# Enhanced Astrocyte Responses are Driven by a Genetic Risk Allele Associated with

**Multiple Sclerosis** 

**Supplementary Information** 

Ponath et al.

Supplementary Figure 1.

А



**Supplementary Figure 1.** Comparison of normalized ATAC-seq profiles between GLASTpurified unstimulated and stimulated human fetal astrocytes and *ex vivo* unstimulated T cells. ATAC-seq profiles near the (**A**) *GFAP*, (**B**) *CD2* and (**C**) *NFKB1* loci. (**A**) Note the increased chromatin accessibility in the vicinity of the astrocyte lineage-specific *GFAP* gene in astrocytes but not in T cells. (**B**) The chromatin region around the T cell specific gene *CD2* is accessible in T cells but not astrocytes. (**C**) Chromatin landscape of *NFKB1* with high DNA accessibility in a haplotype block containing the tagging SNPs rs3774959 and rs1598859 in T cells but not astrocytes. The variants confer risk for inflammatory bowel disease and systemic sclerosis, respectively, but not for MS.

#### Supplementary Figure 2.

| MS<br>Patient | Variant    | Age | Gender | Disease<br>onset (age) | Disease<br>course | Treatment at time of biopsy | Healthy<br>Donor | Variant    | Age | Gender |
|---------------|------------|-----|--------|------------------------|-------------------|-----------------------------|------------------|------------|-----|--------|
| 1             | risk       | 54  | Female | 29                     | SPMS              | Rituximab                   | 1                | risk       | 65  | Female |
| 2             | risk       | 45  | Female | 35                     | RRMS              | Natalizumab                 | 2                | risk       | 28  | Female |
| 3             | risk       | 42  | Female | 23                     | RRMS              | Natalizumab                 | 3                | risk       | 71  | Male   |
| 4             | protective | 56  | Female | 33                     | SPMS              | Natalizumab                 | 4                | protective | 37  | Female |
| 5             | protective | 47  | Female | 32                     | RRMS              | Rituximab                   | 5                | protective | 35  | Female |
| 6             | protective | 26  | Female | 22                     | RRMS              | Natalizumab                 | 6                | protective | 32  | Female |

**Supplementary Figure 2.** Clinical data and demographics of MS patients and healthy donors without neurological disease from whom skin biopsies were obtained for generation of iPSC lines.

#### **Supplementary Figure 3.**

|          |            |      | iPSC lines  |      |      |      |      |      |      | S Cas | es   |      | iPSC lines |      |      |      |      |      | MS Cases |      |      |      |      |  |  |
|----------|------------|------|-------------|------|------|------|------|------|------|-------|------|------|------------|------|------|------|------|------|----------|------|------|------|------|--|--|
| gene     | SNP        | 1    | 2 3 4 5 6 1 |      |      |      |      | 2    | 3    | 4     | 5    | 7    | 8          | 9    | 10   | 11   | 12   | 6    | 7        | 8    | 9    | 10   |      |  |  |
| NFKB1    | rs7665090  | risk | risk        | risk | risk | risk | risk | risk | risk | risk  | risk | risk | prot       | prot | prot | prot | prot | prot | prot     | prot | prot | prot | prot |  |  |
| TNFRSF1A | rs1800693  | risk | het         | het  | het  | het  | het  | prot | het  | het   | het  | het  | het        | het  | risk | het  | het  | het  | het      | het  | het  | het  | risk |  |  |
| LTBR     | rs12296430 | het  | het         | het  | het  | het  | het  | het  | het  | het   | het  | het  | het        | het  | risk | het  | het  | het  | het      | het  | het  | het  | het  |  |  |
| TNFSF14A | rs1077667  | het  | risk        | het  | het  | het  | het  | het  | prot | het   | het  | het  | prot       | het  | het  | het  | het  | het  | het      | het  | het  | het  | het  |  |  |
| TRAF3    | rs12148050 | het  | het         | het  | het  | prot | het  | het  | het  | het   | risk | het  | het        | het  | het  | prot | het  | het  | het      | het  | risk | het  | het  |  |  |
| CD40     | rs4810485  | het  | het         | het  | risk | het  | het  | het  | het  | het   | prot | het  | risk       | het  | het  | het  | het  | het  | het      | het  | het  | prot | het  |  |  |

**Supplementary Figure 3.** Genotypic profiles of iPSC lines and MS tissue for NF-κB relevant MS risk variants. For clarity, genotypes are reported as risk (red), heterozygous (het, yellow), and protective (prot, green), regarding their association with MS susceptibility. iPSC lines and MS cases of both groups (rs7665090<sup>GG</sup> and rs7665090<sup>AA</sup>) show random distribution of potentially confounding genetic variants.

## Supplementary Figure 4.

| Α | rs7665090 | protective  | risk        |
|---|-----------|-------------|-------------|
|   | Gene      | Fold Change | Fold Change |
|   | BIRC3     | 7.12        | 3.16        |
|   | C3        | unchanged   | 2.02        |
|   | CCL2      | 4.61        | 10.38       |
|   | CCL5      | 5.63        | 8.02        |
|   | CD40      | 2.82        | unchanged   |
|   | CD69      | 3.73        | 16.96       |
|   | CXCL1     | 11.14       | 7.98        |
|   | CXCL10    | 226.79      | 201.61      |
|   | CXCL2     | 11.2        | 8           |
|   | CXCL9     | 2.83        | 4.01        |
|   | GADD45B   | unchanged   | 3.22        |
|   | ICAM1     | 2.81        | 6.33        |
|   | IL15      | 4.48        | 12.86       |
|   | CXCL8     | 14.12       | 6.37        |
|   | IRF1      | 8.9         | 16.13       |
|   | LTA       | unchanged   | 2.48        |
|   | LTB       | 2.24        | 4.01        |
|   | NFKB2     | 3.57        | 3.22        |
|   | NFKBIA    | 4.46        | 4           |
|   | NR4A2     | 2.78        | unchanged   |
|   | PLAU      | 4.42        | 3.19        |
|   | RELB      | 11.25       | 7.95        |
|   | SELE      | 5.72        | 5.11        |
|   | STAT1     | 2.8         | 3.17        |
|   | TNF       | 36.14       | 7.95        |
|   | TNFRSF1B  | unchanged   | 2.53        |
|   | TNFSF10   | unchanged   | 3.2         |
|   | VCAM1     | 30.03       | 26.29       |
|   | B2M       | unchanged   | 2.54        |
|   | RPLP0     | unchanged   | 2.51        |



| Gene Symbol | Fold Regulation | p-value   | FDR p-value |
|-------------|-----------------|-----------|-------------|
| C3          | 3.46            | 0.0004858 | 0.007047    |
| CCL5        | 4.22            | 0.0002155 | 0.009396    |
| CXCL10      | 6.66            | 0.0037238 | 0.014094    |
| ICAM1       | 8.39            | 0.0011415 | 0.02481675  |
| IL15        | 4.72            | 8.1E-05   | 0.0410118   |



de of log2(Fold Change)

Mag

Ε

| Layout | 1      | 2      | 3      | 4       | 5      | 6      | 7            | 8       | 9     | 10    | 11    | 12      |
|--------|--------|--------|--------|---------|--------|--------|--------------|---------|-------|-------|-------|---------|
|        | ADM    | AGT    | AKT1   | ALDH3A2 | BCL2A1 | BCL2L1 | BIRC2        | BIRC3   | C3    | CCL11 | CCL2  | CCL22   |
| Α      | -1.28  | 1      | -1.19  | 1.23    | 1.07   | -1.39  | 1.24         | 1.45    | 3.46  | -1.22 | 1.23  | -1.22   |
|        |        | В      |        |         | В      | В      | 3            |         | Α     | С     | В     | С       |
|        | CCL5   | CCND1  | CCR5   | CD40    | CD69   | CD80   | CD83         | CDKN1A  | CFB   | CSF1  | CSF2  | CSF2RB  |
| В      | 4.22   | -1.3   | -1.22  | -1.21   | 1.87   | -1.2   | -1.15        | 1.73    | -1.2  | -1.39 | -1.14 | -1.22   |
|        | Α      |        | С      |         | В      | В      |              |         | В     |       | В     | С       |
|        | CSF3   | CXCL1  | CXCL10 | CXCL2   | CXCL9  | EGFR   | EGR2         | F3      | F8    | FAS   | FASLG | GADD45B |
| С      | -1.22  | -1.2   | 6.66   | -1.42   | -1.25  | -1.17  | -1.45        | -1.77   | 1.22  | 1.36  | -1.22 | 1.09    |
|        | В      |        |        |         | в      |        | В            | В       | В     |       | С     |         |
|        | ICAM1  | IFNB1  | IFNG   | IL12B   | IL15   | IL1A   | IL1B         | IL1R2   | IL1RN | IL2   | IL2RA | IL4     |
| D      | 8.39   | -1.22  | -1.22  | -1.22   | 4.72   | 1.34   | -1.22        | 1.36    | -1.22 | -1.22 | -1.22 | -1.22   |
|        | Α      | с      | С      | с       | А      | В      | С            | В       | С     | С     | С     | С       |
|        | IL6    | CXCL8  | INS    | IRF1    | LTA    | LTB    | MAP2K6       | MMP9    | MYC   | MYD88 | NCOA3 | NFKB1   |
| E      | 1.39   | -1.22  | -1.22  | 1.03    | -1.22  | 1.09   | 1.27         | 1.43    | -1.35 | -1.36 | -1.25 | -1.02   |
|        | В      |        | С      |         | С      | В      | В            | В       |       | В     |       |         |
|        | NFKB2  | NFKBIA | NQO1   | NR4A2   | PDGFB  | PLAU   | PTGS2        | REL     | RELA  | RELB  | SELE  | SELP    |
| F      | 1.2    | -1.29  | -1.06  | 1.15    | -1.22  | 1.45   | -1.36        | -1.23   | -1.16 | -1.91 | -1.65 | -1.45   |
|        |        |        |        |         | С      |        | В            |         |       |       |       | В       |
| G      | SNAP25 | SOD2   | STAT1  | STAT3   | STAT5B | TNF    | TNFRSF1<br>B | TNFSF10 | TP53  | TRAF2 | VCAM1 | XIAP    |
|        | -1.19  | -1.22  | 1.02   | -1.29   | 1.14   | -1.44  | -1.29        | 1.23    | -1.12 | -1.18 | -1.41 | 1.06    |
|        | B      |        |        |         |        |        | B            | B       |       |       | B     |         |



Supplementary Figure 4. Effect of the rs7665090 risk variant on human iPSC-derived astrocytes. (A) Upregulated NF-κB target genes from a 84 NF-κB target gene panel after stimulation with TNF $\alpha$ , IL-1 $\beta$  and IFN $\gamma$  in astrocytes with the protective and risk variants compared to baseline (**B**, C) Scatter plot profiling astroglial expression of NF-kB target genes after stimulation with TNFa, IL-1 $\beta$ , and IFN $\gamma$ . Red dots indicate genes with  $\geq$ 2-fold expression. (**D**) Fold-change values greater than one indicate upregulation. A: This data means that the expression is relatively low in one sample and reasonably detected in the other sample, suggesting that the actual fold-change value is at least as large as the calculated. B: The relative expression level is low in both control and test samples, and the p-value for the fold-change is either unavailable or relatively high (p > 0.05). C: This generated average threshold cycle is either not determined or greater than the defined cut-off value (default 35) in both samples, meaning that its expression was undetected, making this foldchange result erroneous and un-interpretable. Data is visualized in a heat map for graphical representation of the PCR array results. (E) MANBA mRNA expression remains unchanged in iPSC-derived astrocytes after stimulation with TNF $\alpha$ , IL-1 $\beta$ , and IFN $\gamma$ , and shows no differential gene expression according to rs7665090<sup>G</sup> genotype (6 lines per group) revealed by quantitative real-time PCR.

| Patient | Variant    | Age | Gender | Disease onset<br>(age) | Disease course | PMI (hrs) | All lesions | Chronic active lesions<br>(analysis of astrocyte phenotype) |
|---------|------------|-----|--------|------------------------|----------------|-----------|-------------|-------------------------------------------------------------|
| 1*      | risk       | 32  | female | 26                     | RRMS           | 3.5       | 2           | 2                                                           |
| 2*      | risk       | 42  | male   | 34                     | RRMS           | 8         | 1           | 1                                                           |
| 3*      | risk       | 38  | male   | 26                     | RRMS           | 23        | 6           | 1                                                           |
| 4*      | risk       | 61  | female | unknown                | SPMS           | 11        | 3           | 1                                                           |
| 5*      | risk       | 50  | female | 34                     | SPMS           | 5         | 2           | 1                                                           |
| 6#      | risk       | 45  | female | 24                     | RRMS           | 4         | 3           | 0                                                           |
| 7#      | risk       | 60  | female | 42                     | PPMS           | 24        | 2           | 0                                                           |
| 8#      | risk       | 67  | female | unknown                | SPMS           | 9         | 2           | 0                                                           |
| 9*      | protective | 72  | female | 45                     | SPMS           | 22        | 3           | 2                                                           |
| 10*     | protective | 30  | Male   | 25                     | RRMS           | 12        | 2           | 1                                                           |
| 11*     | protective | 53  | Male   | unknown                | SPMS           | 11        | 7           | 2                                                           |
| 12*     | protective | 38  | Male   | 32                     | RRMS           | 9         | 3           | 2                                                           |
| 13*     | protective | 76  | female | unknown                | SPMS           | 3         | 1           | 1                                                           |
| 14#     | protective | 71  | Male   | unknown                | SPMS           | 13        | 2           | 0                                                           |
|         |            |     |        |                        |                |           |             |                                                             |

Supplementary Figure 5. Clinical data of autopsied MS cases<sup>§</sup>

\* used for analysis of chemokines, infiltration with CD3<sup>+</sup> cells and lesion size (chronic active lesions)

<sup>#</sup> used for analysis of lesion size only (chronic silent lesions)

<sup>§</sup> none of the MS patients from whom autopsy material was obtained were treated with highly-effective treatments such as natalizumab, alemtuzumab, ocrelizumab, or rituximab

### Supplementary Figure 6.













С



Е





D

Supplementary Figure 6. Densitometric analysis. (A) Representative confocal microscopy images of hypertrophic astrocytes homozygous for the risk or protective variants located at the lesion edge, stained with fluorescent antibodies against GFAP (green) p65, CCL5, ICAM1, IL-15, C3d, CCL2, and CXCL1 (magenta), respectively. (B) Densitometric quantification of protein expression in the cytosol/nucleus of hypertrophic lesional astrocytes. (C) Representative confocal microscopy images of non-reactive astrocytes with the risk or protective variants, located in the normal appearing white matter (NAWM), stained with fluorescent antibodies against GFAP (green), p50 and p65 (both magenta). Densitometric quantification of p50 and p65 protein expression in the nucleus of astrocytes in NAWM. Each bar represents the average fluorescence from 10-20 astrocytes per case, with five cases per group (white = prot; gray = risk). (D) Representative confocal microscopy images of microglia cells carrying the risk or protective variants, located in the NAWM, stained with fluorescent antibodies against CD68 (green) and p65 (magenta). (E) Representative confocal microscopy images of endothelial cells carrying the risk or protective variants, located in the NAWM, stained with fluorescent antibodies against CD31 (green), p65 (magenta), and GFAP (gray). Scale bars =  $15 \mu m$ .

#### **Supplementary Figure 7.**



**Supplementary Figure 7.** Quantification of perivascular CD3<sup>+</sup> T cells in chronic active lesions with the risk or protective genotype. CD3<sup>+</sup> cells were counted in 29 lesions (15 risk group, 14 protective group) from 10 MS cases (5 cases per group), with 1 to 5 lesions per case. Each dot represents an average CD3<sup>+</sup> cell count from all lesions of a single case. (A) Total number of infiltrating CD3<sup>+</sup> cells in lesions with the risk or protective variants (p=0.0415). (B) Number of infiltrating CD3<sup>+</sup> cells in the lesion rim, normalized to rim area (p=0.0886). (C) Number of infiltrating CD3<sup>+</sup> cells in the lesion center, normalized to center area (p=0.6720). Data represents means  $\pm$  s.d. p-values shown for unpaired student's t-test. \*p<0.05.

## Supplementary Figure 8.

| Α |
|---|
|---|

| INOS        | 1 0.8385    | 5 0.8730   | 3 0.9075    | 5 0.8764    | 9 0.5052 | 5 0.5159 | 5 0.4411 | 0.6464 | 5 0.2456 | 7 0.0411    | 3 0.3483   | 2 0.3942    | 3 0.8998 | 5 0.2287 | 0.8792 | 2      | INOS        | 0.07        | 90.0        | 0.04        | -0.06       | 0.24   | -0.23 | 0.28  | -0.17 | 0.40  | 0.65        | 0.33       | 0.30        | -0.05 | 0.42  | 0.06 |
|-------------|-------------|------------|-------------|-------------|----------|----------|----------|--------|----------|-------------|------------|-------------|----------|----------|--------|--------|-------------|-------------|-------------|-------------|-------------|--------|-------|-------|-------|-------|-------------|------------|-------------|-------|-------|------|
| GFAP        | 0.942*      | 0.552(     | 0.7143      | 0.3216      | 0.2149   | 0.4376   | 0.458    | 0.219( | 0.265(   | 0.446       | 0.6643     | 0.4182      | 3966:0   | 0.6126   |        | 0.879  | GFAP        | -0.03       | 0.21        | 0.13        | 0.35        | 0.43   | 0.28  | 0.27  | 0.43  | 0.39  | 0.27        | 0.16       | 0.29        | 0.0   | 0.18  |      |
| CXCL1       | 0.4031      | 0.4378     | 0.5593      | 0.7889      | 0.7565   | 0.6526   | 0.8476   | 0.9403 | 0.9321   | 0.8413      | 0.9464     | 0.0541      | 0.5569   |          | 0.6126 | 0.2287 | CXCL1       | -0.30       | -0.28       | 0.21        | 0.10        | 0.11   | -0.16 | -0.07 | 0.03  | -0.03 | -0.07       | 0.02       | 0.62        | -0.21 |       | 0.40 |
| CCL2        | 0.3436      | 0.1525     | 0.1542      | 0.0891      | 0.1313   | 0.0564   | 0.4292   | 0.2961 | 0.4430   | 0.7314      | 0.6916     | 0.4041      |          | 0.5569   | 0.9963 | 0.8998 | CCL2        | 0.34        | 0.49        | 0.49        | 0.56        | 0.51   | 0.62  | 0.28  | 0.37  | 0.27  | 0.12        | 0.14       | -0.30       |       | -0.21 | 000  |
| CD68+ cells | 0.1206      | 0.0606     | 0.4913      | 0.3707      | 0.6086   | 0.3730   | 0.3381   | 0.8686 | 0.5167   | 0.6340      | 0.2673     |             | 0.4041   | 0.0541   | 0.4182 | 0.3942 | CD68+ cells | -0.52       | -0.61       | -0.25       | -0.32       | -0.19  | -0.32 | -0.34 | -0.06 | -0.23 | -0.17       | -0.39      |             | -0.30 | 0.62  | 000  |
| CD3+ cells  | 0.0054      | 0.0305     | 0.0177      | 0.0598      | 0.0356   | 0.1248   | 0.0533   | 0.1385 | 0.0692   | 0.0991      |            | 0.2673      | 0.6916   | 0.9464   | 0.6643 | 0.3483 | CD3+ cells  | 0.80        | 0.68        | 0.72        | 0.61        | 0.67   | 0.52  | 0.63  | 0.50  | 0.60  | 0.55        |            | -0.39       | 0.14  | 0.02  |      |
| Lesion Area | 0.0829      | 0.0262     | 0.7752      | 0.3425      | 0.1104   | 0.5666   | 0.0048   | 0.4267 | 0.009    |             | 0.0991     | 0.6340      | 0.7314   | 0.8413   | 0.4467 | 0.0411 | Lesion Size | 0.57        | 69:0        | 0.10        | 0.34        | 0.54   | 0.21  | 0.81  | 0.28  | 0.88  |             | 0.55       | -0.17       | 0.12  | -0.07 | 20.0 |
| IL-15       | 0.0159      | 0.0025     | 0.2322      | 0.0619      | 0.0033   | 0.0838   | 0.000    | 0.0459 |          | 0.0009      | 0.0692     | 0.5167      | 0.4430   | 0.9321   | 0.2656 | 0.2456 | IL-15       | 0.73        | 0.84        | 0.42        | 0.61        | 0.82   | 0.57  | 0.97  | 0.64  |       | 0.88        | 09:0       | -0.23       | 0.27  | -0.03 | :    |
| ICAM1       | 0.0194      | 0.0357     | 0.0283      | 0.0243      | 0.0072   | 0.0024   | 0.0306   |        | 0.0459   | 0.4267      | 0.1385     | 0.8686      | 0.2961   | 0.9403   | 0.2190 | 0.6464 | ICAM1       | 0.72        | 0.67        | 0.69        | 0.70        | 0.78   | 0.84  | 0.68  |       | 0.64  | 0.28        | 0.50       | -0.06       | 0.37  | 0.03  |      |
| C3d         | 0.0044      | 0.0008     | 0.1645      | 0.0282      | 0.0033   | 0.0400   |          | 0.0306 | 0.000    | 0.0048      | 0.0533     | 0.3381      | 0.4292   | 0.8476   | 0.4585 | 0.4411 | C3d         | 0.81        | 0.88        | 0.48        | 0.69        | 0.83   | 0.65  |       | 0.68  | 76.0  | 0.81        | 0.63       | -0.34       | 0.28  | -0.07 |      |
| CCL5        | 0.0214      | 0.0301     | 0.0061      | 0.000       | 0.0017   |          | 0.0400   | 0.0024 | 0.0838   | 0.5666      | 0.1248     | 0.3730      | 0.0564   | 0.6526   | 0.4376 | 0.5159 | CCL5        | 0.71        | 0.68        | 0.79        | 0.88        | 0.85   |       | 0.65  | 0.84  | 0.57  | 0.21        | 0.52       | -0.32       | 0.62  | -0.16 |      |
| CXCL10      | 0.0225      | 0.0156     | 0.0045      | 0.0024      |          | 0.0017   | 0.0033   | 0.0072 | 0.0033   | 0.1104      | 0.0356     | 0.6086      | 0.1313   | 0.7565   | 0.2149 | 0.5052 | CXCL10      | 0.71        | 0.73        | 0.81        | 0.84        |        | 0.85  | 0.83  | 0.78  | 0.82  | 0.54        | 0.67       | -0.19       | 0.51  | 0.11  |      |
| p65 Nucleus | 0.0603      | 0.0162     | 0.0093      |             | 0.0024   | 0.0009   | 0.0282   | 0.0243 | 0.0619   | 0.3425      | 0.0598     | 0.3707      | 0.0891   | 0.7889   | 0.3216 | 0.8764 | p65 Nucleus | 0.61        | 0.73        | 0.77        |             | 0.84   | 0.88  | 0.69  | 0.70  | 0.61  | 0.34        | 0.61       | -0.32       | 0.56  | 0.10  |      |
| p65 Cytosol | 0.0443      | 0.1238     |             | 0.0093      | 0.0045   | 0.0061   | 0.1645   | 0.0283 | 0.2322   | 0.7752      | 0.0177     | 0.4913      | 0.1542   | 0.5593   | 0.7143 | 0.9075 | p65 Cytosol | 0.64        | 0.52        |             | 0.77        | 0.81   | 0.79  | 0.48  | 0.69  | 0.42  | 0.10        | 0.72       | -0.25       | 0.49  | 0.21  |      |
| p50 Nucleus | 0.0016      |            | 0.1238      | 0.0162      | 0.0156   | 0.0301   | 0.0008   | 0.0357 | 0.0025   | 0.0262      | 0.0305     | 0.0606      | 0.1525   | 0.4378   | 0.5526 | 0.8730 | p50 Nucleus | 0.86        |             | 0.52        | 0.73        | 0.73   | 0.68  | 0.88  | 0.67  | 0.84  | 0.69        | 0.68       | -0.61       | 0.49  | -0.28 |      |
| p50 Cytosol |             | 0.0016     | 0.0443      | 0.0603      | 0.0225   | 0.0214   | 0.0044   | 0.0194 | 0.0159   | 0.0829      | 0.0054     | 0.1206      | 0.3436   | 0.4031   | 0.9421 | 0.8385 | p50 Cytosol |             | 0.86        | 0.64        | 0.61        | 0.71   | 0.71  | 0.81  | 0.72  | 0.73  | 0.57        | 0.80       | -0.52       | 0.34  | -0.30 |      |
| P values    | p50 Cytosol | 50 Nucleus | p65 Cytosol | o65 Nucleus | CXCL10   | ccL5     | C3d      | ICAM1  | IL-15    | Lesion Size | CD3+ cells | CD68+ cells | CCL2     | CXCL1    | GFAP   | INOS   | Pearson r   | p50 Cytosol | o50 Nucleus | p65 Cytosol | o65 Nucleus | CXCL10 | CCL5  | C3d   | ICAM1 | IL-15 | Lesion Size | CD3+ cells | CD68+ cells | CCL2  | CXCL1 |      |



**Supplementary Figure 8.** Correlation of *in situ* astroglial expression of p50/65 NF- $\kappa$ B with NF- $\kappa$ B downstream target genes, infiltrating CD3<sup>+</sup> T cells, CD68<sup>+</sup> cells and lesion size. (A) Table of p-values (red indicates p<0.05) and Pearson rho (green indicates r>0.7) for computed Pearson correlation coefficients. All values passed the D'Agostino-Pearson omnibus normality test for Gaussian distribution. (B) Pearson rho values (red indicates r>0.5; blue indicates r<0.5) visualized by heatmap (red indicates r>0.5; blue indicates r<0.5).

|                       | age/SD (years)    | gender f/m | disease duration/SD (years) |
|-----------------------|-------------------|------------|-----------------------------|
| Yale (n=91)           | $48.25 \pm 11.32$ | 3.13       | $14.30 \pm 11.98$           |
| Turku (n=43)          | $48.65 \pm 10.04$ | 2.58       | $14.18 \pm 9.60$            |
| Risk genotype (n=78)  | $46.40 \pm 11.42$ | 2.39       | $13.69 \pm 11.30$           |
| Prot. genotype (n=56) | 51.21 ± 9.55      | 4.09       | $15.06 \pm 11.19$           |

Supplementary Figure 9. Demographics of MS patients assessed by T2 FLAIR MRI.

#### Supplementary Figure 10.



**Supplementary Figure 10.** Effect of the rs7665090 risk variant on total lesion load and brain volume in MS patients, measured by FLAIR and T1 MRI. (**A**) Total lesion volumes on FLAIR imaging of 78 (rs7665090<sup>GG</sup>) and 56 (rs7665090<sup>AA</sup>) MS patients. (**B**) Total brain volumes on T1 imaging of 74 (rs7665090<sup>GG</sup>) and 53 (rs7665090<sup>AA</sup>) MS patients. Data in (**A**) and (**B**) represent means + s.d..

| Target              |                            | Antibody Type    | Source                    | Catalog Number | Concentration |
|---------------------|----------------------------|------------------|---------------------------|----------------|---------------|
| Bright-field immu   | nohistochemistry           |                  |                           |                |               |
| MBP (myelin basic   | protein)                   | Rat (mAb)        | Millipore Sigma           | MAB386         | 1:500         |
| CD68                |                            | Mouse (mAb)      | Dako                      | M0876          | 1:500         |
| CD3                 |                            | Rabbit (polyAb)  | Dako                      | A0452          | 1:150         |
| Fluorescent immu    | nohistochemistry & West    | tern Blot        |                           |                |               |
| GFAP                |                            | Chicken (polyAb) | Covance                   | PCK-591P       | 1:600         |
| GFAP                |                            | Mouse (mAb)      | Cell Signaling Technology | 36708          | 1:5000        |
| CD68                |                            | Mouse (mAb)      | Dako                      | M0876          | 1:100         |
| NF-κB p50           |                            | Rabbit (mAb)     | Abcam                     | ab32360        | 1:100         |
| NF-κB p65           |                            | Rabbit (polyAb)  | Novus Biologicals         | NBP 2-24541    | 1:100         |
| CCL5 (Chemokine     | ligand 5)                  | Rabbit (polyAb)  | Novus Biologicals         | NBP 1-19769    | 1:100         |
| CCL2 (Chemokine     | ligand 2)                  | Rabbit (polyAb)  | LS Bio                    | LS-B10540      | 1:100         |
| CXCL10 (C-X-C m     | otif chemokine10)          | Rabbit (polyAb)  | LS Bio                    | LS-C312561     | 1:50          |
| CXCL1 (C-X-C mo     | tif chemokine1)            | Rabbit (polyAb)  | Novus Biologicals         | NBP1-51188     | 1:100         |
| IL-15               |                            | Mouse (mAb)      | Abcam                     | ab55276        | 1:100         |
| C3d Complement (N   | N-Term)                    | Rabbit (mAb)     | AntibodiesOnline          | ABIN870581     | 1:100         |
| ICAM1 (intercellula | ar adhesion molecule 1)    | Rabbit (polyAb)  | Thermo-Fisher             | PA5-27189      | 1:50          |
| iNOS (inducible nit | ric oxide synthase)        | Rabbit (polyAb)  | Novus Biologicals         | NB120-15203    | 1:100         |
| CD31                |                            | Mouse (mAb)      | Novus Biologicals         | NBP2-818       | 1:50          |
| Actin               |                            | Goat (polyAb)    | Santa Cruz                | sc-1616        | 1:10000       |
| Flow Cytometry      |                            |                  |                           |                |               |
| NF-кВ p65 (pS529)   | ) Alexa Fluor 647          | Mouse (mAb)      | BD Biosciences            | 558422         | 1:5           |
| STAT3 (pY705)       | Pacific Blue <sup>TM</sup> | Mouse (mAb)      | BD Biosciences            | 560312         | 1:5           |
| ΙκΒα (L35A5)        | Alexa Fluor 488            | Mouse (mAb)      | Cell Signaling Technology | 5743           | 1:50          |
| GLAST               | AST APC                    |                  | Miltenyi                  | 130-095-181    | 1:5           |
| GFAP                | PE                         | Mouse (mAb)      | BD Biosciences            | 561483         | 1:500         |

### Supplementary Figure 11. Antibodies used for immunohistochemistry, FACS and Western blot



**Supplementary Figure 12.** Purification of iPSC-derived astrocytes with magnetic beads coupled to anti-GLAST antibodies. Quality control of the purification process by flow cytometry. (**A**) Before purification, 84.8% of astrocytes were GFAP/GLAST double-positive; after purification, 95.3% were double-positive. (**B**) Phase-contrast microphotographs of live cell cultures show a high degree of purity of cells with typical astroglial morphology before and after purification.