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Split peaks estimation algorithm 

Split peaks estimation algorithm searches for candidate split peaks in the provided vector of the m/z 

values associated with the matched spectral peaks of the dataset. 

Arguments: 

1. “mzTolerance”: m/z measurement precision tolerance. Maximum distance in ppm to consider 
two peaks contiguous. This should be lower or equal to the expected instrumental error; 

2. “sharedPixelRatio”: shared signal pixels ratio. Ratio between the number of signal (non-
background) pixels shared by the selected contiguous peaks. The signal pixels are obtained 
from the binarized peak intensity image using Otsu’s thresholding (Otsu, 1975); 

1. “sparseness”: image regularity measure. Available measures are: Gini index (Hurley and 
Rickard, 2009), scatter ratio (defined as the ratio of the number of signal pixels and the total 
number image pixels), spatial chaos (Palmer, et al., 2017); 

2. “threshold”: sparseness cut-off value. 

Algorithm: 

1. scan for groups of peaks whose m/z values are within mzTolerance; 

2. for each group of peaks: 

a. for each peak, determine which pixels contain signal using Otsu’s thresholding; 

b. calculate the ratio R of the common signal pixels for the selected peaks; 

c. if R < sharedPixelRatio: 

i. calculate the image’s regularity S using the sparseness measure; 

ii. if at least one image has S < threshold: 

1. create a new image whose pixels’ intensity is the sum of the 
intensities of peaks in the group; 

2. if sparseness of the combined image is less or equal to the maximum 
sparseness of the group peaks images: 

a. replace the group with the combined ion feature. The 
average m/z value is assigned to the new feature. 



 

Reference image calculation 

SPUTNIK provides two types of reference images that can be used for identifying the region of interest: 

a continuous and a binary valued image. 

The following methods are provided to calculate the continuous valued reference image: 

1. “sum”: the intensity value for each pixel is calculated as the sum of individual peaks intensities 

(total ion count) of the corresponding spectrum; 

2. “mean”: the intensity value for each pixel is calculated as the average of the non-zeros 

intensities of the corresponding peaks spectrum; 

3. “median”: analogous to mean, using median values; 

4. “pca”: the set of spectra from the entire dataset is used to train a principal component analysis 

(PCA) model. The reference image pixels intensities correspond to the scores of the first 

principal component. 

The binary valued reference image can be calculated using two methods: 

3. “otsu”: Otsu’s method is used to automatically determine the threshold to binarize the 

reference image calculated using one of the previous methods for continuous valued 

reference generation; 

4. “kmeans”: k-means clustering with 2 clusters is applied on the entire dataset. The two clusters 

labels assigned to each pixel are used as the image binary intensities. 

 

Reference similarity filter 

Reference similarity filter selects peaks whose intensities are distributed similarly to a reference signal, 

generally representing the region of interest (eg. a tissue section). 

Arguments: 

1. “referenceImage”: reference image calculated using the methods in “Reference image 
calculation”; 

2. “method”: similarity measure. Available methods are: Pearson’s correlation, Spearman’s 
correlation, structural similarity index measure (SSIM) (Wang, et al., 2004), and normalized 
mutual information (NMI). 

3. “threshold”: similarity cut-off value (default = 0). 

Algorithm: 

1. calculate the reference image using one of the methods decribed in “Reference image 
calculation”; 

2. for each peak intensity: 

a. calculate the similarity measure between the peak intensity and the reference image; 

3. select peaks with a similarity measure greater than threshold. 

 

 



 

Pixel count based filter 

Pixel count based filter select peaks whose signal pixels are connected forming groups larger than a 

given threshold. The threshold value is related with the physical size of the expected smallest sub-

region of interest. 

Arguments: 

1. “roiImage”: binary image representing the region of interest. This can be calculated using one 
of the methods described in “Reference image calculation”; 

2. “minNumPixels”: the minimum number of connected pixels to select the peak; 

3. “aggressive”: level of “aggressiveness”. 

Algorithm: 

4. for each peak binarized image (using Otsu’s thresholding): 

a. if aggressive = 0: 

i. measure the largest size N of connected regions (number of pixels in each 
cluster); 

ii. if N is larger than minNumPixels: 

1. retain the peak; 

b. if aggressive = 1: 

i. measure the largest size N1 of connected regions within the ROI and the 
largest size N2 of connected regions outside the ROI, as defined by roiImage; 

ii. if N1 is greater than minNumPixels AND N1 is greater than or equal than N2: 

1. retain the peak; 

c. if aggressive = 2: 

i. measure the largest size N1 of connected regions within the ROI and the 
largest size N2 of connected regions outside the ROI, as defined by roiImage; 

ii. if N1 is greater than minNumPixels AND N1 is smaller than minNumPixels: 

1. retain the peak. 

 

Complete spatial randomness filter 

Complete spatial randomness filter selects peaks whose signals distributions reject the null hypothesis 

of complete spatial randomness. 

Arguments: 

1. “method”: statistical test. Available methods are: Kolmogorov-Smirnov “KS” test (Baddeley 
and Turner, 2005) and Clark Evans “ClarkEvans” test (Clark and Evans, 1954). 

Algorithm: 



1. If method = “KS”: 

a. use the reference image, calculated using the methods described in “Reference image 
calculation”, as covariate density; 

b. for each peak: 

i. define a point pattern process (Baddeley and Turner, 2005) from the Otsu’s 
binarized peak image; 

ii. calculate the p-value 

2. if method = “ClarkEvans”: 

a. for each peak: 

i. define a point pattern process (Baddeley and Turner, 2005) from the Otsu’s 
binarized peak image; 

ii. apply Clark Evans test to calculate the p-value. 

3. Correct the p-values using multiple testing correction method. 

4. Peaks are selected setting  a threshold for the p-values. 

 



 

Figure S1 – Effect of single filter applied to the two example dataset provided with the package. The 
filters were applied with the default parameters. The results confirm that DESI-MSI peak images are 
less scattered than MALDI-MSI, since the reference similairy based filter (RSF) returns a smaller dataset 
than the pixel count based filter (CPF) and the complete spatial randomness (CSR) filter. On the 
contrary, MALDI-MSI suffers more of highly scattered peak images, as shown by the relatively smaller 



dimensionality of the dataset after applying CPF. This difference can be due to a higher spatial 
resolution or a greater effect of the applied matrix in MALDI-MSI. (Code is available in the ‘Code 
section’ of the Supplementary Data 1). In the bottom table: effect of the single filters on the first 3 
principal components of the MALDI-MSI and DESI-MSI datasets. PCA scores are displayed as [0, 1] 
scaled RGB channels. PCA of the original datasets (first column) are compared with those after applying 
the 3 filters independently using the k-means ROI and the default parameters (columns 2, 3, 4). For 
each filter, both the PCA of the retained peaks (top) and filtered peaks (bottom) are shown, confirming 
that the filters remove signals unrelated with the tissue. 

 

 

Figure S2 – Example of split peak merging. The peak at 885.6744 m/z (A) was artificially split into an 

additional peak at 885.6754 m/z (B), associated with the intensity of randomly selected 30% of the 

original image pixels. After applying the filter, the original image is reconstructed (C). 

 

Figure S3 – The reference similarity filter can be also applied using an external reference image. Here, 

the ROI is generated binarizing the H&E gray scaled optical image (B), after registering it with the sum 

of the ion intensities in the 800-900 m/z range (A). The registration was performed applying an affine 

transformation on the optical image using the ions image as template. The binary mask of the 

registered H&E image (C) was used as ROI. The RGB image of the [0, 1] scaled first 3 principal 

components (D) shows that, after removing 664 of the 1175 peaks, the overall signal is more 

informative about the tissue. 

 



 

 

Figure S4 – Effect of the reference similarity filter on the first principal component loadings shows that 

the filter effectively removes the ions associated with the off-tissue region for the MALDI-MSI dataset 

(negative loadings in the original dataset (A)). Indeed, the loadings calculated from the filtered dataset 

(B) show that most of the variance explained by the first principal component is associated with the 

tissue region (negative loadings), and the off-tissue ions are associated with very small loading values. 

The small images represent the scaled intensity images of the 5 peaks with the highest and lowest 

loading values. These results are confirmed by the RGB image corresponding to the [0, 1] scaled first 3 

principal components of the filtered ions on the DESI-MSI (C) and MALDI-MSI (D) datasets. The spatial 

distributions show that the filter removed ions that were mainly localized outside of the tissue section 

with no loss of significant sub-structures associated with the tissue. 

 



 

Figure S5 – Example of individual filters applied to a sub-region of the MALDI-MSI dataset without an 

off-tissue region. Here the only the pixels within the yellow rectangle (A) were analysed. Pixel count 

filter was applied with the following parameters: minimum size of connected sub-regions = 9, 

‘aggressiveness’ equal to 0 was used. A matrix of all ones was used as ROI image using the ‘msImage’ 

command. The complete spatial randomness filter was applied using the ‘ClarkEvans’ test. The RGB 

image corresponding to the [0, 1] scaled first 3 principal components of the original data (B) shows less 

contrasted patterns than those after the pixel count filter (C) (final size = 161 peaks) and the CSR filter 

(H) (final size = 213 peaks). On the contrary, the RGB image corresponding to the removed peaks 

corresponds to an unstructured image for both the filters (D, I). K-means (3 clusters) of the scores of 

the principal components explaining the 95% of variance resulted in clear structures resembling the 

tissue morphology for the filtered data (F, G). Similar structures were not captured by k-means applied 

to the scores of the original data (E). The adjusted Rand index confirmed the difference between the 

clusters of the original and filtered data. This result suggests that both the filters were able to increase 

the quality of the unsupervised analysis, while significantly reducing the dimensionality of the data. 



 

Figure S6 – Average mass spectrum of the mouse urinary bladder MALDI-MSI dataset. The red dots 
represent the 204 selected peaks. The shown intensities are calculated as the average of all the pixels 
spectra intensities. 

Filter family Method Rationale 

Reference similarity Tests for ion spatial 
distributions similar to a 
given reference (heatmap or 
binary ROI). 

Most MSI samples are constituted 
by a background region which 
contains solvent/matrix and 
contaminants signals, and a tissue 
region, which contains signals of 
biological nature. The provided set 
of filters exploit this assumption, 
removing all the ions whose spatial 
distribution is not confined in the 
provided reference mask, 
representing the spatial distribution 
of the tissue. 

Pixel count Tests for disconnected ion 
signal pixels patterns or 
connected pixel regions 
smaller than a user-defined 
threshold 

Noise signals are characterized by a 
scattered random patterns. 
These patterns can be associated 
with detector noise, when the signal 
is not present in the source or when 
the source signal is low intense 
(close to the detection limits). 
These issues make these signals 
unreliable for statistical analysis. 
The smallest allowed connected 
region is data-dependent (spatial 
resolution, prior knowledge on the 
expected granularity of the spatial 
signal patterns). By default, this 
threshold is set equal to 9 pixels. 

Complete spatial randomness Tests for the randomness of 
the spatial distribution of the 
signal pixels. Given a 
reference, it tests whether 

Complete spatial randomness 
allows the identification of (even 
disconnected) pixel patterns that 
are statistically non-random or that 
are characterized by a spatial 
density that reflects an external 



the (even disconnected) pixel 
patterns covary with it. 

reference heatmap. This set of 
filters can be used when scattered 
patters can still represent sample 
related signals. In that case, these 
filters should be used instead of the 
pixel count based filters. 

Table S1 – Scheme of the three main filter families provided with SPUTNIK. Each family measures 
different properties of the spatial distribution of the peaks (Method column), and it addresses specific 
characteristics expected in the noise/uninformative signals (Rationale column). 
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Code section 

 

Script used to evaluate the effect of single filters on the example datasets. 

library(SPUTNIK) 

library(ggplot2) 

## Load data ------------------------------------------------------------------- 

maldiData <- SPUTNIK::bladderMALDIRompp2010(verbose = T) 



maldiData[is.na(maldiData)] <- 0 

 

desiData <- SPUTNIK::ovarianDESIDoria2016(verbose = T) 

desiData[is.na(desiData)] <- 0 

 

shape <- attr(maldiData, 'size') 

mz <- attr(maldiData, 'mass') 

msi_maldi <- msiDataset(maldiData, mz, shape[1], shape[2]) 

 

shape <- attr(desiData, 'size') 

mz <- attr(desiData, 'mass') 

msi_desi <- msiDataset(desiData, mz, shape[1], shape[2]) 

 

rm(mz, shape) 

 

## Normalize ---------- 

msi_maldi <- normIntensity(msi_maldi, 'median') 

msi_maldi <- varTransform(msi_maldi, 'log') 

msi_desi <- normIntensity(msi_desi, 'median') 

msi_desi <- varTransform(msi_desi, 'log') 

 

## Global peak filter 

ref_roi_maldi <- refAndROIimages(msi_maldi, refMethod = 'sum', roiMethod = 'kmeans') 

ref_roi_desi <- refAndROIimages(msi_desi, refMethod = 'sum', roiMethod = 'kmeans') 

 

plot(ref_roi_maldi$ROI) 

plot(ref_roi_desi$ROI) 

 

## If necessary, invert the ROI 

ref_roi_maldi$ROI <- invertImage(ref_roi_maldi$ROI) 

ref_roi_desi$ROI <- invertImage(ref_roi_desi$ROI) 

 

## Compare the effect of single filters on MALDI and DESI using the default parameters 

gpf_maldi <- globalPeaksFilter(msi_maldi, referenceImage = ref_roi_maldi$ROI) 

gpf_desi <- globalPeaksFilter(msi_desi, referenceImage = ref_roi_desi$ROI) 

 

cpf_maldi <- countPixelsFilter(msi_maldi, roiImage = ref_roi_maldi$ROI) 

cpf_desi <- countPixelsFilter(msi_desi, roiImage = ref_roi_desi$ROI) 

 

csr_maldi <- CSRPeaksFilter(msi_maldi) 



csr_desi <- CSRPeaksFilter(msi_desi) 

 

df <- data.frame(x = factor(c(rep('gpf', 2), 

                       rep('cpf', 2), 

                       rep('csr', 2)), levels = c('gpf', 'cpf', 'csr')), 

                 y = c(length(gpf_maldi$sel.peaks) / ncol(maldiData), length(gpf_desi$sel.peaks) / 
ncol(desiData), 

                       length(cpf_maldi$sel.peaks) / ncol(maldiData), length(cpf_desi$sel.peaks) / 
ncol(desiData), 

                       sum(csr_maldi$q.value < 0.001) / ncol(maldiData), sum(csr_desi$q.value < 0.001) 
/ ncol(desiData)), 

                 data = factor(c('MALDI', 'DESI', 'MALDI', 'DESI', 'MALDI', 'DESI'))) 

 

gg <- ggplot(df, aes(x = x, y = y, fill = data)) + geom_bar(stat = 'identity', position = 'dodge') + 

  scale_x_discrete(labels = c('RSF', 'CPF', 'CSR')) + scale_fill_brewer(palette = 'Set1') + 

  xlab('filter') + ylab('dim. filt. dataset / dim. orig. dataset') + theme_classic(base_size = 24) 

plot(gg) 


