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Abbreviations for metabolites 

3PG(or G3P), 3-phosphoglycerate 

6PG(or PG6), 6-phosphogluconate 

AceCoA, acetyl-CoA 

AKG, α-ketoglutarate 

CIT, citrate 

DHAP, Dihydroxyacetone phosphate 

E4P, erythrose 4-phosphate 

F6P, fructose 6-phosphate 

FBP, Fructose 1,6-bisphophate 

FUM, fumarate 

G6P, glucose 6-phosphate 

GAP, glyceraldehyde 3-phosphate 

GLX, glyoxylate 

ICT, isocitrate 

MAL, malate 

OAA, oxaloacetate 

PEP, phosphoenolpyruvate 

PYR, pyruvate 

R5P, ribose 5-phosphate 

Ru5P, ribulose-5-phosphate 

S7P, sedoheptulose-7-phosphate 

SUC, succinate 

SucCoA, succinyl-CoA 

X5P, xylulose-5-phosphate 

Method Details 

LC-MS analysis. Metabolite dynamic labeling samples were run on two instruments to 

verify at the Joint Bioenergy Institute (JBEI) and the Donald Danforth Plant Center. 

Metabolites were extracted in 6:4 MeOH:chloroform at –4°C, with samples shaken at 300 

rpm and vortexed every hour for four hours. After addition of 0.5 mL of ddH2O, the 

samples were centrifuged. The upper aqueous phase was extracted twice and centrifuged 

for 90 minutes in 3KDa filters at 0°C. Samples were then frozen, lyophilized, and 

reconstituted. LC-MS sample runs, analysis, and data extraction were performed at the 

Joint Bioenergy Institute (JBEI) and the Donald Danforth Plant Center. JBEI samples 

were reconstituted in 100 µL of 60% acetonitrile, 15% methanol and 25% ddH2O and 
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were run according to the previously published protocol (1) with these differences: the 

mobile phase was changed to 20 mM ammonium carbonate (Sigma-Aldrich, St. Louis, 

MO, USA) in water (solvent A) and 20 mM ammonium carbonate in 70% acetonitrile 

and 30% water (solvent B); the column compartment was set to 40°C; and the liquid 

chromatography gradient was linearly decreased from 100% B to 70% B in 9 minutes, 

decreased from 70% B to 60% B in 2.8 minutes, increased from 60% B to 100% B in 0.2 

minutes, and held at 100% B for a further 10 minutes. The total LC run time was 22 

minutes. A flow rate of 0.2 mL minute–1 was used throughout. Samples run at the 

Donald Danforth Plant Center were reconstituted in 100 µL of ddH2O, and run as 

according to the previously published protocol (2).  

 

Thermodynamic calculations. The ionic strength of the ASW medium was calculated 

from equation 1: 

     𝐼 =
1

2
 ∑ 𝐶𝑖 ∗ 𝑍𝑖

2𝑛
𝑖=1     (1) 

where I is the ionic strength in (M), Ci is the concentration of the dissociated species, and 

Zi is the charge of the dissociated species. The change in Gibb’s free energy formula 

(equation 2) was used to estimate the change of free energy from standard temperature to 

4°C: 

     ∆𝐺 = −𝑅 ∗ 𝑇 ln (𝐾𝑒𝑞)   (2) 

where R is the ideal gas constant, T is the temperature, and Keq is the equilibrium 

constant.  
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Fig. S1. Physiological characterization of 34H on glucose at 4°C to establish a basis for 

developing a dynamic view of its metabolism at this normal-growth temperature. (A) 

Growth rate by optical density (OD600) and glucose consumption (by enzymatic assay) in 

defined minimal marine medium. (B) Biomass composition, where percentage of ash 

represents inorganic salts, and nucleic acid percentages were estimated from the ratio of 

protein to DNA/RNA in E. coli (3, 4). (C) Protein composition, with comparative amino 

acid percentages for E. coli at its normal-growth temperature of 37°C (5). (D) Lipid 

profile, similarly compared to E. coli. Error bars indicate standard deviation of the mean 

(n = 3). 
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Fig. S2. Growth profiles of 34H based on optical density (OD600). (A) Growth curve in 

ASW minimal media supplemented with lactate (1 g L–1). (B) Final OD600 of 34H grown 

in ASW minimal media supplemented with glucose (1 g L–1) and either additional 

glucose (0.5 g L–1) or BG-11 trace minerals. (C) Growth curves in complex media at 4°C 

after exposing cultures to room temperature (heat stress) for 0, 1, 2 and 24 hours. 
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Fig. S3. Dynamic labeling experiments with E. coli and 34H conducted with U-13C

glucose at 4°C (E. coli and 34H) and at room temperature (34H). Comparison of 

metabolic labeling responses of glycolytic metabolites in cold-stressed (4°C, following 

acclimation at 4°C for 1 hour) E. coli, normal-growth 34H (4°C), and heat-stressed 34H 

(room temperature, following acclimation for 1 hour). E. coli was not sampled at 48 

hours; G6P and F6P were not detected in 34H room-temperature samples at 48 hours. For 

10-sec data (asterisk), cell metabolism may have been active during the 5-minute

centrifugation (0°C) step. Error bars indicate standard deviation of the mean (n = 2). 
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Fig. S4. Transcriptomic expression data of 34H at normal-growth conditions and 

differential expression data after exposure to temperature-stressed conditions as 

determined by RNA-Seq. Left column represents RPKM expression levels normalized to 

gene edd-1 (ED pathway). Right column represents Log2(FoldChange) (Log2FC) of 

differential gene expression from 4°C to 23°C. Scale for RPKM expression and Log2FC 

presented on the far right. An asterisk next to gene names indicates data with Log2FC 

Benjamini-Hochberg FDR adjusted p-values less than 0.05. See SI Appendix, Dataset S2 

for full gene expression details.  
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Fig. S5. Overview of experimental approaches and key findings for 34H at temperatures 

for both normal-growth (4°C) and heat-stress (23°C, above its maximum growth 

temperature). The left side shows experimental results at 4°C, where metabolic flux 

analysis, biomass characterization, and pool size measurements were performed: the ED 

pathway is the main glycolytic route, the biomass contains a large portion of ash (20%, 

inorganic salts), and the pool size of energy molecules is small (relative to normal-growth 

E. coli at 37°C). The right side shows experimental results at 23°C, where comparative

RNA-Seq (between 4°C and 23°C) and dynamic isotopic carbon tracing were performed: 

the majority of genes were down-regulated after 2 hours of heat stress; and TCA cycle 

activity was limited compared to normal-growth conditions. After 24 hours, a shutdown 

of metabolic activity was observed, as cellular damage ensued. 
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Fig. S6. Estimated changes in total Gibbs free energy (∆G) for the conversion of glucose 

to pyruvate by the ED and EMP pathways under different inorganic salt and temperature 

conditions. Calculations were performed using the equilibrator calculator with reactant 

concentrations of 1 mM and a pH of 7.5. 
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Fig. S7. Dynamic labeling experiments conducted with ∆ptsG and ∆ptsG + ED pathway 

overexpressing E. coli mutants following a U-13C glucose pulse at 4°C. Direct product of 

the ED pathway is glyceraldehyde 3-phosphate (which quickly isomerizes to DHAP). 

Error bars indicate standard deviation of the mean (n = 2). 
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Table S1. MFA metabolic network and flux results 

WuFlux 

reaction 

number 

Reaction Glucose 

flux 

results 

Glucose 

confidence 

interval 

Lactate 

flux 

results 

Lactate 

confidence 

interval 

1 Glucose(substrate) + 

ATP == G6P 

100 -* 0 -* 

2 G6P == F6P 2.94 1.93 –10.90 4.28 

3 F6P + ATP == FBP 100.39 1.94 65.16 17.62 

4 FBP == F6P 100.00 1.56 75.14 16.80 

6 FBP == DHAP + GAP 0.39 0.40 –9.98 2.27 

7 DHAP == GAP 0.39 0.40 –9.98 2.27 

8 GAP == G3P + ATP + 

NADH 

88.73 0.47 –14.95 2.23 

9 G3P == PEP 79.94 0.57 –20.42 2.34 

10 PEP == PYR + ATP 70.61 5.40 40.41 12.78 

11 Lactate(Substrate) == 

PYR + NADH 

-* 100 -* 

12 PYR + 2*ATP == PEP 2.08 1.69 23.79 9.01 

14 PYR == AceCoA + CO2 

+ NADH

142.61 2.61 76.36 1.68 

15 AceCoA + OAA == CIT 128.28 1.09 60.57 3.40 

16 CIT == ICIT 128.28 1.09 60.57 3.40 

17 ICIT == AKG + CO2 + 

NADPH 

128.28 1.91 53.78 5.86 

18 AKG == SucCoA + 

CO2 + NADH 

124.26 1.93 51.36 6.09 

19 SucCoA == SUC + ATP 122.55 1.93 50.33 6.17 

20 SUC == FUM + FADH2 124.26 1.13 58.15 3.64 

21 FUM == MAL 125.47 1.11 58.88 3.56 

22 MAL == OAA + NADH 44.34 11.65 62.09 7.63 

23 MAL == PYR + CO2 + 

NADH 

26.83 9.24 3.10 4.46 

24 MAL == PYR + CO2 + 

NADPH 

54.30 7.42 0.48 5.05 

25 PEP + CO2 == OAA 8.47 5.29 0.34 25.51 

26 OAA + ATP == PEP + 

CO2 

0.00 1.57 39.16 19.46 
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27 PYR + ATP + CO2 == 

OAA 

86.08 9.14 43.29 9.69 

28 ICIT == GLX + SUC 0.00 1.75 6.79 2.80 

29 GLX + AceCoA == 

MAL 

0.00 1.75 6.79 2.80 

30 G6P == PG6 + NADPH 95.72 1.94 10.10 4.30 

31 PG6 == CO2 + Ru5P + 

NADPH 

7.22 2.44 4.96 3.56 

33 Ru5P == X5P 1.22 1.64 1.15 2.48 

34 Ru5P == R5P 6.00 0.81 3.82 1.19 

35 X5P + R5P == GAP + 

S7P 

1.28 0.82 0.98 1.21 

36 GAP + S7P == E4P + 

F6P 

1.28 0.82 0.98 1.21 

37 X5P + E4P == GAP + 

F6P 

-0.06 0.83 0.17 1.26 

38 PG6 == PYR + GAP 88.50 0.94 5.13 2.17 

40 AceCoA == Ac + ATP –1.46 0.02 –0.88 0.09 

41 AKG + NADPH == 

GLU 

27.11 0.37 16.11 1.76 

42 GLU + ATP == GLN 2.45 0.03 1.47 0.16 

43 GLU + ATP + 

2*NADPH == PRO 

0.70 0.01 0.42 0.04 

44 GLU + GLN + CO2 + 

ASP + AceCoA + 

5*ATP + NADPH == 

ARG + AKG + FUM + 

Ac 

0.76 0.01 0.46 0.05 

45 OAA + GLU == ASP + 

AKG 

8.80 0.35 4.91 0.74 

46 ASP + 2*ATP == ASN 1.01 0.01 0.61 0.06 

47 PYR + GLU == ALA + 

AKG 

1.91 0.02 1.15 0.12 

48 G3P + GLU == SER + 

AKG + NADH 

5.48 0.17 3.49 0.39 

49 SER == GLY + 

Methylene_THF 

3.64 0.17 2.38 0.30 
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50 GLY == 

Methylene_THF + CO2 

+ NADH 

1.43 0.17 0.67 0.25 

51 Methylene_THF + 

NADH == Methyl_THF 

0.44 0.01 0.27 0.03 

52 Methylene_THF == 

Formyl_THF + NADPH 

0.44 0.01 0.27 0.03 

53 ASP + 2*ATP + 

2*NADPH == THR 

3.85 0.33 1.93 0.53 

54 THR == GLY + 

AceCoA + NADH 

1.69 0.33 0.63 0.47 

55 SER + AceCoA + 

3*ATP + 4*NADPH == 

CYS + Ac 

0.70 0.01 0.42 0.04 

56 ASP + PYR + GLU + 

SucCoA + ATP + 

2*NADPH == LYS + 

CO2 + AKG + SUC 

1.27 0.02 0.76 0.08 

57 ASP + Methyl_THF + 

CYS + SucCoA + ATP 

+ 2*NADPH == MET + 

PYR + SUC 

0.44 0.01 0.27 0.03 

58 GLU + NADPH + 

2*PYR == VAL + AKG 

+ CO2 

1.27 0.02 0.76 0.08 

59 AceCoA + 2*PYR + 

GLU + NADPH == 

LEU + AKG + NADH + 

2*CO2 

1.46 0.02 0.88 0.09 

60 THR + PYR + GLU + 

NADPH == ILE + AKG 

+ CO2 

1.01 0.01 0.61 0.06 

61 E4P + 2*PEP + GLU + 

ATP + NADPH == PHE 

+ AKG + CO2 

0.70 0.01 0.42 0.04 

62 E4P + 2*PEP + GLU + 

ATP + NADPH == TYR 

0.44 0.01 0.27 0.03 
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+ AKG + NADH + CO2 

63 SER + R5P + 2*PEP + 

E4P + GLN + 3*ATP + 

NADPH == TRP + GAP 

+ PYR + GLU + CO2 

0.19 0.00 0.12 0.01 

66 R5P + Formyl_THF + 

GLN + ASP + 5*ATP 

== HIS + AKG + FUM 

+ 2*NADH 

0.44 0.01 0.27 0.03 

67 NADH == NADPH –209.06 8.70 –24.30 14.72 

68 NADH == 3*ATP 654.55 3.88 313.13 20.60 

69 FADH2 == 2*ATP 124.26 1.13 58.15 3.64 

71 ATP == 

ATP_maintenance 

2000.00 1.93 814.79 66.28 

72 CO2 == CO2_ex 397.43 2.19 190.47 11.62 

74 Biomass formation† 5.34 0.06 3.21 0.34 

75 Exchange coefficient of 

Reaction:G6P == F6P 

0.11 0.06 0.56 0.20 

76 Exchange coefficient of 

Reaction:FBP == DHAP 

+ GAP 

0.00 0.25 0.44 0.25 

77 Exchange coefficient of 

Reaction:DHAP == 

GAP 

0.18 0.19 0.99 0.23 

78 Exchange coefficient of 

Reaction:GAP == G3P + 

ATP + NADH 

1.00 0.26 0.08 0.26 

79 Exchange coefficient of 

Reaction:G3P == PEP 

1.00 0.19 1.00 0.25 

80 Exchange coefficient of 

Reaction:CIT == ICIT 

0.50 0.05 0.60 0.10 

81 Exchange coefficient of 

Reaction:ICIT == AKG 

+ CO2 + NADPH 

0.28 0.25 0.00 0.00 

82 Exchange coefficient of 

Reaction:SucCoA == 

SUC + ATP 

0.32 0.16 0.60 0.23 
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83 Exchange coefficient of 

Reaction:SUC == FUM 

+ FADH2 

0.36 0.16 0.42 0.23 

84 Exchange coefficient of 

Reaction:FUM == MAL 

0.81 0.08 1.00 0.04 

85 Exchange coefficient of 

Reaction:MAL == OAA 

+ NADH 

1.00 0.01 1.00 0.06 

86 Exchange coefficient of 

Reaction:PYR + ATP + 

CO2 == OAA 

0.00 0.02 0.00 0.00 

87 Exchange coefficient of 

Reaction:Ru5P == X5P 

0.00 0.00 0.52 0.25 

88 Exchange coefficient of 

Reaction:Ru5P == R5P 

1.00 0.26 0.58 0.25 

89 Exchange coefficient of 

Reaction:X5P + R5P == 

GAP + S7P 

0.99 0.23 0.04 0.26 

90 Exchange coefficient of 

Reaction:GAP + S7P == 

E4P + F6P 

0.07 0.24 0.39 0.26 

91 Exchange coefficient of 

Reaction:X5P + E4P == 

GAP + F6P 

1.00 0.25 0.09 0.25 

92 Exchange coefficient of 

Reaction:SER == GLY 

+ Methylene_THF 

0.08 0.09 0.05 0.02 

93 Exchange coefficient of 

Reaction:GLY == 

Methylene_THF + CO2 

+ NADH 

0.00 0.00 0.00 0.00 

94 Intracellular 13CO_2 

fraction 

0.40 0.00 0.24 0.01 

95 SSR (95% CI) 93.19 76.8–133.0 67.89 48.8–95.0 
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*Flux values were set manually in each situation to represent glucose or lactate uptake. Thus, no confidence 

intervals are provided. 

†Biomass formulation equation = 

0.357*ALA+0.143*ARG+0.19*ASN+0.19*ASP+0.048*CYS+0.196*GLU+0.196*GLN+0.729*GLY+0.083*HIS+

0.19*ILE+0.274*LEU+0.238*LYS+0.083*MET+0.131*PHE+0.131*PRO+0.179*SER+0.214*THR+0.036*TRP+

0.083*TYR+0.238*VAL+0.25*G6P+0.706*F6P+0.766*R5P+0.129*GAP+0.619*G3P+0.051*PEP+0.083*PYR+2.

725*AceCoA+0.087*AKG+0.340*OAA+0.783*Methylene_THF+33.247*ATP+5.363*NADPH==39.68*Biomass+

1.455*NADH 
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Additional data table S1. (XLS) 

Dataset S1: Mass isotopomer distribution data from steady state and dynamic flux 

analysis 

 

Additional data table S2. (XLS) 

Dataset S2: RNA sequencing data  
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