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Supplementary Note 1: Microbial community dynamics in early life 

To assess the dynamics of the developing gut microbiome through its detailed taxonomic 

composition, we analyzed the metagenomes using MetaPhlAn 2.0 and investigated the resulting 

species-level profiles by their beta diversities as measured by Bray-Curtis dissimilarity (Fig. 2). 

Principal coordinate analysis (PCoA) ordination of the beta diversities showed a strong 

longitudinal gradient and significant heterogeneity among the earliest samples. We identified four 

different types of early profiles, three of which were characterized by high abundance of one of 

three Bifidobacterium species (B. bifidum, B. longum, and B. breve) and corresponded to the 

clusters 1-3 determined by Dirichlet Multinomial Mixture modeling of the metagenomic data[cite 

Stewart et al.]. The fourth cluster was characterized by larger-than-typical abundance of phylum 

Proteobacteria. We noted some differences in how subjects occupied these clusters. For example, 

Finnish children tended to have more B. breve (Mixed effects logistic regression, p = 2.3e-5) and 

less B. longum (p = 0.0028) during the first year of life compared to children from other clinical 

centers (Extended Data Fig. 1e,f), and samples collected within a month after an antibiotic course 

tended to have higher levels of Proteobacteria (p = 7.1e-7). 

 

To determine whether part of these observations could be explained by differential substrate 

availability, we tested the ability of the three Bifidobacterium species (B. bifidum, B. longum, and 

B. breve) isolated from infant stool samples to grow in low-nutrient medium containing various 

mono- or disaccharides common in the infant gut (glucose, galactose, lactose and fucose). When 

cultured with the addition of a single carbon source, each species displayed a unique profile of 

sugar utilization (Extended Data Fig. 1g-k). In glucose, while B. breve reached a maximal cell 

density before B. longum, eventually B. longum achieved a comparable final density (Extended 
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Data Fig. 1g). Between the three species, B. breve grew best on galactose (Extended Data Fig. 

1h). We observed minimal growth for all species on fucose (Extended Data Fig. 1i). Both B. 

breve and B. longum grew on lactose, with B. breve growing faster initially, but B. longum reaching 

a higher final cell density (Extended Data Fig. 1j). While B. bifidum grew poorly in all of the 

sugars that we tested, it achieved a similar final density to the other species in rich medium (100% 

BHI, Extended Data Fig. 1k). These data, consistent with other studies analyzing carbohydrate 

preference from Bifidobacterium species1-3, support the hypothesis that nutrient availability plays 

a key role in defining the dominant species in a microbial community. 

 

We used PERMANOVA (as implemented in adonis function in vegan R package) to test for 

omnibus association between the taxonomic profiles and early life covariates. Inter-subject 

differences explained 35% of microbial taxonomic variation (permutation test, p < 0.001, 1,000 

permutations), followed by age at stool sampling at roughly 4% of variance (p < 0.001). Since 

most other metadata are confounded by either subject ID or age, we next repeated the analysis 

cross-sectionally in three-month time intervals using only one stool sample per subject. This 

revealed that clinical center and breastfeeding were the only other factors affecting the gut 

microbial profiles with clear statistical significance (Table S1). Depending on the cross-section 

used, clinical center explained 1.6-3.1% of microbial variation (increasing over time), whereas 

1.0-1.8% of the variation during the first year of life was explained by breastfeeding status 

(ongoing versus stopped). Other factors, namely mode of birth, introduction of meat or vegetables 

in diet, antibiotic treatments and technical variable sequencing depth showed effects with at most 

borderline nominal significance. These findings demonstrate that while multiple factors influence 

the developing microbiota in early childhood, only a very limited set of variables measured here - 
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namely inter-individual differences, geographic location, age, and breastfeeding - had strong and 

systematic effects distinguishable by linear adonis modeling. 

 

To better understand the dynamics and individuality of developing gut microbiomes, we next 

interrogated the stability or self-similarity of the microbiomes longitudinally, both within subjects 

and across subjects (stratified by comparisons within and across clinical centers; Fig. 2b). When 

stability was measured by Bray-Curtis dissimilarity of species-level taxonomic profiles, the gap 

between individual stability and similarity within or across clinical centers was largest at the 

beginning of the sampling period, indicating that the children had particularly dissimilar 

microbiotas during these early months. Microbial similarity across individuals showed a similarly 

increasing trend when measured by Jaccard index (Extended Data Fig. 2a). While the difference 

in stability within and between clinical centers was small in comparison to the within-subject 

stability, the regional trends in the microbiome were still evident in terms of stability and in adonis 

modeling above (Table S1, Fig. 2b, Extended Data Fig. 2a). Early taxonomic manifestations of 

these regional differences included, for example, a tendency to have more Ruminococcus gnavus 

in Sweden and higher levels of Lactobacillus rhamnosus and Veillonella parvula in Finland 

(Extended Data Fig. 2b-d). 

 

Microbial alpha-diversity increases during early childhood, with the majority of diversity 

accumulating during the second six months of life when the microbiome begins development 

towards an adult-like composition4 (Extended Data Fig. 3a). To investigate more specifically 

which factors contribute to this early accrual of microbial diversity, we tested Shannon’s diversity 

index of taxonomic profiles for associations with collected metadata (Table S2). Early breast milk 
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(repeated measures ANOVA, p = 4.6e-44) and formula (p = 7.5e-20) consumption were the most 

important factors contributing to the increase in diversity during early infancy. We also found 

differences in microbial diversity between the clinical centers (p = 3.2e-8, e.g. higher diversity in 

Sweden), between children born by vaginal birth versus caesarean section (p = 0.025), and between 

children who consumed probiotics versus those who did not (p = 8.0e-4). Similar to breastfeeding, 

probiotics were associated with slightly lower microbial diversity, an effect that could be caused 

by the introduction of a small set of bacteria that compete with the existing community early in 

life. This data did not show any associations between maternal diabetes (T1D, T2D or gestational 

diabetes) or maternal medications during pregnancy (antihypertensives, insulin) and gut microbial 

alpha diversity in offspring. In these data, the introduction of solid food had no significant 

association with microbial diversity; rather, the cessation of breastfeeding had the largest effect 

(ANOVA, partial 𝜂" = 0.053). 

 

Previous longitudinal case-control studies in Finnish and Estonian children5,6 have reported a drop 

in alpha-diversity in subjects who progressed to T1D in comparison to control subjects with no IA 

or subjects who seroconverted but had not yet progressed to T1D. Other comparable human cohort 

studies have not found such difference in microbial diversity7,8. In the present study, IA or T1D 

outcome was not associated with microbial diversity in either T1D or IA case-control cohorts 

(Extended Data Fig. 3b,c). We also interrogated clinical centers separately but did not see any 

difference between T1D cases and their controls prior to T1D onset in Finland (Extended Data 

Fig. 3d). Anecdotally, three T1D cases from the state of Georgia showed a reduced microbial 

alpha-diversity compared to their controls beginning two years prior to T1D diagnosis (Extended 
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Data Fig. 3e, N = 3 case-control pairs, 142 stool samples, mixed effects linear model, nominal p 

= 0.003).  

 

Supplementary Note 2: Antibiotics interact with early microbial development 

Oral antibiotics greatly perturb the gut microbiome, although details differ among individuals and 

in early life versus adulthood9-11. To investigate how antibiotics affected subjects in this cohort, 

we analyzed antibiotic prescriptions in TEDDY during the first three years of life (Fig. 2c,d, 

Extended Data Table 2). We measured microbial stability within subjects for pairs of consecutive 

samples (< 50 days apart) in two groups: those spanning an oral antibiotic exposure (n=654) and 

those with no antibiotics (n=6,734). By measuring microbial stability with respect to the age at 

sample collection, we detected a marked drop in stability in sample pairs when samples were 

separated by a course of antibiotics (Fig. 2c, Extended Data Fig. 4a). The effect of antibiotics on 

microbial stability was larger [effect size (difference of medians in Extended Data Fig. 4a) 0.22 

in first 6 months and 0.067 at year two (months 24-29)] in the earliest comparisons; conversely, 

although antibiotics have been reported to induce loss of microbial diversity in adults, we found 

that they had a relatively modest impact on microbial diversity in early life (Extended Data Fig. 

4b,c), similar to other infant cohorts9,11. Together, these findings suggest that any individual, not-

yet-developed microbial community configuration in early life can be more dramatically disrupted 

prior to establishment of a stable, established community, but that the development process itself 

can rapidly re-continue after antibiotic perturbation. We also examined whether different types of 

antibiotics had different effects on microbial stability but did not observe significant differences 

(Extended Data Fig. 4d,e). 
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Supplementary Note 3: Functional dynamics of the early gut microbiome 

The functional profiles were subjected to similar adonis and stability analyses as described above 

for taxonomic profiles. Twenty-four percent of variation in microbial pathway abundances in these 

data was explained by inter-subject differences (permutation test, p < 0.001, 1,000 permutations): 

a smaller amount than taxonomic variation, but still substantial, especially in very early life. The 

only covariates reaching statistical significance in the cross-sectional adonis analysis for the 

metabolic pathways were breastfeeding in an early cross-sections at 3 and 6 months explaining 

4.4% and 1.3% of variance, respectively, and introduction of solid food explaining 1.1% of 

variance at 3 months (Table S3). Finally, when functional developmental dynamics were 

summarized using overall Bray-Curtis similarity within subject over time, individuals were again 

consistently more functionally similar than taxonomically, but with persistent differences that only 

gradually shifted to more adult-like configurations over the first several years of life (Extended 

Data Fig. 5a). 

 

As discussed in the main text, inter-individual microbial community functional profiles tended to 

be more consistent than taxonomic profiles, due in part to the presence of “core” microbial 

community functions. These can include a range of processes broadly distributed across either the 

whole microbial tree of life, those enriched in host-associated microbes generally (including the 

developing infant gut), and niche-specific functions that may appear in a variety of different 

organisms but are adaptive for the gut community in particular (such as host immune system 

interaction). While broadly distributed functions are expected to remain stable over time, both 

niche-specific and completely non-core functions may fluctuate in metagenomic abundance in 
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response to environmental variation, such as changes in the gut environment during childhood 

development. 

 

To characterize the subset of broadly distributed but dynamically changing microbial functions 

potentially important in the early gut development, we identified molecular functions that changed 

consistently within-subject prior to the age of one year. Focusing on subjects’ enzyme abundance 

profiles, we selected each subject’s earliest time point (month 3), their time point closest to year 

1, and their time point closest to year 2 (when available). Across subjects with paired month-

3:year-1 samples, we ranked enzymes according to the consistency of their change in abundance 

between these two time points. Specifically, each enzyme was scored according to the fraction of 

sample pairs where it increased minus the fraction where it decreased, restricted to sample pairs 

where the enzyme’s community-wide abundance exceeded 10 copies per million (CPM) in at least 

one of the two samples. The abundances of these enzymes were then stratified according to 

contributing species to dissect relationships between taxonomic and functional changes. 

 

The microbial enzymes that changed most consistently between month 3 and year 1 were clearly 

influenced by underlying taxonomic changes, with enzymes enriched among the Bifidobacteria 

highly abundant at month 3 and less-so thereafter (Fig. 3). Among the most consistently declining 

enzymes was L-lactate dehydrogenase (1.1.1.27), which has been well characterized in 

Bifidobacteria for its role in the fermentation of milk12. This change is notably coincident with 

changes in breastfeeding status, with 73% of subjects breastfed at the time of their month 3 sample 

and 28% at year 1. Ribokinase (2.7.1.15) also exhibited a marked decline in abundance over this 

time period, and has been proposed as a mechanism for harvesting ribose from the human gut as a 
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carbon source in Bifidobacterium breve13. The fact that these enzymes are largely undetected in 

later-colonizing species suggests that they are specifically adaptive to the metabolic environment 

of the early human gut environment and may facilitate early colonization by Bifidobacterium 

species. 

 

Conversely, a second set of enzymes (largely depleted at month 3) becomes more abundant in 

years 1 and 2 (Fig. 3). These enzymes were, broadly, elements of anaerobic metabolism most 

dominantly contributed by Ruminococcus gnavus, R. bromii, and Faecalibacterium prausnitzii, 

which herald the transition to a more adult-like gut microbiome. Notably, coincident with the 

decline in breastfeeding between month 3 and year 1, infants transitioned from 53% having tried 

solid food to 100%. Thus, expansion of enzymatic functions may reflect a microbial community 

reaction to more variable, fermentative energy sources. For example, transketolase (2.2.1.1) 

consistently increased in abundance between month 3 and year 1 and has been implicated in the 

metabolism of fiber (via pentose sugars) by ruminococci14. The glycolytic enzyme 6-

phosphofructokinase (2.7.1.11) also increased over this interval. Thus, in a background of broadly 

conserved functions, prevalent gut-specific functions, and individualized differences, a number of 

potentially host-diet-associated microbial functions are changing clearly and consistently within-

subject between month 3 and year 1. 

 

Supplementary Note 4: IA and T1D cases are separated from controls by region-specific 

microbial features 

Random Forest (RFs) classifying between case and control samples were trained using samples 

prior to T1D diagnoses and using 2,000 trees per forest using the randomForest package in R. 
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Training data included full taxonomic or functional profiles together with age of sample collection 

and clinical center. Overfitting of the model, caused by the repeated measures data (samples are 

not i.i.d.), was compensated by using leave-one-out cross-validation, where one case-control pair 

was held out as separate validation data at a time. Bootstrapping in RF training was stratified by 

case-control class in such a way that each bootstrap sample had same number of case and control 

samples (Extended Data Fig. 5a). 

 

In 100 T1D case-control pairs, RFs achieved a median error rate across cross-validation folds of 

0.449 for taxonomic profiles and 0.450 for functional profiles (Extended Data Fig. 6a), when 

leaving out one case-control pair at a time for cross-validation. This suggests, at most, a weak 

microbiome signal of either type separating T1D cases from controls. Furthermore, all case-control 

comparisons were impeded by site-specific differences in the microbiome. For example, IA cases 

in Finland harbored more Veillonella parvula compared to their Finnish controls (mixed effects 

linear model, q=0.064), whereas Swedish IA cases had less V. parvula (q=0.055) and other 

unclassified Veillonella sequences (q=0.24) compared to their Swedish controls, highlighting the 

regional differences in the cohorts. 

 

The TEDDY cohort includes progressors to clinical T1D ranging from the first year of life through 

age six. Other differences in the disease onset included prior appearance of a single or multiple 

persistent AABs, although the majority of the single AAB positive subjects (128 / 143) had not 

yet developed T1D. To explore whether these differences were linked to the gut microbiome, we 

first tested whether the microbiome in subjects diagnosed with T1D before the age of two differed 

from those of children who developed T1D later. However, this comparison did not show any 
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consistent differences between these groups of early and late progressors. We also compared 

subjects with a single or multiple AABs and healthy controls. The results of these analyses were 

often concordant between subjects with a single or multiple AABs, and with the other case-control 

comparisons above, but also revealed some additional differences in subjects with only a single 

persistent AAB. For example, Finnish subjects with one AAB had more Ruminococcus gnavus 

(Extended Data Fig. 6b, q=0.011) compared to both subjects with multiple AABs and healthy 

controls. 

 

Compared to population level observations, most of the detected changes in cases versus controls 

were modest in effect size and statistical significance. Importantly, however, a part of them are 

concordant with the existing literature. The drop in microbial alpha diversity preceding T1D 

diagnosis in Georgia agrees with what has been reported in previous studies5,6. B. vulgatus, more 

abundant in IA cases in Sweden, is phylogenetically close relative to B. dorei which has been 

previously associated with T1D onset15,16. Most importantly, SCFAs have been linked to multiple 

facets of gut health in many recent studies17. They, for example, enhance the gut barrier18 and 

participate in host-signaling mechanisms19. Diet modulates microbial SCFA production, by 

providing fibers for fermentation as well as by modulating the microbial community composition 

itself. Thus, any protective or predisposing dietary effects may, at least partly, be mediated through 

their contribution to microbial SCFA release. 

 

Supplementary Note 5: Early probiotics are detectable in stool 

Probiotics are of particular interest in early life due to their proposed ability to influence immune 

development during microbiome acquisition20,21. In this cohort, early probiotic supplementation 
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prior to the first collected stool sample (approximately age three months) was relatively common 

in Finland (38.5% of subjects received probiotics), less common in Germany (21.4%) and Sweden 

(12.9%), and unusual in the US (2.5%, Extended Data Table 2). We found that probiotics given 

during first four weeks of life or later, but before the first stool sample was collected at 

approximately three months, were associated with increased abundance and prevalence of two 

Lactobacillus species in the first stool sample, L. reuteri and L. rhamnosus (Extended Data Fig. 

6d,e). These species are common in probiotic supplements. L. rhamnosus was detected in the first 

stool sample in 58.8% of infants who were given probiotics during first four weeks of life, whereas 

the percentage was only 29.3% in infants with no reported probiotics prior to the first stool sample. 

L. reuteri was detected in only 1.2% of infants with no reported probiotics but was more common 

(Fisher’s exact test, p = 1.1e-12) when preceding probiotic supplementation was given. 

 

Supplementary Note 6: Gut microbiomes’ multifaceted role in IA and T1D 

As discussed in the main text, most of the taxonomic and functional signals we detected in case-

control comparisons were modest in effect size and statistical significance. This could be due to 

multiple reasons that should be considered in future investigations. First, T1D is a complex disease 

with heterogeneous etiology and multiple “subtypes” distinguished by differences in disease onset, 

implicating that healthy controls in this nested case-control cohort may also later progress to IA, 

T1D or both. For example, the age of disease onset has been decreasing for unclear reasons. 

Additionally, existing literature has identified both protective22 and predisposing23 microbial 

factors. Second, any signal, either predisposing or protective, may be temporally diffuse, making 

it statistically difficult to establish. Indeed, cross-sectional analyses did not show any separation 

between cases and controls, even when tested in one clinical center at a time. Third, the most 
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prominent trends in this data, interindividual and geographic differences, could in principle be due 

either to biological differences or technical variation. For example, there may have been systematic 

differences in sample collection between participating families and/or clinical centers, but our data 

does not allow distinguishing between these systematic biases and other variation. Fourth, signals 

in the microbiome may consist of some yet unknown or poorly characterized microbial taxa and 

functions, which our reference database-based analyses would neglect. Finally, the stool sample 

collection started around three months of age, leaving this study agnostic in terms of the initial 

microbial acquisition and community assembly during the first three months of life. These factors, 

together with the complex disease etiology, suggest that the microbiome has complex and 

multifaceted role in T1D that may be limited in overall impact. 

 

In contrast to microbial covariates, genetic risk loci of substantial effect for T1D have been well-

studied and are in large part contained within the human leukocyte antigen (HLA) class II genes 

HLA-DR and HLA-DQ24. In addition to T1D, variation in the HLA locus is an important 

predisposing factor in most immune-mediated and autoimmune diseases, and a protective element 

in some infectious diseases25; for example, inflammatory bowel disease (IBD) has strong 

associations with both HLA-DR and HLA-DQ loci. Evidence for other microbial associations with 

HLA loci, such as those with infectious disease (e.g. viral infections), is limited due to relatively 

small patient cohort sizes, but the overlap in genetic susceptibility loci suggests that infectious 

episodes and viruses can trigger autoimmunity25. Indeed, several studies posit that viral infections 

can trigger T1D while the strongest evidence supports the role of enteroviral infections in both 

animal models and humans26. Speculatively, the gut microbiome may play a role in this puzzle, 

for example, by maintaining the healthy gut barrier function through SCFA production thus barring 
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any infection-related toxins from entering the host circulation27. However, the role of the gut 

microbiome and possible mechanistic interactions with other genetic and environmental risk 

factors of human T1D remains to be proven. 

 

Other non-HLA risk loci are shared between T1D and other immune diseases, particularly IBD, 

such as FUT2, CTLA-4 and PTPN228-30, even though the directionality of the associations are not 

always concordant among diseases24. FUT2, one of these shared genetic risk loci, determines the 

mucosal expression of blood group A and B antigen, i.e. secretor status, and non-secretors are 

susceptible to both T1D31 and Crohn’s disease (a subtype of IBD)32,33. Secretor status is also in 

turn associated with the gut microbial composition in both infants34 and adults35. 

 

Finally, shared loci including FUT2 are of interest for their potential effects on specific early-life 

microbes, such as the role of secretor status in the acquisition of Bifidobacterium spp. 

Bifidobacterial colonization, selection and preservation are modulated by multiple factors such as 

maternal FUT2 genotype34, molecular repertoire of breast milk, maternal gut and breast milk 

microbiome (via vertical transmission)36, siblings, house pets and built environment. The clade 

has many important functional roles in the early gut microbiome37: protection against infectious 

diseases38, improved gut barrier function39, and possibly protection against allergic sensitization 

and inflammation40. Concordant with existing evidence41,42, our data confirmed that certain B. 

longum strains specialized in HMO utilization are positively selected during breastfeeding but are 

reduced or disappear after weaning. Importantly, we also showed that many Bifidobacterium 

species are systematically reduced after oral antibiotics, which may have adverse effects on the 

host immune development. 
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Supplementary Table Legends 

Supplementary Table 1. Variance of taxonomic profiles explained by clinical covariates in 

cross-sectional adonis analysis. Bray-Curtis dissimilarity matrix of the taxonomic profiles was 

modeled using adonis analysis to assess the proportion of variance explained by different 

covariates. Table shows R-squared (the proportion of variance explained), nominal p-value based 

on permutation test (100,000 permutations, two-sided), and fdr corrected p-value (q-value) for 

covariates in each cross-section used. 

 

Supplementary Table 2. Associations between microbial alpha-diversity and clinical 

covariates. Associations between microbial alpha diversity (N = 10,250 samples) and clinical 

covariates were evaluated using a linear mixed effects model with subject ID as random effect and 

other clinical covariates as fixed effects using glmmPQL function in MASS package in R. The 

columns of the table are explained in the Excel file. 

 

Supplementary Table 3. Variance of pathway profiles explained by clinical covariates in 

cross-sectional adonis analysis. Bray-Curtis dissimilarity matrix of the pathway profiles was 

modeled using adonis analysis to assess the proportion of variance explained by different 

covariates. Table shows R-squared (the proportion of variance explained), nominal p-value based 

on permutation test (100,000 permutations, two-sided), and fdr corrected p-value (q-value) for 

covariates in each cross-section used. 

 

Supplementary Table 4. Associations between the microbiome and case-control outcome in 

IA and T1D cohorts in TEDDY microbiome study. Association testing was conducted using 
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linear mixed effect models in MaAsLin. Nominal p-values were adjusted using the Benjamini-

Hochberg false discovery rate (FDR) method. The columns of the table are explained in the Excel 

file. 

 

Supplementary Table 5. Homologs of the genes belonging to B. infantis HMO gene cluster 

across gut taxa in TEDDY metagenomic data. UniRef90 gene families corresponding to the 

HMO genes were identified by translated BLAST search against ChocoPhlAn pangenome 

collection and filtered by requiring >=50% identity and >=80% mutual coverage. Sheet "HMO 

homolog frequencies" contains the frequencies of all homologs to B. infantis HMO genes per 

bacterial species. Sheet "alignment details" reports the hits (Gene family) together with the carrier 

species (Species) and corresponding B. infantis gene (B. infantis HMO gene) occurring in more 

than 50 samples in TEDDY metagenomic data. The table also shows the prevalence of these genes 

in TEDDY metagenomic data (# of samples with gene family present) as well as how many of 

these samples were collected during breastfeeding period (# of samples during breastfeeding). The 

difference in prevalence of each gene during breastfeeding (Gene family prevalence during 

breastfeeding) and after weaning (Gene family prevalence after weaning) was tested using the test 

of proportions (two-sided, prop.test function in R), and the corresponding p-values and Benjamini-

Hochberg FDR corrected q-values are reported. 

  



 

 22 

Members of the TEDDY Study Group 

Colorado Clinical Center: Marian Rewers, M.D., Ph.D., PI1,4,5,6,10,11, Kimberly Bautista12, Judith 

Baxter9,10,12,15, Ruth Bedoy2, Daniel Felipe-Morales, Kimberly Driscoll, Ph.D.9, Brigitte I. 

Frohnert, M.D.2,14, Marisa Gallant, M.D.13, Patricia Gesualdo2,6,12,14,15, Michelle Hoffman12,13,14, 

Rachel Karban12, Edwin Liu, M.D.13, Jill Norris, Ph.D.2,3,12, Adela Samper-Imaz, Andrea Steck, 

M.D.3,14, Kathleen Waugh6,7,12,15, Hali Wright12. University of Colorado, Anschutz Medical 

Campus, Barbara Davis Center for Childhood Diabetes. 

 

Finland Clinical Center: Jorma Toppari, M.D., Ph.D., PI¥^1,4,11,14, Olli G. Simell, M.D., Ph.D., 

Annika Adamsson, Ph.D.^12, Suvi Ahonen*±§, Heikki Hyöty, M.D., Ph.D.*±6, Jorma Ilonen, M.D., 

Ph.D.¥¶3, Sanna Jokipuu^, Tiina Kallio^, Leena Karlsson^, Miia Kähönenµ¤, Mikael Knip, M.D., 

Ph.D.*±5, Lea Kovanen*±§, Mirva Koreasalo*±§2, Kalle Kurppa, M.D., Ph.D.*±13, Tiina Latva-

ahoµ¤, Maria Lönnrot, M.D., Ph.D.*±6, Elina Mäntymäki^, Katja Multasuoµ¤, Tiina Niininen±*12, 

Sari Niinistö±§2, Mia Nyblom*±, Petra Rajala^, Jenna Rautanen±§, Anne Riikonen*±§, Minna 

Romo^, Juulia Rönkäµ¤, Satu Simell, M.D., Ph.D.¥13, Tuula Simell, Ph.D.¥12, Maija Sjöberg¥^12,14, 

Aino Steniusµ¤12, Maria Leppänen^, Sini Vainionpää^, Eeva Varjonen¥^12, Riitta Veijola, M.D., 

Ph.D.µ¤14, Suvi M. Virtanen, M.D., Ph.D.*±§2, Mari Vähä-Mäkilä^, Mari Åkerlund*±§, Katri 

Lindfors, Ph.D.*13 ¥University of Turku, *University of Tampere, µUniversity of Oulu, ^Turku 

University Hospital, Hospital District of Southwest Finland, ±Tampere University Hospital, ¤Oulu 

University Hospital, §National Institute for Health and Welfare, Finland, ¶University of Kuopio. 

 

Georgia/Florida Clinical Center: Jin-Xiong She, Ph.D., PI1,3,4,11, Desmond Schatz, M.D.*4,5,7,8, 

Diane Hopkins12, Leigh Steed12,13,14,15, Jennifer Bryant, Jamie Thomas*6,12, Janey Adams*12, 



 

 23 

Katherine Silvis2, Michael Haller, M.D.*14, Melissa Gardiner, Richard McIndoe, Ph.D., Ashok 

Sharma, Stephen W. Anderson, M.D.^, Laura Jacobsen, M.D.*14 Center for Biotechnology and 

Genomic Medicine, Augusta University. *University of Florida, ^Pediatric Endocrine Associates, 

Atlanta. 

 

Germany Clinical Center: Anette G. Ziegler, M.D., PI1,3,4,11, Andreas Beyerlein, Ph.D.2, Ezio 

Bonifacio Ph.D.*5, Anja Heublein, Michael Hummel, M.D.13, Sandra Hummel, Ph.D.2, Annette 

Knopff7, Charlotte Koch, Sibylle Koletzko, M.D.¶13, Claudia Ramminger, Roswith Roth, Ph.D.9, 

Marlon Scholz, Laura Schulzik2, Joanna Stock9,12,14, Katharina Warncke, M.D.14, Lorena Wendel, 

Christiane Winkler, Ph.D.2,12,15. Forschergruppe Diabetes e.V. and Institute of Diabetes Research, 

Helmholtz Zentrum München, Forschergruppe Diabetes, and Klinikum rechts der Isar, Technische 

Universität München. *Center for Regenerative Therapies, TU Dresden, ¶Dr. von Hauner 

Children’s Hospital, Department of Gastroenterology, Ludwig Maximillians University Munich. 

 

Sweden Clinical Center: Åke Lernmark, Ph.D., PI1,3,4,5,6,8,10,11,15, Daniel Agardh, M.D., Ph.D.13, 

Carin Andrén Aronsson, Ph.D.2,12,13, Maria Ask, Jenny Bremer, Ulla-Marie Carlsson, Corrado 

Cilio, Ph.D., M.D.5, Emelie Ericson-Hallström, Annika Fors, Lina Fransson, Thomas Gard, 

Rasmus Bennet, Carina Hansson, Susanne Hyberg, Hanna Jisser, Fredrik Johansen, Berglind 

Jonsdottir, M.D., Silvija Jovic, Helena Elding Larsson, M.D., Ph.D. 6,14, Marielle Lindström, 

Markus Lundgren, M.D.14, Maria Månsson-Martinez, Maria Markan, Jessica Melin12, Zeliha 

Mestan, Caroline Nilsson, Karin Ottosson, Kobra Rahmati, Anita Ramelius, Falastin Salami, Sara 

Sibthorpe, Anette Sjöberg, Birgitta Sjöberg, Evelyn Tekum Amboh, Carina Törn, Ph.D. 3,15, Anne 

Wallin, Åsa Wimar14, Sofie Åberg. Lund University 



 

 24 

 

Washington Clinical Center: William A. Hagopian, M.D., Ph.D., PI1,3,4, 5, 6,7,11,13, 14, Michael 

Killian6,7,12,13, Claire Cowen Crouch12,14,15, Jennifer Skidmore2, Ashley Akramoff, Jana Banjanin, 

Masumeh Chavoshi, Kayleen Dunson, Rachel Hervey, Shana Levenson, Rachel Lyons, Arlene 

Meyer, Denise Mulenga, Davey Schmitt, Julie Schwabe. Pacific Northwest Research Institute. 

 

Pennsylvania Satellite Center: Dorothy Becker, M.D., Margaret Franciscus, MaryEllen 

Dalmagro-Elias Smith2, Ashi Daftary, M.D., Mary Beth Klein, Chrystal Yates. Children’s Hospital 

of Pittsburgh of UPMC. 

 

Data Coordinating Center: Jeffrey P. Krischer, Ph.D.,PI1,4,5,10,11, Sarah Austin-Gonzalez, 

Maryouri Avendano, Sandra Baethke, Rasheedah Brown12,15, Brant Burkhardt, Ph.D.5,6, Martha 

Butterworth2, Joanna Clasen, David Cuthbertson, Christopher Eberhard, Steven Fiske9, Dena 

Garcia, Jennifer Garmeson, Veena Gowda, Kathleen Heyman, Belinda Hsiao, Francisco Perez 

Laras, Hye-Seung Lee, Ph.D.1,2,13,15, Shu Liu, Xiang Liu, Ph.D.2,3,9,14, Kristian Lynch, Ph.D. 5,6,9,15, 

Colleen Maguire, Jamie Malloy, Cristina McCarthy12,15, Aubrie Merrell, Steven Meulemans, 

Hemang Parikh, Ph.D.3, Ryan Quigley, Cassandra Remedios, Chris Shaffer, Laura Smith, 

Ph.D.9,12, Susan Smith12,15, Noah Sulman, Ph.D., Roy Tamura, Ph.D.1,2,13, Ulla Uusitalo, Ph.D.2,15, 

Kendra Vehik, Ph.D.4,5,6,14,15, Ponni Vijayakandipan, Keith Wood, Jimin Yang, Ph.D., R.D.2,15. 

Past staff: Michael Abbondondolo, Lori Ballard, David Hadley, Ph.D., Wendy McLeod. University 

of South Florida.  

 



 

 25 

Project scientist: Beena Akolkar, Ph.D.1,3,4,5,6,7,10,11. National Institutes of Diabetes and Digestive 

and Kidney Diseases. 

 

Autoantibody Reference Laboratories: Liping Yu, M.D.^5, Dongmei Miao, M.D.^, Polly 

Bingley, M.D., FRCP*5, Alistair Williams*, Kyla Chandler*, Claire Williams*, Gifty George*, 

Sian Grace*, Ben Gillard*. ^Barbara Davis Center for Childhood Diabetes, University of Colorado 

Denver, *Bristol Medical School, University of Bristol UK. 

 

HLA Reference Laboratory: William Hagopian3, MD, PhD, Masumeh Chavoshi, Pacific 

Northwest Research Institute, Seatte WA. (Previously Henry Erlich, Ph.D.3, Steven J. Mack, 

Ph.D., Anna Lisa Fear. Center for Genetics, Children’s Hospital Oakland Research Institute.) 

 

Metagenomics and Microbiome Laboratory: Joseph F. Petrosino, Ph.D.6*, Nadim J. Ajami, 

Ph.D.*, Richard E. Lloyd, Ph.D.6*, Matthew C. Ross, Ph.D.*, Jacqueline L. O’Brien, Ph.D.*, Diane 

S. Hutchinson, Ph.D.*, Daniel P. Smith, Ph.D.*, Matthew C. Wong*, Xianjun Tian, Ph.D.*, Tulin 

Ayvaz*, Auriole Tamegnon*, Nguyen Truong*, Hannah Moreno*, Lauren Riley*, Eduardo 

Moreno*, Tonya Bauch*, Lenka Kusic*, Ginger Metcalf^, Donna Muzny^, HarshaVArdhan 

Doddapaneni, Ph.D.^, Richard Gibbs, Ph.D.^. *Alkek Center for Metagenomics and Microbiome 

Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, 

^Human Genome Sequencing Center, Baylor College of Medicine. 

 

Repository: Sandra Ke, Niveen Mulholland, Ph.D. NIDDK Biosample Repository at Fisher 

BioServices. 



 

 26 

 

Other contributors: Kasia Bourcier, Ph.D.5, National Institutes of Allergy and Infectious 

Diseases. Thomas Briese, Ph.D.6,15, Columbia University. Suzanne Bennett Johnson, Ph.D.9,12, 

Florida State University. Eric Triplett, Ph.D.6, University of Florida. 

 

Committees: 

1Ancillary Studies, 2Diet, 3Genetics, 4Human Subjects/Publicity/Publications, 5Immune Markers, 

6Infectious Agents, 7Laboratory Implementation, 8Maternal Studies, 9Psychosocial, 10Quality 

Assurance, 11Steering, 12Study Coordinators, 13Celiac Disease, 14Clinical Implementation, 

15Quality Assurance Subcommittee on Data Quality. 


	OLE_LINK2
	OLE_LINK1
	OLE_LINK4
	OLE_LINK3

