrestha

et al., 1998; Kitazawa et al., 1991). We interrogated these signa-

tures in RNA-seq data obtained from eight human PDA cell lines,
uamous-PDA and progenitor-PDA identity signatures upon TP63 knockout.

cted and whole-cell lysates were prepared for the respective analyses on day 5

mous-PDA and progenitor-PDA identity signatures upon DNp63 expression.

. RNA was extracted and whole-cell lysates were prepared for the respective

ive western blot analysis in the indicated cell lines for the indicated proteins.

ature upon induction of DNp63 expression in the indicated cell lines. RNA was

r following dox administration.
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Figure 2. A Unique Enhancer Landscape Linked to DNp63 Occupancy in PDA

(A) Heatmap representation of unsupervised hierarchical clustering of nine human cell lines or organoids representing PDA or normal pancreatic ducts based on

H3K27ac occupancy at total H3K27ac ChIP-seq peaks. Scale bar indicates Pearson correlation coefficient. Normal organoids: hN34, hN35; PDA organoids: hF3,

hT85; PATU: PATU8988S.

(B) ChIP-seq density plots of TP63 and H3K27ac enrichments at squamous elements (top) or a set of 1,336 control H3K27ac regions (bottom) in the indicated cell

lines. Each row represents a 10-kb interval centered on the midpoint of each H3K27ac peak.

(C) ChIP-seq profiles of TP63 (top track) and H3K27ac at representative squamous elements close toKRT5 and KRT6A (left), TRIM29 (middle), and PTHLH (right).

(legend continued on next page)
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which allowed us to rank each line based on its degree of resem-

blance to progenitor or squamous cell fates (Figure 1F). In accor-

dance with the observations above in human tumors, TP63

mRNA and protein were only detected in the most squamous-

like PDA cell linesMIAPaca2 and BxPC3 (Figure 1F). We focused

our subsequent analysis of endogenous TP63 in BxPC3 cells as

they express the relevant DN isoforms, which is in contrast to

MIAPaca2 cells, which instead express the tumor-suppressive

transactivation domain (TA) isoform of TP63 (TAp63) (Figure S1J)

(Yang et al., 1998). Using CRISPR-Cas9, we targeted TP63 in

BxPC3 cells with two independent single guide RNAs (sgRNAs)

and performed RNA-seq analysis. Gene set enrichment analysis

(GSEA) (Subramanian et al., 2005) revealed that the loss of TP63

led to diminished expression of the squamous-PDA identity

signature, which was further supported by an independent

Gene Ontology analysis (Figures 1G and S1K). These gene

expression changes were not limited to mRNA levels, as loss

of KRT5/6 and S100A2 protein was also verified by western

blotting (Figure 1H). In addition, inactivating TP63 also led to a

paradoxical induction of the progenitor-PDA identity signature,

suggesting an antagonistic relation between these two cell fates

in PDA. These experiments suggest that the squamous tran-

scriptional signature in PDA is enforced by the presence of TP63.

Having validated the causal relation between TP63 and the hu-

man PDA tumor-derived squamous transcriptional signature, we

next evaluated whether ectopic expression of TP63 would be

sufficient to endow PDA cell lines with the transcriptional profile

of the squamous cell lineage. To this end, we initially lentivirally

transduced the DNp63 cDNA into two progenitor-like PDA cell

lines, SUIT2 and PATU8988S (Figure 1F; Table S4). RNA-seq

analysis of these cells revealed that DNp63 enhanced the

expression of squamous-PDA identity gene signatures in both

settings (Figures 1I, S1L, and S1M), which we also verified by

western blotting for squamous markers KRT5/6 and S100A2

(Figure 1J). Consistent with the findings above, DNp63 dimin-

ished the progenitor-PDA identity signature in both settings (Fig-

ures 1I and S1M). To investigate the sufficiency of DNp63 to

install squamous transcriptional features across a broader panel

of PDA cells in a more acute manner, we generated cell lines in

which DNp63 expression was under the control of doxycycline

(dox). The addition of dox led to robust activation of DNp63

expression (Figures 1K and S1N), and this was accompanied

by potent activation of the squamous-PDA identity gene signa-

ture in all of the human cell lines tested, as well as PDA cells

derived from KPC (Kras+/LSL-G12D; Trp53+/LSL-R172H;

Pdx1-Cre) mice (Figure 1L). These results demonstrate the ne-

cessity and sufficiency of DNp63 to produce squamous-like fea-

tures in PDA.
(D) GSEA plots evaluating the relative expression of genes proximal to squamous

et al. (2016). See also Table S5.

(E) Pie chart showing the genomic distribution of squamous elements according t

TSS, transcription start site.

(F) Ontology analysis of genes located nearest to squamous elements versus co

process (left) and disease ontology (right) are shown.

(G) Representation of motifs enriched at squamous elements versus control elem

fold change in p value. The TP53 position weight matrix is represented as TP53

control elements as determined by p value.

See also Figure S2.
A Unique Enhancer Configuration Linked to DNp63
Genomic Occupancy in PDA
Prior work has shown that lineage transitions in PDA are medi-

ated through alterations of the chromatin state and the associ-

ated landscape of active enhancer elements (Diaferia et al.,

2016; McDonald et al., 2017; Roe et al., 2017). However, it has

yet to be determined whether a distinct enhancer-chromatin

configuration exists in squamous versus progenitor subtypes

of PDA. To address this, we performed chromatin immunopre-

cipitation sequencing (ChIP-seq) analysis in 10 human cell lines

or organoids representing PDA or normal pancreatic ducts to

map the genome-wide pattern of histone H3 lysine 27 acetylation

(H3K27ac), which is a covalent modification that demarcates

active cis-regulatory elements (Rada-Iglesias et al., 2011). These

cultures include PDAs that express TP63 and other squamous

lineage markers, including the TAp63-expressing MIAPaca2

cells and two DNp63-expressing PDAs (BxPC3 cells and the

hF3 organoid), whereas the other cultures express the progeni-

tor-PDA identity signature (Figures 1F and S2A). An unsuper-

vised clustering analysis of the global pattern of H3K27ac

enrichment across the 10 cultures revealed three major groups

(Figures 2A and S2B). The most progenitor-like samples formed

two distinct clusters: one containing PATU8988S, hT85, and the

two normal ductal organoids, and the other containing AsPC1,

HPAFII, and SUIT2 cells. We found that the two DNp63-express-

ing squamous-like cultures (BxPC3 and hF3) formed a distinct

cluster, suggesting a unique enhancer-chromatin configuration

linked to this cell fate (Figure 2A). Of note, the TAp63-expressing

MIAPaca2 cell line did not cluster together with the two DNp63-

expressing cultures, indicating that this cell line is epigenetically

distinct (Figure S2B).

We next extracted the subset of H3K27ac-enriched regions

that correlated with the BxPC3 and hF3 cell cluster, which iden-

tified 1,336 regions that we termed ‘‘squamous elements’’ (Fig-

ures 2B and 2C; Table S5). Squamous elements were almost

entirely found at distal (non-promoter) sites and were located

near genes that were preferentially expressed in the squamous

subtype of PDA, suggesting that they represent enhancer ele-

ments (Figures 2D and 2E). In addition, an unbiased ontology

analysis of genes located near these elements confirmed their

association with the normal and neoplastic squamous lineage

(e.g., epidermis development, squamous cell carcinoma) (Fig-

ure 2F). KRT5/6, TRIM29, and PTHLH are examples of squa-

mous lineage genes located in proximity to squamous elements

(Figure 2C). These data complement prior transcriptional obser-

vations (Bailey et al., 2016) by suggesting that a subset of PDA

tumors display an enhancer landscape resembling the squa-

mous cell lineage.
elements in squamous or progenitor patient samples from the study by Bailey

o annotation of H3K27ac peaks by HOMER. TTS, transcription termination site;

ntrol elements using GREAT. Gene Ontology (GO) terms related to biological

ents using TRAP. Human promoters were used as the comparison library. Left:

family motif. Right: enrichment of the TP53 motif at squamous elements and
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Figure 3. DNp63 Expression Is Sufficient to Install and Maintain a Squamous Enhancer Landscape in PDA

(A and B) TP63 knockout in BxPC3 cells and H3K27ac ChIP-seq analysis. (A) Metagene representation of H3K27ac signal in squamous elements (left), random

control elements (middle), and all of the H3K27ac elements (right) in TP63 knockout and control cells. (B) ChIP-seq profiles of TP63 (top track) and H3K27ac at

representative squamous elements close to KRT5 and KRT6A (top) and PTHLH (bottom). BxPC3-Cas9 cells were cross-linked and prepared for ChIP-seq

analysis on day 5 post-infection, 3 days following G418 selection, with two independent TP63 or control sgRNAs (sgNEGs).

(C and D)DNp63 expression in SUIT2 cells and H3K27ac ChIP-seq analysis. (C) Metagene representation of H3K27ac signal in squamous elements (left), random

control elements (middle), and all of the H3K27ac elements (right) in SUIT2 cells expressingDNp63 or control cells. (D) ChIP-seq profiles of ectopically expressed

(legend continued on next page)
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We next investigated the causal role of TP63 in activating

squamous elements in the context of PDA. Using a TF affinity

prediction (TRAP) motif enrichment analysis (Thomas-Chollier

et al., 2011), we identified a motif recognized by TP63 as the

most enriched sequence within the entire group of squamous el-

ements (Figure 2G) (Yang et al., 1998). This finding led us to

perform ChIP-seq analysis of endogenous TP63 in BxPC3 cells,

which revealed pervasive TP63 occupancy at squamous ele-

ments. In contrast, we observed much lower levels of TP63

occupancy at a control set of H3K27ac-enriched locations

(Figures 2B, 2C, S2C, and S2D). These findings indicate that

squamous elements are linked to the occupancy of TP63 in the

squamous-like subtype of PDA.

Having established a link between TP63 and squamous ele-

ments in PDA, we next evaluated the functional requirement of

TP63 to activate these cis-regulatory elements. We used ChIP-

seq to profile H3K27ac in BxPC3-Cas9 cells following acute

transduction with TP63 sgRNAs (Figure S3A). This analysis

revealed a selective reduction in H3K27ac at squamous ele-

ments, whereas the levels of this histone mark were unchanged

at control locations (Figures 3A and 3B). To complement this

loss-of-function experiment, we next evaluated whether expres-

sion of TP63 would be sufficient to activate squamous elements.

To this end, we performed ChIP-seq analysis in control or

DNp63-expressing SUIT2 cells to profile the impact on the

enhancer landscape. While parental SUIT2 cells possess back-

ground levels of H3K27ac enrichment at squamous elements,

introducing DNp63 led to a selective induction of H3K27ac at

these locations, which now resembled the enhancer configura-

tion observed in hF3 and BxPC-3 cells that possess endogenous

DNp63 expression (Figures 3C, 3D, and S3B). To further investi-

gate the sufficiency of DNp63 to install squamous enhancers

across a broader panel of PDA cells, we performed ChIP-seq

analysis of H3K27ac enrichment following dox-inducible expres-

sion of DNp63 in the four most progenitor-like human PDA cell

lines. In each cell line tested, acute induction ofDNp63 produced

potent and selective acetylation of squamous elements (Figures

3E and S3C). Together with the transcriptional profiling results

above, these findings indicate that toggling the function of

DNp63 allows for the experimental manipulation of the enhancer

landscape that underlies the squamous subtype of PDA.

Phenotypic Consequences of DNp63-Mediated
Enhancer Reprogramming
We reasoned that the phenotypic characterization of SUIT2 cell

lines transduced with DNp63 provided an ideal system for prob-

ing the functional significance of this enhancer reprogramming

event in this disease. Under tissue culture monolayer conditions,

we found that expression of DNp63 led to a reduced rate of

SUIT2 cell proliferation, but enhanced cell motility in a scratch-

wound assay (Figures 4A and 4B). In three-dimensional growth

assay conditions in media supplemented with Matrigel (Corning
FLAG-tagged TP63 (top track) and H3K27ac at representative squamous element

linked and prepared for ChIP-seq analysis on day 7 post-infection, 5 days post-

(E) Metagene representation of H3K27ac signal in squamous elements (top) and

following dox-inducible expression of DNp63 or GFP as a control. Cells were cros

See also Figure S3.
Life Sciences), DNp63-expressing SUIT2 cells formed fewer col-

onies than control cells; however, the colonies that formed were

significantly larger and possessed more invasive projections

(Figures 4C and S4A). These findings suggested that DNp63

expression alters the growth and invasive characteristics of

PDA cells in vitro.

To extend these findings into themore relevant in vivo environ-

ment, we transplanted the DNp63-reprogrammed or control

SUIT2 cells harboring a luciferase transgene into the pancreas

of immunodeficient mice and monitored tumor progression us-

ing bioluminescent imaging. Following transplantation of equal

numbers of cells, we found at initial time points that DNp63-

expressing SUIT2 cells displayed less efficient engraftment

levels in comparison to their control counterparts, which is in

accordance with experiments performed in vitro (Figures 4D

and S4B). However, the DNp63-expressing cells proceeded to

expand more rapidly compared to controls and gave rise to

significantly larger tumors at the endpoint of the experiment

(Figures 4D and 4E). When injected into the tail vein of mice,

DNp63-expressing cells colonized the lung parenchyma with

similar kinetics to control mice, but formed larger metastatic

lesions at the terminal endpoint of the experiment (Figures 4F

and S4C). Histological examination of the primary tumors

revealed that DNp63 expression gave rise to poorly differenti-

ated tumors, and immunohistochemical staining confirmed the

upregulation of squamous lineage markers (Figure 4G). These

data suggest that enhancer reprogramming imposed by

DNp63 confers enhanced growth characteristics to PDA cells

in vivo in both primary and metastatic tissue contexts.

Squamous PDA Cells Become Addicted to DNp63
The findings above led us to investigate whether squamous PDA

cells become addicted to DNp63 to sustain their growth poten-

tial. Using CRISPR-Cas9 competition-based proliferation assays

evaluating the effects of individual sgRNAs, we validated that

TP63 is essential for the growth of BxPC3 cells, but dispensable

in other PDA contexts (Figures 5A, S5A, and S5B). To rule out any

CRISPR-induced artifacts, we also targeted TP63 in BxPC3 cells

using small hairpin RNAs (shRNAs) and observed a similar loss of

proliferative potential and highly concordant gene expression

changes to those seen following TP63 inactivation with sgRNAs

(Figures S5C–S5F). Moreover, knock down of TP63 in the hF3

PDA organoid sample also resulted in a growth arrest and sup-

pression of the squamous-PDA identity signature (Figures 5B,

5C, and S5G). The growth arrest phenotype in BxPC3 cells could

be rescued by expressing a CRISPR-resistant cDNA encoding

DNp63, with the degree of rescue correlating with the levels of

reconstituted DNp63 protein (Figures 5D, 5E, and S5H). We

next evaluated the impact of DNp63 inactivation on PDA growth

in vivo by transducing BxPC3-Cas9-luciferase cells with TP63

sgRNAs before transplantation into the pancreas or the tail

vein of immunodeficient mice. By monitoring tumor progression
s close to KRT5 and KRT6A (top) and PTHLH (bottom). SUIT2 cells were cross-

G418 selection.

random control elements (bottom) in the indicated progenitor-like PDA cells

s-linked and prepared for ChIP-seq analysis 48 hr following dox administration.
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Figure 4. Phenotypic Consequences of DNp63-mediated Enhancer Reprogramming

(A–C) In vitro consequences ofDNp63-mediated squamous lineage reprogramming. SUIT2 cells were infectedwithDNp63 cDNAor an empty vector and assayed

on day 7 post-transduction, day 5 post-G418 selection. (A) Line graph showing in vitro cell growth as determined by CellTiter-Glo (Promega) assay. Means

±SEMs are shown. n = 3. (B) Bar chart (left) showing quantification of scratch assays at the indicated time points post-seeding, and representative images are

shown (right). Means + SEMs are shown. n = 3. (C) Bar chart (left) showing quantification of colony size in three-dimensional (3D) Matrigel colony formation assays

on day 7 post-plating, day 14 post-viral transduction. Colony size was measured using ImageJ software (NIH). Means + SEMs are shown. n = 3. Representative

images at day 7 are shown (right).

(D–G) In vivo consequences of DNp63-mediated squamous lineage reprogramming. SUIT2 cells harboring a luciferase transgene were infected with DNp63

cDNA or an empty vector and transplanted on day 5 post-viral transduction, day 3 post-G418 selection. (D) Line graph (left) shows quantification of the biolu-

minescence signal following orthotopic injection of 50,000 cells to the pancreas of NSGmice. Means ± SEMs are shown. Mice were imaged on days 7, 11, 14, 17,

and 20 post-transplantation, and representative images are shown (right). n = 4mice per group. (E) Bright-field images of tumors removed frommice shown in (D)

on day 21 post-transplantation. (F) Line graph (left) shows quantification of bioluminescence signal following injection of 100,000 cells via the tail vein of NSG

mice. Means ± SEMs are shown. Mice were imaged every 2 days from days 7 to 23 post-transplantation, and representative images are shown (right panel).

n = 5 mice per group. Scale bar indicates luminescence signal. (G) Representative H&E (left) or immunohistochemical staining for the indicated proteins of tumor

samples from (E). Scale bar indicates 50 mm. *p < 0.001 by two-way ANOVA with Sidak’s test for multiple comparisons.

See also Figure S4.
using bioluminescent imaging, we found that TP63 inactivation

resulted in complete arrest of tumor growth when compared to

control cells, both at the primary site and in the lung parenchyma

(Figures 5F–5I and S5I). These results are complementary to our

experiments in reprogrammed SUIT2 cells and suggest that

squamous-like PDA tumors become addicted to DNp63 to sus-

tain tumor growth in vivo.
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We next investigated which target genes within the DNp63-

reprogrammed enhancer landscape may be relevant to the

progression of PDA. For this purpose, we analyzed our collec-

tive RNA-seq and ChIP-seq datasets in search of high-confi-

dence DNp63 target genes. By intersecting the genes downre-

gulated following TP63 ablation in BxPC3 cells with the genes

upregulated following DNp63 expression in SUIT2 cells, we



Figure 5. DNp63 Is a Dependency in Squa-

mous PDA Cells

(A) Competition-based proliferation assay in

BxPC3 cells following infection with the indicated

sgRNAs linked to GFP. Means + SEMs are shown.

n = 3.

(B and C) TP63 knockdown in hF3 organoids. (B)

Representative western blot analysis for the indi-

cated proteins in the indicated conditions. Whole-

cell lysates were prepared on day 8 post-infection

with shRNAs, 5 days post-selection with puro-

mycin. (C) Line graph showing in vitro cell growth

as determined by CellTiter-Glo assay following

infection with the indicated shRNAs. Means ±

SEMs are shown. n = 3. *p <0.01 by two-way

ANOVA with Sidak’s test for multiple compari-

sons.

(D and E) TP63 sgRNA/cDNA rescue assay in

BxPC3 cells. (D) Competition-based proliferation

assay in BxPC3 cells stably expressing the indi-

cated cDNA following infection with the indicated

sgRNAs linked to GFP. Means + SEMs are

shown. n = 3. (E) Representative western blot

analysis for the indicated proteins in the indicated

conditions. Whole-cell lysates were prepared on

day 5 post-infection with sgRNAs; the GFP per-

centage was >95% in each condition for western

blot analysis. DNp63 WT, wild-type DNp63;

DNp63 Mut#3, DNp63 cDNA resistant to

sgTP63#3; DNp63 Mut#4, DNp63 cDNA resistant

to sgTP63#4.

(F and G) In vivo consequences of TP63

knockout. BxPC3-Cas9 cells expressing a lucif-

erase transgene were infected with two inde-

pendent TP63 or control (sgNEG) sgRNAs before

transplantation on day 5 post-infection, 3 days

post-G418 selection. Line graphs show quantifi-

cation of bioluminescence signal following injec-

tion of 100,000 cells to the pancreas (F) or

250,000 cells via the tail vein (G) of NSG mice.

Means ± SEMs are shown.

(H and I) Representative bioluminescence images

at the indicated days post-transplant following

injection of cells to the pancreas (H) or via the tail

vein (I) of NSG mice. Scale bar indicates lumi-

nescence signal. n = 4–5 mice per group. *p <

0.01 by two-way ANOVA with Sidak’s test for

multiple comparisons.

See also Figure S5.
recovered 63 candidate DNp63 targets. We reduced this list to

58 genes by requiring that a target gene be located near a peak

of TP63 occupancy detected by ChIP-seq (Figure 6A; Table S6).

As expected, these 58 genes were preferentially expressed in

the squamous subtype of PDA and included the previously

described squamous lineage genes KRT5, PTHLH, and

S100A2 (Figure S6A). From a literature search, we note that

many of the DNp63 target genes encode proteins that have

been causally implicated in promoting tumor cell growth and

cancer progression in prior studies, such as HRAS and

CXCL8 (Grabocka et al., 2014; Young et al., 2013) (Figures

6B–6D; Table 1). Consistent with these observations, these
genes are concordantly downregulated following TP63 knock-

down in the hF3 PDA organoid (Figures S6B and S6C). We addi-

tionally found that MYC mRNA and protein were significantly

downregulated following TP63 inactivation, which is in accord

with the elevated level of the MYC transcriptional network in

squamous-subtype PDA tumors (Bailey et al., 2016) (Figures

S5E, S6D, and S6E). Our ChIP-seq analysis identified several

TP63-occupied squamous elements at the MYC locus, which

may account for TP63-mediated MYC regulation (Figure S6F).

This analysis reveals a network of cancer-promoting DNp63

targets that are activated during enhancer reprogramming in

squamous-subtype PDA.
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Figure 6. The Core Circuitry of DNp63-

Mediated Enhancer Reprogramming in

Squamous PDA Cells

(A) Venn diagram showing the overlap of signifi-

cantly downregulated genes in BxPC3-Cas9 cells

and upregulated genes in SUIT2 cells following

infection with sgRNAs targeting TP63 or expres-

sion ofDNp63 cDNA, respectively (fold change >2,

p < 0.01). See also Table S6.

(B) Bar graph showing the mean log2 fold change

of example genes from (A). See also Table 1.

(C and D) ChIP-seq profiles of TP63, FLAG-tagged

DNp63, and H3K27ac at the DNp63 target genes

HRAS (C) and CXCL8 (D) following TP63 knockout

in BxPC3-Cas9 cells or expression of DNp63 in

SUIT2 cells.

See also Figure S6.
DISCUSSION

Prior studies have shown that squamous lineage markers

become aberrantly expressed in a subset of aggressive PDAs

(Andricovich et al., 2018; Bailey et al., 2016; Morohoshi et al.,

1983). Here, we have pursued the causal role of squamous trans-

differentiation in PDA progression using an experimental

approach that exploits the master regulator concept, which is

classically defined by the ability of certain TFs to drive cell fate

transitions by functioning at the apex of a gene regulatory

network (Davis et al., 1987). The gain- and loss-of-function epi-

genomic analysis presented in this study validates DNp63 as a

master regulator of the squamous identity in PDA, which is

consistent with the known role of this TF in normal squamous

epithelial tissues and in squamous cell carcinomas (Soares

and Zhou, 2018). We have used the master regulator property

of DNp63 to endow PDA cells with the enhancer landscape

and transcriptional signature associated with squamous identity

without the confounding effect of altering the tumor genotype.

This approach leverages recent transcriptome analyses of

human PDA to validate that DNp63-mediated reprogramming

produced in cell lines faithfully recapitulates the transcriptional

profile seen in human tumors (Bailey et al., 2016; The Cancer

Genome Atlas Research Network, 2017). This approach allowed

us to demonstrate that a DNp63-driven enhancer landscape

promotes PDA progression in vivo.

Our study highlights the utility of enhancer profiling as a strat-

egy for mapping cell fate transitions in cancer and for the vali-

dation of lineage reprogramming by master regulators in an

experimental setting. In specific cancers, enhancer profiling

has revealed novel tumor subtypes that reflect an alternative

cell of origin (Lin et al., 2016). In pancreatic cancer, enhancer

profiling has been used to provide insight into transdifferen-
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tiation mechanisms of cellular lineage.

For example, prior work in cancer cell

lines revealed an enhancer configura-

tion established by endodermal lineage

TFs (e.g., KLF5), which becomes extin-

guished in cell lines with mesenchymal

features (Diaferia et al., 2016). We previ-
ously used a mouse organoid progression model of PDA to

reveal the activation of an embryonic foregut enhancer land-

scape by FOXA1, which promotes disease progression and

metastatic spread (Roe et al., 2017). However, neither of these

prior studies focused on the squamous subtype of PDA, which

has only recently been recognized as a common form of PDA

with an exceptionally poor prognosis (Bailey et al., 2016). A

major finding in our study is that massive alterations of the

enhancer landscape occur upon acquiring a squamous identity,

which strongly suggests that the previously described squa-

mous transcriptional signature in PDA reflects a bona fide cell

fate transition in this disease.

Our prior studies highlighted the role of TFs in driving the reor-

ganization of enhancers and promoting disease progression

and metastatic spread in PDA, identifying FOXA1 as a driver

of this process (Roe et al., 2017). However, in contrast to

FOXA1, which requires cooperating TFs to achieve effective

enhancer activation in PDA, here, we demonstrate that DNp63

expression alone is sufficient to install squamous enhancer ele-

ments and promote aggressive disease characteristics in this

disease. The powerful effects of DNp63 on the enhancer land-

scape of PDA cells are also reflected in their ensuing addiction

to the continued expression of this TF, as well as an exception-

ally poor prognosis in this group of PDA patients, which we did

not observe to be the case for FOXA1 (Roe et al., 2017). Thus,

although these studies highlight a common theme of enhancer

reprogramming in driving disease progression in PDA, they also

highlight that the functional and clinical outputs of this reprog-

ramming event can be distinct and are determined by the

master regulator TFs deregulated in this disease.

One unexpected result in our study is that DNp63 expression

augments PDA tumor cell growth under in vivo conditions

and in three-dimensional cultures, but not in two-dimensional



Table 1. DNp63 Target Genes with Oncogenic Potential

Putative DNp63 Target Gene Oncogenic Phenotype Reference

S100A2 migration and metastasis Bulk et al., 2009

CXCL1 tumor growth, tumor cell survival, angiogenesis,

myeloid cell recruitment

Acharyya et al., 2012

STC1 tumor growth, tumor cell survival, metastasis Peña et al., 2013

PTHLH metastasis, tumor growth, tumor cell survival Iguchi et al., 1996; Urosevic et al., 2014

CCL20 metastasis, myeloid cell recruitment, EMT Ye et al., 2016

CXCL8 angiogenesis, tumor growth and migration, metastasis,

myeloid cell recruitment

Waugh and Wilson, 2008

NRG1 tumor growth Sheng et al., 2010

ARL4D tumor cell migration Li et al., 2007

IL6R tumor progression and inflammation Hodge et al., 2005

HAS3 tumor growth, angiogenesis, ECM deposition, migration Itano et al., 2002; Liu et al., 2001

AREG tumor growth, cell migration, chemoresistance Peterson et al., 2015; Zhang et al., 2009

LPXN tumor progression Kaulfuß et al., 2009

AK4 tumor invasion and metastasis Jan et al., 2012

ADORA2B invasion, migration and metastasis Desmet et al., 2013

HRAS tumor cell growth, survival, and maintenance Grabocka et al., 2014; Young et al., 2013

ECM, extracellular matrix; EMT, epithelial-to-mesenchymal transition.

See also Figure 6.
monolayer conditions. This finding can be explained, as many of

the DNp63 target genes identified in this study have been previ-

ously shown to drive migratory and invasive properties of tumor

cells, such as HAS3 and S100A2 (Bulk et al., 2009; Itano et al.,

2002). Moreover, a number of DNp63 target genes encode pro-

teins that can modulate the tumor microenvironment. This in-

cludes the genes CXCL1, CXCL8, and CCL20, which encode

pro-inflammatory cytokines that can drive tumor progression

through non-cell-autonomous mechanisms, such as promoting

angiogenesis and the recruitment of tumor-propagating myeloid

cells (Acharyya et al., 2012; Waugh and Wilson, 2008; Ye et al.,

2016). It is also noteworthy that some DNp63 target genes may

have effects that reach beyond the local microenvironment.

For example, the gene PTHLH encodes a secreted hormone

that is implicated in hypercalcemia of malignancy and cachexia

(Burtis et al., 1987; Iguchi et al., 1996; Kir et al., 2014; Urosevic

et al., 2014). We hypothesize that DNp63-driven enhancer re-

programming and hijacking of the squamous lineage program

provide an efficient means for PDA cells to acquire capabilities

for sustained invasive growth into the tissue parenchyma of the

pancreas and at distal sites. It may also play a systemic role dur-

ing the course of disease progression.

Prior studies have implicated a role forDNp63 as an oncogene,

such as in squamous cell carcinoma (Rocco et al., 2006). Diverse

mechanisms have been proposed to explain the tumor-promot-

ing function ofDNp63,which include antagonismof p53,modula-

tion of microRNAs, bypass of senescence, and enhanced cancer

stem cell activity (Keyes et al., 2011;Memmi et al., 2015; Su et al.,

2010; Yang et al., 1998). To our knowledge, our study is the first to

demonstrate that DNp63 is sufficient to reprogram the enhancer

landscape of PDA cells and confer properties of the squamous

cell lineage, thus implicating squamous transdifferentiation in tu-

mor progression. Of note, in vitro experiments performed using
our dox-regulated system in SUIT2 cells, whereby DNp63 was

transiently introduced and subsequently removed, suggest that

the addiction to DNp63 does not occur immediately following its

expression, but instead requires a longer period of transdifferen-

tiation before the addiction ensues (data not shown). It is impor-

tant to consider that the aberrant acquisition of a squamous iden-

tity in PDA occurs in the context of a highly mutated cancer

genome, which includes oncogenic KRAS and inactivation of

several tumor-suppressor genes, aswell as within the complexity

of the tumor microenvironment. Thus, it is likely that the genes

activated through themechanismof TP63-mediatedenhancer re-

programming collaborate with the milieu of established genetic

mutationswithin thecontext of aPDAcell topromote thisdisease.

The observation that squamous-like PDAs are enriched for mu-

tations in specific tumor suppressors suggests that certain geno-

typesmay bemore permissive for the acquisition of a squamous-

like identity in PDA (Andricovich et al., 2018; Bailey et al., 2016).

A recent study described a KrasG12D/Kdm6a�/� mouse model

of PDA that forms tumors that express TP63 (Andricovich et al.,

2018). Because KDM6A mutations are enriched in squamous-

like human PDAs, the Andricovich et al. (2018) study establishes

how specific genotypes can predispose tumor cells to acquire

squamous attributes. However, mutations in KDM6A (and other

related chromatin regulators) only account for less than half of

the squamous PDA tumors (Bailey et al., 2016). This suggests

the existence of additional mechanisms that activate TP63

expression in PDA. Prior work has implicated genotoxic stress,

hypoxia, Notch ligands, and Hedgehog signals as regulating

TP63 expression, suggesting a possibility that non-geneticmech-

anisms in the pancreas microenvironment may also contribute to

the squamous lineage transition in PDA (Li et al., 2008; Petitjean

et al., 2008; Tadeu and Horsley, 2013; Xi et al., 2017). Moreover,

it also possible that other TFs participate in the acquisition of
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squamous cell characteristics in PDA. For example, SOX2 can

function as a lineage oncogene in squamous cell carcinomas

(Bass et al., 2009), and MYC amplifications have been correlated

with adenosquamous variants of pancreatic cancer (Witkiewicz

et al., 2015). While our findings suggest a functional link between

MYC and DNp63, we did not find evidence for a role for SOX2 in

squamous transdifferentiation in PDA (data not shown). Never-

theless, our findings and the work of Andricovich et al. (2018) pro-

vide complementary evidence in human and murine systems,

respectively, to implicate the acquisition of a squamous-like iden-

tity as a contributor to PDA progression.

A major challenge in implementing cancer therapy is in identi-

fying tumor biomarkers that predict exceptional responses. In

this study, we have shown that introducing DNp63 into a PDA

cell line is sufficient to reprogram the epigenome and cell identity

to one that resembles human squamous-like PDA tumors. This

approach provides a powerful isogenic cell system for investi-

gating unique vulnerabilities linked with the squamous subtype

of PDA. For example, domain-focused CRISPR screening could

be applied to control and DNp63-expressing SUIT2 cells to

discover actionable targets that are linked with this cell fate tran-

sition (Shi et al., 2015). More broadly, our study calls attention to

the use of master regulator TFs as predictive biomarkers for tar-

geted therapies, thus implicating isogenic-reprogrammed cell

lines as a powerful tool for revealing dependencies linked with

specific cellular states.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-TP63 (for WB, IHC and ChIP) Cell Signaling Cat# 39692; RRID: N/A

Rabbit polyclonal anti-KRT5/6 (for WB) Millipore Cat# MAB1620; RRID: AB_94292

Rabbit polyclonal anti-S100A2 (for WB and HIC) Abcam Cat# ab109494; RRID: AB_10859000

ImmPRESS Horse-Anti-Rabbit Ig Reagent

antibody (IHC)

Vector Cat# MP-7401; RRID: AB_2336529

ImmPRESS Horse-Anti-Mouse Ig Reagent

antibody (IHC)

Vector Cat# MP-7402; RRID: AB_2336528

Mouse monoclonal anti-HSC70 (for WB) Santa Cruz Biotechnology Cat# sc-7298; RRID: AB_627761

Rabbit polyclonal anti-H3K27ac (for ChIP) Abcam Cat# ab4729; RRID: AB_2118291

Rabbit polyclonal anti-MYC (for ChIP) Abcam Cat# ab32072; RRID: AB_731658

Mouse monoclonal anti-FLAG (for ChIP) Sigma-Aldrich Cat# F1804; RRID: AB_262044

Chemicals, Peptides, and Recombinant Proteins

10% Neutral Buffered Formalin Thermal Fisher Scientific Cat# 22-110-869

2-Mercaptoethanol Sigma-Aldrich Cat# M6250

Isopropanol Sigma-Aldrich Cat# 190674

2x Laemmli Sample Buffer BIO-RAD Cat# 1610737

Chloroform Sigma-Aldrich Cat# 288306

DNase I (RNase-free) New England Biolabs Cat# M0303S

Formaldehyde, 37% solution Avantor Cat# 2106-01

Glycine Thermal Fisher Scientific Cat# BP381-1

Penicillin/Streptomycin Thermal Fisher Scientific Cat# 15140122

Polybrene EMD Millipore Cat# TR-1003-G

Polyethylenimine, Linear, MW 25,000 (PEI 25000) Polysciences Cat# 23966-1

TRIzol Reagent Thermo Fisher Cat# 15596018

D-Luciferin Goldbio Cat# 115144-35-9

Geneticin Selective Antibiotic (G-418 Sulfate) Thermal Fisher Scientific Cat# 10131035

Puromycin dihydrochloride Sigma-Aldrich Cat# P8833

Blasticidin S HCl Thermal Fisher Scientific Cat# A1113903

DMEM with 4.5 g/L glucose, L-glutamine &

sodium pyruvate

Cellgro Cat# 10-013-CV

Advanced DMEM/F12 Life Technologies Cat# 12634-028

RPMI 1640 w/ L-glutamine Fisher Scientific Cat# MT10040CV

HEPES Life Technologies Cat# 15630-130

Glutamax Life Technologies Cat# 35050-079

AB3-01 Tocris Bioscience Cat# 2939

hEGF PeproTech Cat# AF-100-15

mNoggin PeproTech Cat# 250-38

hFGF10 PeproTech Cat# 100-26

hGastrin Tocris Bioscience Cat# 3006

N-acetylcysteine Sigma-Aldrich Cat# A9165-5G

Nicotinamide Sigma-Aldrich Cat# N0636-100G

PGE2 Tocris Bioscience Cat# 2296

B27 supplement Life Technologies Cat# 17504044

R-Spondin 1 Cells Trevigen Cat# 3710-001-K

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Afamin/Wnt3A conditioned media Osaka University N/A

T4 DNA Polymerase New England Biolabs Cat# M0203L

DNA Polymerase I, Large (Klenow) Fragment New England Biolabs Cat# M0201L

T4 polynucleotide kinase New England Biolabs Cat# M0201L

Klenow Fragment (30-50 exo-) New England Biolabs Cat# M0212L

ImmPACT DAB peroxidase (HRP) substrate Vector Cat# SK-4105

Doxycycline hyclate Sigma-Aldrich Cat# D9891

Critical Commercial Assays

TruSeq RNA Sample Prep Kit v2 Illumina Cat# RS-122-2001

TruSeq ChIP Sample Prep Kit Illumina Cat# IP-202-1012

Power SYBR Green Master Mix Thermo Fisher Scientific Cat# 4368577

qScript cDNA SuperMix Quanta bio Cat# 95048-500

SuperScript II Reverse Transcriptase Thermo Fisher Cat# 18064014

Agencourt AMPure XP Beckman Coulter Cat# A63880

Dynabeads Protein A Thermal Fisher Scientific Cat# 10002D

Dynabeads Protein G Thermal Fisher Scientific Cat# 10003D

MiniElute PCR Purification Kit QIAGEN Cat# 28004

QIAquick Gel Extraction Kit QIAGEN Cat# 28704

Agilent High Sensitivity DNA Kit Agilent Genomics Cat# 5067-4626

CellTiter-Glo Luminescent Cell Viability Assay Promega G7570

Corning Matrigel Growth Factor Reduced (GFR)

Basement Membrane Matrix, *LDEV-free

Life Sciences Cat# 354230

Deposited Data

ChIP-seq and RNA-seq data This paper GEO: GSE115463

PDAC patients microarray data (Moffitt et al., 2015) GEO: GSE71729

Experimental Models: Cell Lines/Organoids

Human PDA cell line PATU8988S DSMZ Cat# ACC 204

Human PDA cell line HPAFII ATCC Cat# CRL-1997

Human PDA cell line AsPC1 ATCC Cat# CRL-1682

Human PDA cell line SUIT2 JCRB JCRB1094

Human PDA cell line CFPAC1 ATCC Cat# CRL-1918

Human PDA cell line PANC1 ATCC Cat# CRL-1469

Human PDA cell line MIAPaca2 ATCC Cat# CRL-1420

Human PDA cell line BxPC3 ATCC Cat# CRL-1687

Human HEK293T CSHL N/A

Human normal pancreas organoid hN30 (Tiriac et al., 2018) N/A

Human normal pancreas organoid hN34 (Tiriac et al., 2018) N/A

Human normal pancreas organoid hN35 (Tiriac et al., 2018) N/A

Human PDA organoid hF3 (Tiriac et al., 2018) N/A

Human PDA organoid hT85 (Tiriac et al., 2018) N/A

Human PDA organoid hF2 (Tiriac et al., 2018) N/A

Human PDA organoid hT3 (Tiriac et al., 2018) N/A

Murine PDA cell line FC1199 David Tuveson N/A

Murine PDA cell line FC1242 David Tuveson N/A

Murine PDA cell line FC1245 David Tuveson N/A

Experimental Models: Organisms/Strains

Mouse: NSG The Jackson Laboratory Stock # 005557

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

sgRNA/shRNA/RT-PCR sequences see Table S7 This paper N/A

Recombinant DNA

deltaNp63alpha-FLAG (Chatterjee et al., 2008) Addgene plasmid #26979

LentiV-DNp63-FLAG-neo This paper N/A

Lenti-luciferase-blast This paper N/A

LentiV-Cas9-puro (Tarumoto et al., 2018) Addgene plasmid #108100

LRNG (Lenti_sgRNA_EFS_Neo-IRES-GFP) (Roe et al., 2017) N/A

LRG2.1 (Tarumoto et al., 2018) Addgene plasmid #108098

LEPG (LTR-miRE-shRNA-PGK-puro-IRES-GFP) (Fellmann et al., 2013) Addgene plasmid #111160

psPAX2 N/A Addgene plasmid #12260

TREtight-DNp63-EFS-rtTA-P2A-Puro This paper N/A

TREtight-GFP-EFS-rtTA-P2A-Puro This paper N/A

Software and Algorithms

MACS 1.4.2 (Feng et al., 2012) http://liulab.dfci.harvard.edu/MACS/00README.html

SAMtools 1.4 (Li et al., 2009) http://samtools.sourceforge.net

BEDTools 2.22.1 (Quinlan and Hall, 2010) https://bedtools.readthedocs.io/en/latest/

TRAP (Thomas-Chollier et al., 2011) http://trap.molgen.mpg.de/cgi-bin/home.cgi/home.cgi

HOMER v4.9 (Heinz et al., 2010) http://homer.ucsd.edu/homer/

HISAT2 (Kim et al., 2015) http://ccb.jhu.edu/software/hisat2/index.shtml

Cufflinks (Trapnell et al., 2010) http://cole-trapnell-lab.github.io/cufflinks/

Morpheus Broad Institute https://software.broadinstitute.org/morpheus/

UCSC Genome Browser UCSC http://genome.ucsc.edu

GSEA (Subramanian et al., 2005) http://software.broadinstitute.org/gsea/index.jsp

Bowtie2 (Langmead and Salzberg, 2012) http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

GREAT (McLean et al., 2010) http://bejerano.stanford.edu/great/public/html/

ImageJ NIH https://imagej.nih.gov/ij/

GraphPad PRISM 6 GraphPad Software https://www.graphpad.com/scientific-software/prism/

Living Image Software PerkinElmer http://www.perkinelmer.com/lab-products-and-services/

resources/in-vivo-imaging-software-downloads.html#

LivingImage

TreeView (Saldanha, 2004) http://jtreeview.sourceforge.net

CBioPortal (Cerami et al., 2012) http://www.cbioportal.org

The International Cancer Genome Consortium ICGC https://dcc.icgc.org

GTExPortal (GTEx Consortium, 2015) http://gtexportal.org/home/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Chris-

topher Vakoc (vakoc@cshl.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All animal procedures and studies were approved by the Cold Spring Harbor Laboratory Animal Care and Use Committee in accor-

dance to IACUC. Six- to ten-week old female NSG mice used for transplant studies were purchased from the Jackson Laboratory.

Cell Lines
PATU8988S, HPAFII, AsPC1, SUIT2, CFPAC1, PANC1, MIAPaca2 and BxPC3 cells were cultured in RPMI supplemented with 10%

FBS (R10). FC1199, FC1242 and FC245were derived from KPC (Kras+/LSL-G12D; Trp53+/LSL-R172H; Pdx1-Cre) mice and cultured

in DMEM with 10% FBS. hN30, N34, hN35, hT85, hF2 and hF3 (human organoid samples) were established and cultured as
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described in detail elsewhere (Tiriac et al., 2018). Briefly, cells were plated with Matrigel and grown in Human complete Feeding

Medium (hCPLT): advanced DMEM/F12, HEPES 10mM, Glutamax 1X, A83-01 500nM, hEGF 50ng/mL, mNoggin 100ng/mL,

hFGF10 100ng/mL, hGastrin I 0.01 mM, N-acetylcysteine 1.25mM, Nicotinamide 10mM, PGE2 1 mM, B27 supplement 1X final,

R-spondin1 conditioned media 10% final, Afamin/Wnt3A conditioned media 50% final. HEK293T cells were cultured in DMEM

with 10% FBS. Penicillin/streptomycin were added to all cell culture. HEK293T cells were used for packaging lentivirus using poly-

ethylenimine (PEI)-mediated transfection.

METHOD DETAILS

Plasmid Construction
For generation of the LentiV-DNp63-neo vector, DNp63 cDNA from the detlaNp63-FLAG vector (addgene #26979) (Chatterjee et al.,

2008) was subcloned to LentiV-Cas9-puro vector (addgene #108100) (Tarumoto et al., 2018) in place of Cas9 and the puromycin

resistance cassette was replaced with a neomycin resistance cassette. For the LentiV-neo empty vector, Cas9 was replaced with

a 3*FLAG sequence (Xu et al., 2018). For generation of the LentiV-DNp63-FLAG-neo vector, a 3*FLAG sequence was added to

the C terminus of DNp63 cDNA in the LentiV-DNp63-neo vector. To generate Lenti-luciferase-blast vector the luciferase transgene

from Lenti-luciferase-P2A-Neo vector (addgene #105621) to a vector with blasticidin resistance. For experiments involving dox-

regulated expression, cells were infected with DNp63 or GFP cDNA in the dox-regulated vector YXP (TREtight-cDNA-EFS-rtTA-

P2A-Puro) and selected with puromycin (3 mg/ml).

Lentiviral Production and Infection
Lentivirus was produced in HEK293T cells by transfecting plasmids and packaging plasmids (VSVG and psPAX2) using PEI. Media

was replaced with R10 media 6-8 hours following transfection and lentivirus-containing supernatant was subsequently collected

every 12 hours for 48 hours prior to filtration through a 0.45 mm filter. For infection of cells, cell suspensions were mixed with

lentiviral-containing supernatant supplemented with polybreane to a final concentration of 4 mg/ml. Cells were plated in tissue culture

plates of the appropriate size and lentiviral-containing supernatant was replaced with fresh media after an incubation period of

6-8 hours.

In Vitro Phenotypic Assays
SUIT2 cells were first infected with DNp63 cDNA in LentiV-DNp63-neo vector or the empty vector as a control. Two days post infec-

tion, transduced cells were selected with 1 mg/ml of G418 and on day seven post infection, cells were counted by trypan blue exclu-

sion and used for the assays described below.

For cell growth assays, 200 cells were plated in quadruplicate in 20 mL of media in each well of a 384-well plate. Quantification of

viable cells was determined every 24 hours post seeding for a total of six days using CellTiterGlo Luminescent Cell Viability Assay kit

(Promega) and a SpectraMax plate reader (Molecular Devices) following the manufacture’s protocol.

For 3DMatrigel colony formation assays, 5,000 cells were resuspended in 1ml RPMI supplemented with 5%Matrigel and 2% FBS

and plated in triplicate in eachwell of an ultra-low attachment 24-well plate (Corning). Bright field images were captured on day seven

post plating and colony size and number were quantified from four 4x images per well using ImageJ software (NIH).

For scratch assays, cells were first plated to confluency in triplicate in wells of a standard 24-well plate. At day 0 of the assay, a

wound was applied down the center of the well using a pipette tip. Media was subsequently removed and cells washed with PBS

before addition of 1ml serum-free RPMI. Bright field images were captured using a 4x objective immediately (0 hours) and then at

6 hours and 24 hours post plating. Area of the wound was quantified using ImageJ software (NIH).

CRISPR-Based Targeting
For GFP-depletion assays, cells stably expressing Cas9 in LentiV-Cas9-puro vector were infected with sgRNAs in LRG2.1 vector

(addgene #108098). GFP% was measured on day three (P0) and then every three days post viral transduction until the end of the

experiment.

For RNA-seq experiments of CRISPR based targeting of TP63 in BxPC3 cells, BxPC3 cells stably expressing Cas9 were infected

with control or TP63 sgRNAs in LRNG vector. Two days post infection with sgRNAs, transduced cells were selected with 1mg/ml of

G418 and on day five post infection cells were used for RNA-seq analysis.

For CRISPR based targeting of TP63 in BxPC3 cells in vivo, please refer to the in vivo transplantation experiments section. sgRNA

sequences can be found in Table S7.

shRNA targeting in BxPC3 cells and hF3 organoids
shRNAs targeting TP63 or control were cloned into the miR-E-based retroviral shRNA expression vector LEPG (LTR-miRE-shRNA-

PGK-puro-IRES-GFP) (addgene #111160) (Fellmann et al., 2013). For GFP depletion assays in BxPC3 cells, GFP%wasmeasured on

day three (P0) and then every three days post viral transduction until the end of the experiment. For cell growth assays in hF3 organo-

ids, cells were first infected with the appropriate lentiviral supernatant and at three days post infection, transduced cells were

selected with 2 mg/ml of puromycin for five days. On day eight post infection, cells were counted by trypan blue exclusion and
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500 cells were plated in triplicate in 30 mL of hCPLT media supplemented with 10% Matrigel in each well of a 384-well plate.

Quantification of viable cells was determined every 24 hours post seeding for a total of seven days using CellTiterGlo Luminescent

Cell Viability Assay kit (Promega) and a SpectraMax plate reader (Molecular Devices) following the manufacture’s protocol.

For RNA-seq experiments of shRNA-mediated targeting of TP63 in BxPC3 cells and hF3 organoids, cells were infectedwith control

or TP63 shRNAs in MLS-E vector and at two days (for BxPC3 cells) or three days (for hF3 organoids) post infection with shRNAs,

transduced cells were selected with 2 mg/ml of puromycin and on day five (for BxPC3 cells) or day eight (for hF3 organoids) post infec-

tion cells were used for RNA-seq analysis. shRNA sequences can be found in Table S7.

In Vivo Transplantation Experiments
All animal procedures and studies were approved by the Cold Spring Harbor Laboratory Animal Care and Use Committee in accor-

dance to IACUC.

For CRISPR-mediated targeting of TP63 in BxPC3 cells in vivo, BxPC3 cells stably expressing Cas9 were first infected with a lucif-

erase transgene in Lenti-luciferase-blast vector and a stable cell line was generated by selection with 10 mg/ml blasticidin. These cells

were subsequently infected with control or TP63 sgRNA in LRNG vectors. Two days post infection with sgRNAs, transduced cells

were selected with 1mg/ml of G418 for three days and on day five post infection, cells were counted by trypan blue exclusion,

resuspended in PBS and kept on ice prior to transplantation.

For in vivo experiments using reprogrammed SUIT2 cells, parental SUIT2 cells were first infected with a luciferase transgene in

Lenti-luciferase-blast vector and a stable cell line was generated by selection with 10 mg/ml blasticidin. These cells were subse-

quently infected DNp63 cDNA in LentiV-DNp63-neo vector or the empty vector as a control. Two days post infection, transduced

cells were selected 1 mg/ml of puromycin for three days and on day five post infection, cells were counted by trypan blue exclusion,

resuspended in PBS and kept on ice prior to transplantation.

For lung colonization assays, 100,000 viable SUIT2 cells or 250,000 viable BxPC3 cells in 200 mL PBSwere injected into the tail vein

of NSG mice and bioluminescence imaging was initiated on day seven post transplantation.

Orthotopic transplants of cells into the pancreas ofmicewere performed as previously described (Aiello et al., 2016). Briefly, 50,000

viable SUIT2 cells or 100,000 viable BxPC3 cells in 50 mL of PBS were slowly injected into the body of the pancreas. Following bleb

formation, the pancreaswas carefully put back in place before suturing the peritoneal cavity and closing the skin incision usingwound

clips. Wound clips were removed on day seven post transplantation prior to bioluminescence imaging.

For bioluminescence imaging, mice were intraperitoneally (IP) injected with D-Luciferin (50mg/kg) and analyzed using an IVIS

Spectrum system (Caliper Life Sciences) ten minutes post IP injection.

Histology and Immunohistochemistry
For histological and immunohistochemical analysis of mouse tissues, tissues were fixed in 10% neutral buffered formalin at room

temperature for 24 hours andwashedwith 70%ethanol. Sampleswere then processed and subjected toH&E staining following stan-

dard protocol at the CSHL histology core facility. For immunohistochemical analysis, 6 mmFFPE tissues sectionswere deparaffinized

and rehydrated prior to steam based antigen retrieval in citrate buffer (pH 6.0). Sections were washed with dH2O prior to 10 minute

incubation with 3% H2O2 to block endogenous peroxidase activity. Following 5 minutes rinse with dH2O, sections were incubated

with 2.5%normal horse serum (Vector) for 1 hour at room temperature. Sections were subsequently incubated with 100 mL of primary

antibody at the following dilutions in TBST: anti-TP63 (1:500), anti-KRT5/6 (1:200) or anti-S100A2 (1:250). Following washes, sections

were then incubated for 1 hour at room temperature with HRP-linked horse-anti-mouse (for anti-KRT5/6) or horse-anti-rabbit (for anti-

TP63 and anti-S100A2) secondary antibodies. Following further wash steps antigen labeling was performed using ImmPACT DAB

(3,3-diamionbenzidine) peroxidase substrate kit (Vector) with 1-2 minute incubation. Sections were washed thoroughly, hematoxylin

counterstained, dehydrated and coverslipped. Images were taken on an Axio Imager.A2 (ZEISS) microscope with a 20x objective.

Cell Lysate Preparation for Western Blot Analysis
Cell cultures were collected and 1million cells were counted by trypan blue exclusion and washed with ice cold PBS. Cells were then

resuspended in 100 mL PBS and lysed with 100 mL of 2x Laemmli Sample Buffer supplemented with b-mercaptoethanol by boiling for

30 minutes.

RNA Extraction and RT-PCR
Total RNA was extracted using TRIzol reagent following the manufacturer’s instructions. For RNA extraction from organoid samples,

organoids were lysed by adding TRIzol reagent directly to the Matrigel dome. 1-2 mg of total RNA was treated with DNaseI and

reverse transcribed to cDNA using qScript cDNA SuperMix, followed by RT-qPCR analysis with SYBR green PCR master mix on

an ABI 7900HT fast real-time PCR system.

RNA-seq Library Construction
RNA-seq libraries were constructed using the TruSeq sample Prep Kit V2 (Illumina) according to the manufacturer’s instructions.

Briefly, 2 mg of purified RNA was poly-A selected and fragmented with fragmentation enzyme. cDNA was synthesized with Super
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Script II master mix, followed by end repair, A-tailing and PCR amplification. RNA-seq libraries were single-end sequenced for 50bp

using an Illumina HighSeq2500 or NextSeq platform (Cold Spring Harbor Genome Center, Woodbury).

ChIP and ChIP-Seq Library Construction
Cell cultures and organoid cultures were collected as single cell suspensions andwere crosslinked in 1% formaldehyde at room tem-

perature for 20 min and the reaction was then quenched using 0.125M glycine. 5-10 million cells were incubated with cell lysis buffer

(10mMTris pH8.0, 10mMNaCl, 0.2%NP-40) and then resuspended and sonicated in 500 mL of nuclei lysis buffer (50mMTris pH8.0,

10mMEDTA, 1%SDS) for 15min using a BioRuptor water bath sonicator (medium setting, 30 s ON/OFF cycles). 500 mL of sonicated

chromatin from 5-10million cells was dilutedwith 7.5ml of IP-Dilution buffer (20mMTris pH 8.0, 2mMEDTA, 150mMNaCl, 1%Triton

X-100, 0.01% SDS) and incubated with 2 mg of the appropriate antibody and 25 mL of magnetic beads (protein A beads for rabbit

antibody, protein G beads for mouse antibody) at 4�C overnight. After washing once with 1ml IP-wash 1 buffer (20 mM Tris

pH8.0, 2 mM EDTA, 50 mM NaCl, 1% Triton X-100, 0.1% SDS), twice with 1ml High-salt buffer (20 mM Tris pH 8.0, 2 mM EDTA,

500 mM NaCl, 1% Triton X-100, 0.01% SDS), once with 1ml IP-wash 2 buffer (10 mM Tris pH 8.0, 1 mM EDTA 0.25 M LiCl, 1%

NP-40, 1% sodium deoxycholate), twice with 1ml TE buffer (10 mM Tris-Cl, 1 mM EDTA, pH 8.0), beads bound to chromatin

were eluted in 200 mL nuclei lysis buffer by heating at 65�C for 15 min at 1000rpm. 12 mL of 5M NaCl and 2 mL RNaseA (stock at

1mg/ml) was then added to the 200 mL eluted chromatin, followed by incubation at 65�C overnight for reverse cross-linking. DNA

was subsequently treated with proteinase K for 2 hours at 42�C and then purified using a QIAGEN PCR purification kit.

ChIP-seq library was constructed using Illumina TruSeq ChIP Sample Prep kit following manufacture’s protocol. Briefly, ChIP DNA

was end repaired, followed by A-tailing and size selection (300-500bp) by gel electrophoresis using a 2% gel. 15 PCR cycles were

used for final library amplification which was analyzed on a Bioanalyzer using a high sensitivity DNA chip (Agilent). ChIP-seq libraries

were single-end sequenced for 50bp using an Illumina NextSeq platform (Cold Spring Harbor Genome Center, Woodbury).

RNA-Seq Data Analysis
Single end 50bp sequencing reads were mapped to the hg19 genome using HISAT2 (Kim et al., 2015). Structural RNA was masked

and differentially expressed genes were identified using Cuffdiff (Trapnell et al., 2010). All the following analysis was performed on

genes with an RPKM value no less than 2 in either control or experimental samples. For RNA-seq following CRISPR based targeting

of TP63 in BxPC3 cells, fold-change in RPKMwas calculated as the ratio of the mean RPKM value of two independent TP63 sgRNAs

to the RPKM value of the control sgRNA. For RNA-seq following ectopic expression of DNp63 in PATU8988S or SUIT2 cells, fold-

change in RPKM was calculated as ratio of mean RPKM value of samples expressing DNp63 from two biological repeats to the

mean RPKM value of control samples infected with an empty vector.

RNA-seq analysis of patient samples was performed using data extracted from Bailey et al. (2016). Only protein coding genes with

a cpm value greater than 4 in at least 10% of the 96 patient samples for which RNA-seq data was available were used. The top 500

and bottom 500 genes passing this expression threshold in Squamous versus Progenitor samples, as defined by Bailey et al. (2016),

defined the Squamous-PDA and Progenitor-PDA Identity signatures, respectively. To generate a ranked gene list for Pre-ranked

gene set enrichment analysis (GSEA) (Subramanian et al., 2005), genes were ranked by their mean log2 fold change in Squamous

versus Progenitor PDA patient samples. Heatmaps of standardized expression values were generated using Morpheus from the

Broad Institute.

ChIP-Seq Analysis
Single end 50bp sequencing reads were mapped to the hg19 genome using Bowtie2 with default settings (Langmead and Salzberg,

2012). After removing duplicated mapped reads using SAM tools (Li et al., 2009), MACS 1.4.2 was used to call peaks using input

genomic DNA as control (Feng et al., 2012). Only peaks enriched greater than or equal to 10-fold over input samples were used

for subsequent analyses. Annotation of ChIP-seq peaks was performed using HOMER v4.9 with default settings (Heinz et al., 2010).

For unsupervised hierarchical clustering of the nine cell cultures representing human PDA and normal ducts, H3K27ac peaks from

all samples were combined using the mergePeaks tool from HOMER v4.9 using default settings (-d given). This yielded a union of all

H3K27ac peaks (n = 68,043). ChIP-seq tag counts were then recalculated at these intervals usingMultCovBed fromBEDTools (Quin-

lan and Hall, 2010) and were normalized to a read depth of 10 million uniquely mapped reads. Normalized H3K27ac tag counts were

then used to generate a heatmap of similaritymatrix by Pearson correlation, whichwas subsequently clustered by Euclidean distance

with average linkage using Morpheus from the Broad Institute.

To define ‘Squamous Elements’, regions with greater than 1 tag per million in either hF3 or BxPC3 cells were used to calculate the

ratio of the H3K27ac tag counts in hF3 or BxPC3 cells versus the mean tag counts across the other seven cultures. Those regions

found to be greater than 5-fold increased in both hF3 andBxPC3 cells were defined as Squamous Elements (n = 1,336). A randomized

set of 1,336 regions from the union of all H3K27ac peaks across the nine cultures were used as control regions (Random elements).

Heatmap density plots were made by first generating a density matrix by mapping sequencing reads from each ChIP-seq exper-

iment to the 200 100bp bins around the center of a defined set of H3K27ac regions, i.e., Squamous elements, Random elements or All

elements, with the latter defined as all H3K27ac peaks from the parental cell line. TreeView software was used to generate the heat-

map from the density matrix and the contrast was adjusted proportionally to the total uniquely mapped reads for visual comparison

across samples (Saldanha, 2004).
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For calculating fold-change of H3K27ac tag counts following CRISPR based targeting of TP63 in BxPC3 cells, the following anal-

ysis was performed. First, H3K27ac peaks from cells infected with control and the two independent TP63 sgRNAs were combined

using the mergePeaks tool to yield a union of all H3K27ac peaks in BxPC3 cells. ChIP-seq tag counts were then recalculated and

normalized to a read depth of 1million uniquelymapped reads. Regions with greater than or equal to 5 tags permillion in either control

or TP63 knockout samples were then used to calculate the fold-change in tags as the ratio of the mean tag count of the two inde-

pendent TP63 sgRNAs to the tag count in the control sample. Regions that decreased greater than 3-fold following TP63 knockout

were defined as repressed (n = 741) and those that increased greater than 3-fold were defined as activated (n = 330). The same pipe-

line was used for calculating fold-change of H3K27ac tag counts following ectopic DNp63 expression in SUIT2 cells compared to

those infectedwith an empty vector control. ThoseH3K27ac regions that increased greater than 3-fold inDNp63 cells versus controls

were defined as activated (n = 1,335) and those that decreased greater than 3-fold were defined as repressed (n = 79).

For GSEA analysis, the nearest expressed genes (RPKM R 2) in hF3 or BxPC3 cells to Squamous Elements were first identified

using Genomic Regions Enrichment of Annotations Tool (GREAT) (McLean et al., 2010). If the two nearest genes had an RPKM < 2 in

both hF3 and BxPC3 cells, the peak was abandoned. This yielded 668 genes that were used for GSEA using the ranked gene list

prepared from the analysis of Squamous versus Progenitor PDA patient samples.

Ontology analysis of Squamous elements and Random elements was also performed using GREAT with whole genome set as

background using the basal plus extension setting.

For TRAP analysis (Thomas-Chollier et al., 2011), DNA sequences flanking 500bp from the center of each H3K27ac peak were ex-

tracted from the hg19 genome using the UCSC table browser. These regions served as the input to find enriched JASPAR vertebrate

motifs with human promoters as the background using the Benjamini-Hochber correction. Fold enrichment was calculated as the

ratio +1 of the observed p value (-log10) at Squamous versus Random elements.

For TP63 ChIP-seq analysis in BxPC3 cells, motif discovery was performed on all peaks using MEME-ChIP from the MEME Suite

(Bailey et al., 2009). Annotation of ChIP-seq peaks was performed using HOMER v4.9 with default settings (Heinz et al., 2010).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance was evaluated by p value from two-tailed Student’s t test or ANOVA using Prism software as indicated in

the figure legends. Data are presented as mean with SEM and statistical significance of p value is indicated in figure legends.

Unless otherwise stated in the figure legend, n refers to the number of biological repeats. For Kaplan-Meier survival curves, the

log rank (Mantel-Cox) test was used to estimate median overall survival and statistical significance. Survival data were obtained

from the CBioPortal (TCGA-PAAD) (Cerami et al., 2012), ICGC Data Portal (PACA-AU) (Bailey et al., 2016) or from the study by

Moffitt et al. (2015). Survival data from the CBioPortal and the ICGC Data Portal data were downloaded in January 2018. For the

TCGA-PAAD study, only the 150 confirmed PDA cases were used for the analyses in this study (The Cancer Genome Atlas

Research Network, 2017).

DATA AND SOFTWARE AVAILABILITY

The accession number for the ChIP-seq and RNA-seq data reported in this paper is GEO: GSE115463.
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Figure S1. TP63 is Aberrantly Expressed in a Subset of Pancreatic Tumors that Display a Squamous-like Transcriptional 
Signature and is Necessary to Drive Progenitor-to-Squamous Transcriptional Reprogramming in Human PDA cells. 
Related to Figure 1. 
(A-B) Dot plots show TP63 expression values in the indicated molecular subtypes in the indicated studies. Each dot represents 
one patient sample. p value was calculated using unpaired Student’s t test. 
(C-E) Heat maps show TP63 expression across the indicated studies. In each study, samples were designated as TP63high or 
TP63low based on z-score expression values >0.35 or <0, respectively. Scale bar indicates the standardized expression value. 
(F) TP63 expression in normal pancreas, primary tumor and metastatic PDA samples. Data are from the study by Moffitt et al 
(2015). *p <0.05, ***p <0.0001  by unpaired Student’s t test. 
(G) Isoform expression of TP63 in human organoid samples. Bar chart shows RT-qPCR analysis of ΔNp63 or TAp63 isoform 
expression in human organoids derived from normal pancreas ‘N’ or tumor samples assigned to the classical ‘C’ or basal-like ‘B’ 
molecular subtypes from the study by Tiriac et al (2018).  
(H-I) Survival curves of patients from the indicated studies stratified according to high or low TP63 expression as in (C-E) for 
which survival information was available. p value was calculated using the log rank (Mantel-Cox) test.  
(J) Bar chart shows TP63 isoform expression in the indicated human PDA cell lines. 
(K-L) Gene ontology (GO) analysis with Metascape of (K) significantly down regulated genes following TP63 knockout in 
BxPC3 cells or (L) significantly upregulated genes following ΔNp63 expression in SUIT2 cells. For GO analysis, terms are 
ranked by their significance (p value) and the most significant terms (-log10 p value >8) are highlighted.  
(M) GSEA plot evaluating the Squamous-PDA and Progenitor-PDA Identity signatures upon ΔNp63 expression in PATU8988S 
cells. 
(N) Representative Western blot analysis in the indicated murine KPC cells for the indicated proteins. Whole cell lysates were 
prepared 48 hours following doxycycline administration. 
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Figure S2. Progenitor-PDA and Squamous-PDA Identity Signature Expression in Human Organoids and a Unique 
Enhancer Landscape Linked to ΔNp63 Occupancy in PDA. Related to Figure 2.  
(A) Box plots show expression levels of Progenitor-PDA Identity genes (left panel) or Squamous-PDA Identity genes (right panel) 
in the indicated human organoid samples. Data are from Tiriac et al (2018). *p <0.0001 by one-way ANOVA. 
(B) Heat map representation of unsupervised hierarchical clustering of ten human cell lines or organoids representing PDA or 
normal pancreatic ducts based on H3K27ac occupancy at total H3K27ac ChIP-seq peaks. Global H3K27ac profiles were 
correlated by Pearson correlation and clustered by Euclidean distance with average linkage using Morpheus. Scale bar indicates 
Pearson correlation coefficient. Normal organoids, hN34, hN35; PDA organoids, hF3, hT85; PATU, PATU8988S. 
(C) Position weight matrices for TP63 (top panel) and motif recovered from TP63 ChIP-seq in BxPC3 cells (bottom panel). Motif 
discovery was performed using MEME.  
(D) Pie chart showing the genomic distribution of TP63 according to annotation of H3K27ac peaks by HOMER. TTS, 
transcription termination site; TSS, transcription start site; UTR, untranslated region.  
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Figure S3. ΔNp63 Expression is Sufficient to Install and Maintain a Squamous Enhancer Landscape in PDA. Related to 
Figure 3. 
(A) Heatmap representation of H3K27ac regions with a mean 3 fold change in signal intensity following TP63 knockout in 
BxPC3-Cas9 cells with two independent sgRNAs compared to those infected with control sgRNAs (sgNEG). 
(B) Scatter plow shows H3K27ac regions with a mean 3 fold change in signal intensity following ΔNp63 expression in SUIT2 
cells compared to those infected with an empty vector control (empty). Dashed lines indicate 3-fold change value.  
(C) ChIP-seq profiles of TP63 (top track) and H3K27ac at representative squamous elements close to PTHLH (left panel) and 
TRIM29 (right panel) in the indicated cell lines following doxycycline-inducible expression of ΔNp63 or GFP as a control. Cells 
were cross-linked and prepared for ChIP-seq analysis 48 hours following doxycycline administration.  
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Figure S4. Phenotypic Consequences of ΔNp63-mediated Squamous Lineage Reprogramming. Related to Figure 4. 
(A) Bar chart showing quantification of colony number per well in 3D Matrigel colony formation assays on day seven post 
plating, day 14 post viral transduction. Colony number was counted using ImageJ software (NIH). Mean+SEM is shown. n=3. *p 
<0.0001 by unpaired Student’s t test. n=3. 
(B) Bar chart showing quantification of bioluminescence signal on day seven post transplantation of cells to the pancreas of 
immune-deficient mice. Mean+SEM is shown. n=4.  
(C) Representative H&E staining of lung tissue for the indicated samples from Figure 4F. 
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Figure S5. ΔNp63 is a Dependency in Squamous PDA Cells. Related to Figure 5. 
(A-C) Competition based proliferation assays in the indicated cells following infection with the indicated sgRNAs (A-B) or 
shRNAs (C) linked to GFP. CRISPR targeting of TP63 in SUIT2 cells was performed as a negative control to rule out growth 
arrest as a non-specific effect of forming double-strand DNA breaks associated with CRISPR-Cas9 genome editing. Mean+SEM 
is shown. n=3. 
(D-F) TP63 knockdown in BxPC3 cells. (D) Bar chart shows RT-qPCR analysis of TP63 mRNA following infection with the 
indicated shRNAs. RNA was extracted on day seven post infection with shRNAs, five days post selection with puromycin. 
Mean+SEM is shown. n=3 technical repeats.  
(E) Representative Western blot analysis for the indicated proteins in the indicated conditions. Whole cell lysates were prepared 
on day five post infection with shRNAs, three days post selection with puromycin. (F) Scatter plot shows the mean fold change in 
RPKM values of 10,300 expressed genes (RPKM ≥2) comparing two independent shRNAs or sgRNAs targeting TP63 compared 
to shNEG or sgNEG, respectively. 
(G) GSEA plots evaluating the Squamous-PDA and Progenitor-PDA Identity signatures upon TP63 knockdown in hF3 organoids. 
RNA was extracted on day eight-post infection with shRNAs, five days post selection with puromycin. 
(H) Illustration of ΔNp63 cDNA rescue assay. Multiple silent mutations were cloned into the ΔNp63 cDNA to disrupt base-pairing 
with TP63 sgRNA#3 (Mut#3, top panel) or TP63 sgRNA#4 (Mut #4, bottom panel). 
(I) Representation H&E staining of lung tissue for the indicated samples from Figure 5E. Arrowheads indicate tumor lesions. 
Scale bar indicates 250µm. 
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Figure S6. The Core Circuitry of ΔNp63-mediated enhancer Reprogramming in Squamous PDA Cells. Related to Figure 6. 
(A) Box plots show median expression values of the 58 ΔNp63 target genes in Progenitor or Squamous PDA tumors. 
(B-C) Heatmap representation of  the 58 TP63 target genes from Figure 6A (B) or those with oncogenic potential from Figure 6B 
(C) following TP63 knockdown in hF3 organoids. 
(D) Heatmap representation of significantly changed genes following TP63 knockout in BxPC3 cells. Selected genes significantly 
down regulated following TP63 knockout are highlighted. 
(E) MYC expression following TP63 knockout in BxPC3 cells. Representative Western blot analysis for the indicated proteins in 
the indicated conditions. Whole cell lysates were prepared on day five post infection with sgRNAs, three days post selection with 
G418. 
(F) ChIP-seq profiles of TP63 and H3K27ac surrounding the MYC locus in BxPC3 cells (top panel) and at the indicated 
Squamous Elements following TP63 knock out or expression in BxPC3-Cas9 cells and SUIT2 cells, respectively (bottom panel). 
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