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Appendix

Finite locus models

We follow the notation and derivation of [4] as closely as possible. We assume that the trait is genetically

the same in males and females and allow for differential gene action in females due to dosage compen-

sation. We assume that assortative mating is solely on the phenotype so that the correlation of alleles

between mates is the same within and between loci. We also assume that all loci are unlinked. We used

the following notations.

Parameter Definition Autosomes X-chromosome

n haploid number of loci nA nX
f correlation in value of alleles

at the same locus fA fX
k correlation of alleles at different

loci in the same gamete kA kX
l correlation of alleles at different

loci in different gametes lA lX
m correlation of alleles in mates mA mX

ρ phenotypic correlation between mates
a allelic effect size a aM , aF
p frequency of increasing allele

Table 1: Summary of parameters (notations) used for the derivation, under finite locus models, of the
equilibrium genetic variance reached after multiple generations of AM.

Y
(t)
F and Y

(t)
M are the phenotypes of female and male mates in generation t, respectively.

Crow and Kimura derivation for equal effect sizes and allele frequencies: autosomal loci only

(Chapter 4.7)

This derivation assumes that all effect sizes and allele frequencies are the same and that all phenotypic

variance is genetic. For n unlinked autosomal genes, Crow and Kimura showed that

var(Y
(t)
F ) = var(Y

(t)
M ) = 2np(1− p)a2 [1 + ft + (n− 1)(kt + lt)] (34)

cov(Y
(t)
F , Y

(t)
M ) = 4n2p(1− p)mta

2 = ρ

√
var(Y

(t)
F )var(Y

(t)
M ) = ρvar(Y

(t)
M ) (35)
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For autosomal genes, the recurrence relationship from generation t to t+1 are,

ft+1 = mt,

lt+1 = mt,

kt+1 =
1

2
kt +

1

2
lt =

1

2
kt +

1

2
ft

Using these and eq. (34) and (35) gives,

ft+1 =
ρ

2n
[1 + nft + (n− 1)kt] ,

which at equilibrium yields the known relation ([19]; [4])

feq =
ρ

ρ+ 2n(1− ρ)
(36)

and a ratio of equilibrium variance to base population variance of,

var(Y (eq))

var(Y (0))
=

1

1− ρ[1− 1/(2n)]
, ([19]). (37)

[4] later extended their model to cover cases where causal variants have different allele frequencies (pj)

and different effect sizes (aj). In that case, it is shown that equation (36) still holds with n being replaced

by ne defined below as

ne =

(∑n
j=1

√
2pj(1− pj)a2

j

)2

∑n
j=1 2pj(1− pj)a2

j

. (38)

In all cases, when n is large, the genetic variance is changed by a factor of 1/(1− ρ).

X-chromosome genes

We now consider that all loci that influence the phenotype are on the X-chromosome. We allow the effect

sizes to be different between males and females. The variance in males is due to genic variances at nX loci
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and nX(nX − 1) covariances between alleles on their single X-chromosome,

var(Y
(t)
M ) = nXp(1− p)a2

M [1 + (nX − 1)kX(t)]. (39)

The variance in females is analogous to that shown in the first section,

var(Y
(t)
F ) = 2nXp(1− p)a2

F [1 + fX(t) + (nX − 1)(kX(t) + lX(t))]. (40)

And the covariance

cov(Y
(t)
F , Y

(t)
M ) = 2n2

Xp(1− p)aMaFmX(t). (41)

The covariance at generation t is also equal to

cov(Y
(t)
F , Y

(t)
M ) = ρ

√
var(Y

(t)
M )var(Y

(t)
F )

= ρ
√
nXp(1− p)a2

M [1 + (nX − 1)kX(t)]

×
√
2nXp(1− p)a2

F [1 + fX(t) + (nX − 1)(kX(t) + lX(t))]

= ρnXp(1− p)aMaF
√
2[1 + (nX − 1)kX(t)][1 + fX(t) + (nX − 1)(kX(t) + lX(t))]

(42)

For X-chromosome genes, the recurrence relationship from generation t to t+1 are,

fX(t+1) = mX(t), (43)

lX(t+1) = mX(t), (44)

(45)

For correlations between alleles in the same gamete, the contribution from males in the previous generation

is only from within their single gamete whereas the contribution from females is from within and between
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gametes. Therefore,

kX(t+1) =
1

2

[
kX(t) +

1

2

(
kX(t) + lX(t)

)]
=

3

4
kX(t) +

1

4
lX(t) =

3

4
kX(t) +

1

4
fX(t). (46)

It follows that

fX(t+1) =
ρ

nX
√

2

√
[1 + (nX − 1)kX(t)][1 + fX(t) + 2(nX − 1)fX(t)] (47)

At equilibrium, all correlations are the same. Solving equation (47) for fX(eq) leads to an equilibrium

correlation of

fX(eq) =
(3nX − 2)ρ2 + ρnX

√
8 + ρ2

4n2
X − 2ρ2(2nX − 1)(nX − 1)

(48)

As for the autosomes, if ρ = 1 then fX(eq) = 1. The ratio of equilibrium to base population variances are,

for males and females, respectively,

RM =
var(Y

(eq)
M )

var(Y
(0)
M )

= 1 + (nX − 1)fX(eq) (49)

RF =
var(Y

(eq)
F )

var(Y
(0)
F )

= 1 + (2nX − 1)fX(eq) (50)

For large nX , we can approximate nXfX(eq) as

nXfX(eq) ≈
ρ
(

3ρ+
√

8 + ρ2
)

4(1− ρ2)
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Therefore, equations (49) and (50) can be approximated as

RM ≈ 1 +
ρ
(

3ρ+
√

8 + ρ2
)

4(1− ρ2)
and RF ≈ 1 +

2ρ
(

3ρ+
√

8 + ρ2
)

4(1− ρ2)
, (51)

which is exactely what found under normal distribution theory (equation 24).

Hence, for a large number of loci, the amount of disequilibrium variance created by AM in females is twice

that in males. Note that although we have allowed for different effect sizes in males and females (and

different variances), they dont influence the results because all variation is genetic.

An extension of our derivations to different effect sizes and different allele frequencies can be achieved

similarly to the autosome case by replacing nX with the expression given in equation (38).

Simulation of assortative mating

To simulate AM we proceed iteratively as follows. We start with N simulated individuals (N/2 males and

N/2 females) from a base population under random mating (RM) then sample mates pairs to simulate

the next generations. We describe below our sampling strategy.

The problem

Let us assume that we have observed Y = (Y1, . . . , YN), the phenotypic values the N individuals of the

current generation. We now want to draw pairs of individuals j and k with probability θjk = θ (Yj, Yk)

such as the correlation between Yj and Yk equals ρ, the desired phenotypic correlation between mates.

Overall, Yj is sampled with probability

θj =
N∑
k=1

θjk

Therefore, the sample mean under the desired sampling probability distribution is
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µ =
N∑
j=1

θjYj =
∑
j,k

θjkYj.

We therefore need to define θjk (the joint sampling probability) such as

∑
j,k

θjkYjYk −

(∑
j,k

θjkYj

)2

= ρ

∑
j,k

θjkY
2
j −

(∑
j,k

θjkYj

)2
 (52)

under the constraints that

0 ≤ θjk ≤ 1, θjk = θkj, θjj = 0 (i.e. no selfing allowed) and
∑
j,k

θjk = 1.

Equation (52) can be rewritten as

∑
j,k

(
YjYk − ρY 2

j

)
θjk = (1− ρ)

(∑
j,k

θjkYj

)2

(53)

Asymptotic solution - importance sampling

Without loss of generality we assume that the Yj initially observed where independently drawn from a

standard Gaussian distribution with 0 mean and variance 1. The assumption on the Gaussian distribution

derives from that we assume a large number of causal variants. We also assume that N is large. Equation

(53) can be written as

E[
(
YjYk − ρY 2

j

)
θ (Yj, Yk)] = (1− ρ)E[θ (Yj, Yk)Yj]

2 (54)

Written in terms of integral, this gives that

∫
x,y

(
xy − ρx2

)
θ(x, y)φ(x)φ(y)dxdy = (1− ρ)

(∫
x,y

xθ(x, y)φ(x)φ(y)dxdy

)2

(55)
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where φ(.) is the probability density function of a standard Gaussian distribution. It therefore follows that

a sensible choice for θ(x, y) is pρ(x, y)/[φ(x)φ(y)] where pρ(x, y) is the probability density function of the

target distribution. In our case, our target distribution is a bivariate normal distribution with means 0

and variances 1 but with a correlation equal to ρ:

θ(x, y) =
1

2π
√

1− ρ2
exp

[
−x

2 − 2ρxy + y2

2(1− ρ2)

]
/

1

2π
exp

[
−x

2 + y2

2

]
or simply

θ(x, y) =
1√

1− ρ2
exp

(
−ρ

2x2 − 2ρxy + ρ2y2

2(1− ρ2)

)
(56)

We can therefore use that function θ(., .) to sample the pairs. We still have to set that θ(x, x) = 0 as we

don’t allow selfing.

For each (N, ρ) we generated 100 samples.

Simulation of offspring

We describe below how we simulate genotypes of offspring from that of their parents. All derivations

presented below only consider bi-allelic variants such as single nucleotide polymorphisms (SNP).

Autosomal variants

We consider diploid individuals and therefore represent genotypes as pairs of Bernoulli distributed vari-

ables indicative of the presence of the causal allele. We consider a trio consisting of a mother (m), a father

(f) and one of their children (o). Let us denote
(
x

(m)
m , x

(m)
f

)
,
(
x

(f)
m , x

(f)
f

)
and

(
x

(o)
m , x

(o)
f

)
respectively as

the genotypes of (m), (f) and (o) at a given locus. The subscript m or f indicates whether the causal

allele was inherited from the mother or the father. For example, x
(f)
m is the number of causal allele that

(f) inherited from his own mother.

We first consider the case of unlinked loci as each of them can be treated independently. Each parent

contributes with one allele to the genotype of their offspring, and that contribution depends on the number
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of causal alleles possessed by each parent. We can therefore express it as

x(o)
m |x(m)

m , x
(m)
f ∼ B

(
1

2

[
x(m)
m + x

(m)
f

])
, (57)

and

x
(o)
f |x

(f)
m , x

(f)
f ∼ B

(
1

2

[
x(f)
m + x

(f)
f

])
, (58)

where B (π) is the notation used to designate Bernoulli distributed variables of probability π.

Equations (57) and (58) apply independently for each locus where unlinked markers are simulated.

The case of linked loci is slightly more complicated as offspring genotypes at different loci cannot, as for

unlinked loci, be simulated independently from one another. We now denote xim,k =
(
xij1,m, . . . , x

i
jk,m

)
as

the vector of indicators of causal alleles across a chromosomal segment k in individual i = (m), (f) or (o).

As before, the substrict m indicates that the segment was inherited from individual i’s mother. We can

therefore similarly define xif,k =
(
xij1,f , . . . , x

i
jk,f

)
as the vector of indicators of causal alleles inherited from

individual i’s the father. To simulate the recombined chromosomes that (o) has inherited from (m), we

used a 3-steps approach:

1. The first step consists of sampling the number NB of recombination breakpoints on the chromosome.

If L is the length of the chromosome in Morgan, thenNB can be simulated using a Poisson distribution

of parameter L: NB ∼ P(L).

2. The second step consists of sampling the location of recombination breakpoints on the chromosome.

For that we used a uniform distribution of recombination events along the chromosome.

3. The last step consists of assembling parental recombined chromosomes to be transmitted. We first

simulate a random sequence (Z1, . . . , ZNB+1) of (NB + 1) Bernoulli distributed variable with prob-

ability 1/2. The Zk’s correspond to the (NB + 1) chromosome segments defined by the recombina-

tion breaks points and indicate whether the k-th transmitted segment is inherited from the mother

(Zk = 1) or the father (Zk = 0). This can also we written as

x
(o)
m,k = Zkx

(m)
m,k + (1− Zk)x(m)

f,k . (59)
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The same 3-steps approach is then repeated to simulate recombined chromosomes that (o) has inherited

from the father (f).

X-chromosome variants

We use the same procedure as above to simulate genotypes on the X-chromosomes of females offspring.

Given that male offspring only have one copy of the X-chromosome, we simulated that unique copy using

equations (57) and (58) when considering unlinked loci and equation (59) when considering linked causal

alleles. In our simulations, we used L = 1.5 Morgan for the X-chromosome and L = 33 Morgans for the

autosome.

Impact of linkage

We consider a simplified model with M causal variants. We denote aj as the additive fixed effect of the

j-th trait increasing allele (therefore aj > 0) and x
(m)
j and x

(f)
j as the number trait-increasing alleles trans-

mited by the mother and father respectively. At equilibrium positive assortative mating creates a positive

correlation α between x
(m)
j and x

(f)
j . We denote rjk as the correlation (linkage disequilibrium) between

trait increasing alleles at SNP j and SNP k in the base population. rjk can be positive or negative a pri-

ori. For the sake of simplicity we assume that all alleles have the same frequency p and we denote q = 1−p.

Useful formulas are ([20])

var[x
(m)
j ] = var[x

(f)
j ] = pq, cov[x

(m)
j , x

(f)
j ] = αpq and cov[x

(m)
j , x

(m)
k ] = cov[x

(f)
j , x

(f)
k ] = Djk = (rjk+α)pq.

(60)

Equation (60), in particular the last formula (Djk = (rjk + α)pq), translates that the AM adds to the ex-

isting covariance between trait increasing alleles in the base population. For unlinked markers, rjk would

be equal to 0.

Let us now derive the equilibrium genetic variance V
(eq)
A :
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V
(eq)
A = var

[
M∑
j=1

aj

(
x

(m)
j + x

(f)
j

)]

=
M∑
j=1

var
[
aj

(
x

(m)
j + x

(f)
j

)]
+
∑
j 6=k

cov
[
aj

(
x

(m)
j + x

(f)
j

)
, ak

(
x

(m)
k + x

(f)
k

)]
= 2pq(1 + α)

[
M∑
j=1

a2
j

]
+
∑
j 6=k

ajak (2rjkpq + 4αpq)

= 2pq

[
M∑
j=1

a2
j

]
+ 2pq

(∑
j 6=k

ajakrjk

)
︸ ︷︷ ︸

Varince in the base population

+ 2pqα

[
M∑
j=1

a2
j + 2

∑
j 6=k

ajak

]
︸ ︷︷ ︸
Inflation due to assortative mating

(61)

As previously reported in [2], equation (61) shows that the inflation in genetic variance due to assortative

mating (last term in the equation) is independent of linkage. It is important to recall that this result holds

because we assumed no selection and therefore the distribution of alleles inherited from the same parent

will be unaffected by assortative mating.


