Ambio

Electronic Supplementary Material

This supplementary material has not been peer reviewed.

Title: Shepherds' local knowledge and scientific data on the scavenging ecosystem service: Insights for conservation

Authors: Zebensui Morales-Reyes, Berta Martín-López, Marcos Moleón, Patricia Mateo-Tomás, Pedro P. Olea, Eneko Arrondo, José A. Donázar, José A. Sánchez-Zapata

This file includes:

Table S1. Species included in the questionnaires in each study area.

- **Table S2.** Overview of the variables and questions included in the questionnaires to investigate shepherds' indigenous and local knowledge.
- Table S3. Overview of the variables of scientific knowledge.
- Table S4. Analysis of covariance testing the effects of the shepherds' age on the relationships between

 SK and ILK at the species level in each study area.
- Table S5. Analysis of covariance testing the effects of the experience as a shepherd on the relationships

 between SK and ILK at the species level in each study area.
- Table S6. U values and p value of Mann-Whitney U tests of the differences between scientific knowledge and indigenous and local knowledge about detection and consumption times of livestock carcasses by scavengers depending on shepherds' age and experience in each study area.
- Appendix S1. Calculation of the biomass consumed by each vertebrate scavenger species in each study area.

 Table S1. Species included in the questionnaires in each study area. Vertebrate scavenger species detected

 in the monitoring of the consumption of carcasses using camera traps and/or other scavenger species

 breeding in each study area were included.

Scientific name	Common name	Cantabrian Mountains	Baetic Mountains
Birds			
Aegypius monachus	Cinereous vulture	Yes	Yes
Gypaetus barbatus	Bearded vulture	No	Yes
Gyps fulvus	Griffon vulture	Yes	Yes
Neophron percnopterus	Egyptian vulture	Yes	Yes
Aquila chrysaetos	Golden eagle	Yes	Yes
Buteo buteo	Common buzzard	Yes	No
Milvus migrans	Black kite	No	Yes
Milvus milvus	Red kite	Yes	Yes
Corvus corax	Common raven	Yes	Yes
Corvus corone	Carrion crow	Yes	Yes
Garrulus glandarius	Eurasian jay	Yes	No
Pica pica	Common magpie	Yes	Yes
Mammals			
Ursus arctos	Brown bear	Yes	No
Canis lupus	Gray wolf	Yes	No
Vulpes vulpes	Red fox	Yes	Yes
Genetta genetta	Common genet	Yes	No
Martes foina*	Stone marten	Yes	Yes
Martes martes [*]	Pine marten	Yes	No
Meles meles	Eurasian badger	Yes	No
Sus scrofa	Wild boar	Yes	Yes

* In Cantabrian Mountains, we considered stone marten (*Martes foina*) and pine marten (*M. martes*) together as *Martes spp*. because specific identification was not possible from the pictures at night (n = 1 carcass).

Variable	Description
Species level	
Frequency of occurrence at carcasses ILK	For each species, average frequency of observation by shepherds of such species scavenging at carcasses in each study area, according to the following categories: 0 (never), 1 (less than half the times), 2 (half the times), 3 (more than half the times) and 4 (always). Question: how often do you see each species scavenging at livestock carcasses in your area?
Scavenging service ILK	For each species, percentage of shepherds that considered such species as a provider of the scavenging service (i.e., carcass consumption). Ln (x+1) transformation was applied to avoid heteroscedasticity. Questions: which species scavenge your livestock carcasses? Could you rank each species by its importance in the removal of your livestock carcasses?
Community level	
Detection time ILK	For each livestock carcass, average perception of the time elapsed (in hours) since the carcass became available until the arrival of the first scavenger. Question: how long do scavengers normally take to detect a carcass?
Consumption time ILK	For each livestock carcass, average perception of the time elapsed (in hours) since the carcass became available until it was completely consumed (i.e., only bones, skin and dehydrated meat left; Moleón et al. 2015). Question: how long do scavengers normally take to completely consume a carcass?

Table S2. Overview of the variables and questions included in the questionnaires to investigate shepherds' indigenous and local knowledge (ILK).

Table S3. Overview of the variables of scientific knowledge (SK).

Name of variable	Description
Species level	
Frequency of occurrence at carcasses SK	For each species, average frequency of occurrence of such species feeding on the carcasses within each study area. Variable obtained from camera trap monitoring of carcass consumption (Mateo-Tomás et al. 2015).
Biomass consumed SK	For each species, average percentage of biomass consumed by such species at all the carcasses in each study area. See Appendix S1 for further details. Variable obtained from camera trap monitoring of carcass consumption. Ln $(x+1)$ transformation was applied to avoid heteroscedasticity.
Community level	
Detection time SK	For each experimental carcass, average time elapsed (in hours) since the carcass became available until the arrival of the first scavenger. Variable obtained from camera trap monitoring of carcass consumption.
Consumption time SK	For each experimental carcass, average time elapsed (in hours) since the carcass became available until it was completely consumed (i.e., only bones, skin and dehydrated meat left; Moleón et al. 2015). Variable obtained from camera trap monitoring of carcass consumption.

Table S4. Analysis of covariance testing the effects of the shepherds' age ('born' as covariate) on the relationships between scientific knowledge (i.e., 'frequency of occurrence at carcasses SK' and 'biomass consumed SK') and indigenous and local knowledge (i.e., 'frequency of occurrence at carcasses ILK' and 'scavenging service ILK') at the species level in each study area. Values statistically significant are indicated in bold. Description of the variables is provided in Table S2 and S3. The regression lines are provided in Figs. 4a–b.

Study area	SK-ILK	Analysis of covariance table	DF	Sum	Sq mean	F value	Pr (>F)
Cantabrian	Frequency of	Frequency of occurrence at carcasses ILK	1	1.425	1.425	16.969	< 0.001
Mountains	occurrence at	Born	2	0.024	0.012	0.142	0.868
	carcasses SK - Frequency of	Frequency of occurrence at carcasses ILK:Born	2	0.123	0.062	0.734	0.485
	occurrence at	Residuals	46	3.863	0.084		
	carcasses ILK	Estimated coefficients		Estimate	SE	t value	Pr (> t)
		Intercept		0.235	0.076	3.084	0.003
		Frequency of occurrence at carcasses ILK		0.225	0.111	2.022	0.049
		Born ≥1970		-0.102	0.113	-0.897	0.374
		Born 1960		-0.018	0.109	-0.162	0.872
		Frequency of occurrence at carcasses ILK:Born ≥1970		0.121	0.158	0.762	0.450
		Frequency of occurrence at carcasses ILK:Born 1960		-0.046	0.137	-0.334	0.740
	SK-ILK	Analysis of covariance table	DF	Sum	Sq mean	F value	Pr (>F)
Biom	Biomass	Scavenging service ILK	1	58.325	58.325	242.552	< 0.0001
	consumed SK -	Born	2	0.092	0.046	0.191	0.827
	Scavenging service ILK	Scavenging service ILK:Born	2	0.502	0.251	1.044	0.360
	Service ILIX	Residuals	46	11.061	0.240		
		Estimated coefficients		Estimate	SE	t value	Pr (> t)
		Intercept		0.223	0.145	1.537	0.131
		Scavenging service ILK		0.690	0.075	9.258	< 0.0001
		Born ≥1970		-0.036	0.202	-0.178	0.860
		Born 1960		0.063	0.206	0.303	0.763

		Scavenging service ILK:Born ≥1970		-0.033	0.101	-0.328	0.744
		Scavenging service ILK:Born 1960		-0.136	0.100	-1.358	0.181
	SK-ILK	Analysis of covariance table	DF	Sum	Sq mean	F value	Pr (>F)
Baetic	Frequency of	Frequency of occurrence at carcasses ILK	1	1.712	1.712	24.201	< 0.0001
Mountains	occurrence at carcasses SK -	Born	2	0.034	0.017	0.241	0.788
	Frequency of	Frequency of occurrence at carcasses ILK:Born	2	0.046	0.023	0.327	0.723
	occurrence at	Residuals	31	2.193	0.071		
	carcasses ILK	Estimated coefficients		Estimate	SE	t value	Pr (> t)
		Intercept		0.194	0.110	1.759	0.088
		Frequency of occurrence at carcasses ILK		0.109	0.049	2.200	0.035
		Born ≥1970		-0.139	0.153	-0.904	0.373
		Born 1960		-0.145	0.156	-0.931	0.359
		Frequency of occurrence at carcasses ILK:Born ≥1970		0.050	0.070	0.717	0.479
		Frequency of occurrence at carcasses ILK:Born 1960		0.048	0.070	0.681	0.501
	SK-ILK	Analysis of covariance table	DF	Sum	Sq mean	F value	Pr (>F)
	Biomass	Scavenging service ILK	1	21.479	21.479	18.172	< 0.001
	consumed SK -	Born	2	0.112	0.056	0.048	0.954
	Scavenging service ILK	Scavenging service ILK:Born	2	0.007	0.003	0.003	0.997
		Residuals	31	36.643	1.182		
		Estimated coefficients		Estimate	SE	t value	Pr (> t)
		Intercept		0.026	0.440	0.060	0.953
		Scavenging service ILK		0.427	0.167	2.562	0.016
		Born ≥1970		-0.100	0.614	-0.163	0.872
		Born 1960		-0.090	0.612	-0.147	0.884
		Scavenging service ILK:Born ≥1970		-0.018	0.238	-0.075	0.941
		Scavenging service ILK:Born 1960		-0.008	0.241	-0.032	0.975

Table S5. Analysis of covariance testing the effects of the experience	e as a shepherd ('experience' as covariate) on the relationships between scientific knowledge (i.e., 'frequency
of occurrence at carcasses SK' and 'biomass consumed SK') and	indigenous and local knowledge (i.e., 'frequency of occurrence at carcasses ILK' and 'scavenging service
ILK') at the species level in each study area. Values statistically si	ignificant are indicated in bold. Description of the variables is provided in Table S2 and S3. The regression
lines are provided in Figs. 4c–d.	

Study area	SK-ILK	Analysis of covariance table	DF	Sum	Sq mean	F value	Pr (>F)
Cantabrian	Frequency of	Frequency of occurrence at carcasses ILK	1	1.477	1.477	17.235	< 0.001
Mountains	occurrence at	Experience	2	0.024	0.012	0.139	0.871
	carcasses SK - Frequency of	Frequency of occurrence at carcasses ILK:Experience	2	0.042	0.021	0.248	0.782
	occurrence at	Residuals	45	3.855	0.086		
	carcasses ILK	Estimated coefficients		Estimate	SE	t value	Pr (> t)
		Intercept		0.201	0.081	2.479	0.017
		Frequency of occurrence at carcasses ILK		0.307	0.130	2.352	0.023
		Experience 21-40		-0.033	0.114	-0.288	0.775
		Experience ≥41		0.032	0.114	0.278	0.782
		Frequency of occurrence at carcasses ILK:Experience 21-40		-0.053	0.159	-0.334	0.740
		Frequency of occurrence at carcasses ILK:Experience ≥41		-0.109	0.160	-0.683	0.498
	SK-ILK	Analysis of covariance table	DF	Sum	Sq mean	F value	Pr (>F)
	Biomass consumed	Scavenging service ILK	1	60.495	60.495	305.443	< 0.0001
	SK - Scavenging	Experience	2	0.014	0.007	0.036	0.964
	service ILK	Scavenging service ILK:Experience	2	0.149	0.074	0.376	0.689
		Residuals	46	9.111	0.198		
		Estimated coefficients		Estimate	SE	t value	Pr (> t)
		Intercept		0.189	0.133	1.425	0.161
		Scavenging service ILK		0.664	0.064	10.419	< 0.0001
		Experience 21-40		0.062	0.184	0.337	0.737
		Experience ≥41		0.020	0.187	0.106	0.916

		Scavenging service ILK:Experience 21-40		-0.063	0.089	-0.707	0.483
		Scavenging service ILK:Experience ≥41		0.008	0.092	0.084	0.934
	SK-ILK	Analysis of covariance table	DF	Sum	Sq mean	F value	Pr (>F)
Baetic	Frequency of	Frequency of occurrence at carcasses ILK	1	1.971	1.971	30.154	< 0.0001
Mountains	occurrence at	Experience	2	0.022	0.011	0.169	0.845
	carcasses SK - Frequency of	Frequency of occurrence at carcasses ILK:Experience	2	0.001	0.001	0.009	0.992
	occurrence at	Residuals	32	2.092	0.065		
	carcasses ILK	Estimated coefficients		Estimate	SE	t value	Pr (> t)
		Intercept		0.088	0.109	0.806	0.426
		Frequency of occurrence at carcasses ILK		0.150	0.049	3.037	0.005
		Experience 21-40		-0.011	0.147	-0.074	0.941
		Experience ≥41		-0.053	0.155	-0.342	0.735
		Frequency of occurrence at carcasses ILK:Experience 21-40		0.008	0.069	0.123	0.903
		Frequency of occurrence at carcasses ILK:Experience ≥41		0.002	0.068	0.028	0.978
	SK-ILK	Analysis of covariance table	DF	Sum	Sq mean	F value	Pr (>F)
	Biomass consumed	Scavenging service ILK	1	18.726	18.726	15.067	< 0.001
	SK- Scavenging	Experience	2	0.068	0.034	0.027	0.973
	service ILK	Scavenging service ILK:Experience	2	0.145	0.073	0.059	0.943
		Residuals	32	39.772	1.243		
		Estimated coefficients		Estimate	SE	t value	Pr (> t)
		Intercept		0.067	0.448	0.149	0.883
		Scavenging service ILK		0.357	0.172	2.081	0.046
		Experience 21-40		-0.124	0.633	-0.196	0.846
		Experience ≥41		-0.185	0.631	-0.293	0.772
		Scavenging service ILK:Experience 21-40		0.012	0.239	0.052	0.959
		Scavenging service ILK:Experience ≥41		0.079	0.248	0.319	0.752

Table S6. *U* values and *p* value of Mann-Whitney U tests ($\alpha = 0.05$) of the differences between scientific knowledge (SK) and indigenous and local knowledge (ILK) about detection and consumption times of livestock carcasses by scavengers depending on shepherds' age ('born') and experience ('experience') in each study area. Significant differences between SK–ILK within the same study area are indicated in bold. Description of the variables is provided in Table S2 and S3. Mean and SD of detection and consumption times are provided in Figs. 3c–f.

		Variable SK – Variable ILK				
		Detection	time SK –	Consumption time SK		
		Detection	time ILK	Consump	otion time ILK	
Study area	Born	U	p value	U	p value	
Cantabrian Mountains	≤1950	15.0	0.498	33.0	<0.001	
	1960	7.0	0.149	21.0	0.003	
	≥1970	23.0	0.599	22.0	< 0.001	
Baetic Mountains	≤1950	9.5	0.011	34.0	0.432	
	1960	207.0	0.666	30.0	< 0.0001	
	≥1970	175.0	0.204	24.0	< 0.001	
	Experience					
Cantabrian Mountains	<u>≤20</u>	20.0	0.650	24.0	< 0.001	
	21-40	10.0	0.164	28.0	< 0.0001	
	≥41	15.0	0.498	24.0	0.005	
Baetic Mountains	_ ≤20	86.0	0.600	34.0	0.063	
	21-40	177.0	0.390	19.0	< 0.0001	
	>41	128.5	0.102	35.0	< 0.0001	

Appendix S1. Calculation of the biomass consumed (%) by each vertebrate scavenger species in each study area (see Mateo-Tomás et al. 2017 for further details).

First, for each study area (i.e., Cantabrian Mountains and Baetic Mountains), we estimated the carrion consumed by each vertebrate species scavenging at a carcass as:

Carrion consumed_i =
$$\sum_{j=1}^{days} n_{ij} * DFI_i$$
 eq. (1)

where n_{ij} is the abundance of species *i* recorded scavenging at a carcass (see above) on day *j*. This value was multiplied by the daily food intake of the species *i* (i.e., DFI_i) as resulting from the following equation (Crocker et al. 2002):

$$Daily Food Intake (DFI) = \frac{Daily Energy Expenditure (kJ)}{Food Energy \left(\frac{kJ}{g}\right) * (1 - Moisture) * Assimilation Efficiency} \quad eq. (2)$$

Daily Energy Expenditure has a strong relationship with body weight:

$$Log (Daily Energy Expenditure) = Log a + b * (log Body weight) eq. (3)$$

Log a and *b* are parameters separately obtained from Hudson et al. (2013). Mean body weights for the recorded scavengers were obtained from official databases (i.e., PanTHERIA, HBW Alive; Jones et al. 2009; Del Hoyo et al. 2015). Energy and moisture content for mammal carrion were 22.6 kJ/g and 68.8% respectively (Crocker et al. 2002). Here, we assumed that each individual scavenger arriving at a carcass consumed the daily food intake.

Second, we estimated the percentage of biomass consumed per species *i* at each carcass *c* as:

$$Biomass \ consumed_{i}(\%) = \frac{Carrion \ consumed_{ci} * 100}{\sum_{i=1}^{N} (Carrion \ consumed_{ci})} \text{ eq. (4)}$$

Finally, we calculated the average biomass consumed (%) by each species at all the carcasses within each study area (i.e., the variable 'biomass consumed SK'; see Table S3).

References

- Crocker, D., A Hart, J. Gurney, and C. McCoy. 2002. *Project PN0908: Methods for estimating daily food intake of wild birds and mammals.* Final report. Central Science Laboratory. UK: DEFRA.
- Del Hoyo, J., A., Elliott, J., Sargatal, D.A., Christie, and E. de Juana. (Eds.). 2015. *Handbook of the Birds of the World Alive*. Barcelona: Lynx Edicions. Retrieved 1 October, 2016, from: http://www.hbw.com/
- Hudson, L.N, N.J.B. Isaac, and D.C. Reuman. 2013. The relationship between body mass and field metabolic rate among individual birds and mammals. *Journal of Animal Ecology* 82: 1009–1020. doi: 10.1111/1365-2656.12086
- Jones, K.E., J. Bielby, M. Cardillo, S. A. Fritz, J. O'Dell, C. D. L. Orme, K. Safi, W. Sechrest, et al. 2009. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. *Ecology* 90: 2648–2648. doi:10.1890/08-1494.1
- Mateo-Tomás, P., P.P. Olea, M. Moleón, J. Vicente, F. Botella, N. Selva, J. Viñuela, and J.A. Sánchez-Zapata. 2015. From regional to global patterns in vertebrate scavenger communities subsidized by big game hunting. *Diversity and Distributions* 21: 913–924. doi: 10.1111/ddi.12330
- Mateo-Tomás, P., P.P. Olea, M. Moleón, N. Selva, and J.A. Sánchez-Zapata. 2017. Both rare and common species support ecosystem services in scavenger communities. *Global Ecology and Biogeography* 26: 1459-1470. doi: 10.1111/geb.12673
- Moleón, M., J.A. Sánchez-Zapata, E. Sebastián-González, and N. Owen-Smith. 2015. Carcass size shapes the structure and functioning of an African scavenging assemblage. *Oikos* 124: 1391–1403. doi: 10.1111/oik.02222