

Supplementary Information for

A model metabolic strategy for heterotrophic bacteria in the cold ocean based on Colwellia psychrerythraea 34H

Jeffrey J. Czajka¹, Mary H. Abernathy¹, Veronica T. Benites^{3,4}, Edward E.K. Baidoo^{3,4}, Jody W. Deming^{2†} and Yinjie J. Tang^{1†}

[†]Corresponding authors:

Jody Deming (Phone: 206-543-0845; Email: jdeming@uw.edu)

Yinjie Tang (Phone: 314-935-3441; Email: yinjie.tang@wustl.edu)

This PDF file includes:

Metabolite abbreviations Method details Figs. S1 to S7 Table S1

Other supplementary materials for this manuscript include the following:

Datasets S1 and S2

Abbreviations for metabolites

3PG(or G3P), 3-phosphoglycerate 6PG(or PG6), 6-phosphogluconate AceCoA, acetyl-CoA AKG, α -ketoglutarate CIT. citrate DHAP, Dihydroxyacetone phosphate E4P, erythrose 4-phosphate F6P, fructose 6-phosphate FBP, Fructose 1,6-bisphophate FUM, fumarate G6P, glucose 6-phosphate GAP, glyceraldehyde 3-phosphate GLX, glyoxylate ICT, isocitrate MAL, malate OAA, oxaloacetate PEP, phosphoenolpyruvate PYR, pyruvate R5P, ribose 5-phosphate Ru5P, ribulose-5-phosphate S7P, sedoheptulose-7-phosphate SUC, succinate SucCoA, succinyl-CoA X5P, xylulose-5-phosphate

Method Details

LC-MS analysis. Metabolite dynamic labeling samples were run on two instruments to verify at the Joint Bioenergy Institute (JBEI) and the Donald Danforth Plant Center. Metabolites were extracted in 6:4 MeOH:chloroform at -4° C, with samples shaken at 300 rpm and vortexed every hour for four hours. After addition of 0.5 mL of ddH2O, the samples were centrifuged. The upper aqueous phase was extracted twice and centrifuged for 90 minutes in 3KDa filters at 0°C. Samples were then frozen, lyophilized, and reconstituted. LC-MS sample runs, analysis, and data extraction were performed at the Joint Bioenergy Institute (JBEI) and the Donald Danforth Plant Center. JBEI samples were reconstituted in 100 μ L of 60% acetonitrile, 15% methanol and 25% ddH2O and

were run according to the previously published protocol (1) with these differences: the mobile phase was changed to 20 mM ammonium carbonate (Sigma-Aldrich, St. Louis, MO, USA) in water (solvent A) and 20 mM ammonium carbonate in 70% acetonitrile and 30% water (solvent B); the column compartment was set to 40°C; and the liquid chromatography gradient was linearly decreased from 100% B to 70% B in 9 minutes, decreased from 70% B to 60% B in 2.8 minutes, increased from 60% B to 100% B in 0.2 minutes, and held at 100% B for a further 10 minutes. The total LC run time was 22 minutes. A flow rate of 0.2 mL minute–1 was used throughout. Samples run at the Donald Danforth Plant Center were reconstituted in 100 μ L of ddH2O, and run as according to the previously published protocol (2).

Thermodynamic calculations. The ionic strength of the ASW medium was calculated from equation 1:

$$I = \frac{1}{2} \sum_{i=1}^{n} C_i * Z_i^2$$
 (1)

where *I* is the ionic strength in (M), C_i is the concentration of the dissociated species, and Z_i is the charge of the dissociated species. The change in Gibb's free energy formula (equation 2) was used to estimate the change of free energy from standard temperature to $4^{\circ}C$:

$$\Delta G = -R * T \ln(K_{eq}) \tag{2}$$

where R is the ideal gas constant, T is the temperature, and K_{eq} is the equilibrium constant.

Fig. S1. Physiological characterization of 34H on glucose at 4°C to establish a basis for developing a dynamic view of its metabolism at this normal-growth temperature. (*A*) Growth rate by optical density (OD₆₀₀) and glucose consumption (by enzymatic assay) in defined minimal marine medium. (*B*) Biomass composition, where percentage of ash represents inorganic salts, and nucleic acid percentages were estimated from the ratio of protein to DNA/RNA in *E. coli* (3, 4). (*C*) Protein composition, with comparative amino acid percentages for *E. coli* at its normal-growth temperature of 37°C (5). (*D*) Lipid profile, similarly compared to *E. coli*. Error bars indicate standard deviation of the mean (n = 3).

Fig. S2. Growth profiles of 34H based on optical density (OD₆₀₀). (*A*) Growth curve in ASW minimal media supplemented with lactate (1 g L⁻¹). (*B*) Final OD₆₀₀ of 34H grown in ASW minimal media supplemented with glucose (1 g L⁻¹) and either additional glucose (0.5 g L⁻¹) or BG-11 trace minerals. (*C*) Growth curves in complex media at 4°C after exposing cultures to room temperature (heat stress) for 0, 1, 2 and 24 hours.

■ 10 sec^{*} ■ 30 min ■ 24 hour ■ 48 hour

Fig. S3. Dynamic labeling experiments with *E. coli* and 34H conducted with U-¹³C glucose at 4°C (*E. coli* and 34H) and at room temperature (34H). Comparison of metabolic labeling responses of glycolytic metabolites in cold-stressed (4°C, following acclimation at 4°C for 1 hour) *E. coli*, normal-growth 34H (4°C), and heat-stressed 34H (room temperature, following acclimation for 1 hour). *E. coli* was not sampled at 48 hours; G6P and F6P were not detected in 34H room-temperature samples at 48 hours. For 10-sec data (asterisk), cell metabolism may have been active during the 5-minute centrifugation (0°C) step. Error bars indicate standard deviation of the mean (n = 2).

Fig. S4. Transcriptomic expression data of 34H at normal-growth conditions and differential expression data after exposure to temperature-stressed conditions as determined by RNA-Seq. Left column represents RPKM expression levels normalized to gene edd-1 (ED pathway). Right column represents Log₂(FoldChange) (Log₂FC) of differential gene expression from 4°C to 23°C. Scale for RPKM expression and Log₂FC presented on the far right. An asterisk next to gene names indicates data with Log₂FC Benjamini-Hochberg FDR adjusted p-values less than 0.05. See *SI Appendix*, Dataset S2 for full gene expression details.

Fig. S5. Overview of experimental approaches and key findings for 34H at temperatures for both normal-growth (4°C) and heat-stress (23°C, above its maximum growth temperature). The left side shows experimental results at 4°C, where metabolic flux analysis, biomass characterization, and pool size measurements were performed: the ED pathway is the main glycolytic route, the biomass contains a large portion of ash (20%, inorganic salts), and the pool size of energy molecules is small (relative to normal-growth *E. coli* at 37°C). The right side shows experimental results at 23°C, where comparative RNA-Seq (between 4°C and 23°C) and dynamic isotopic carbon tracing were performed: the majority of genes were down-regulated after 2 hours of heat stress; and TCA cycle activity was limited compared to normal-growth conditions. After 24 hours, a shutdown of metabolic activity was observed, as cellular damage ensued.

Fig. S6. Estimated changes in total Gibbs free energy (Δ G) for the conversion of glucose to pyruvate by the ED and EMP pathways under different inorganic salt and temperature conditions. Calculations were performed using the equilibrator calculator with reactant concentrations of 1 mM and a pH of 7.5.

Fig. S7. Dynamic labeling experiments conducted with $\Delta ptsG$ and $\Delta ptsG$ + ED pathway overexpressing *E. coli* mutants following a U-¹³C glucose pulse at 4°C. Direct product of the ED pathway is glyceraldehyde 3-phosphate (which quickly isomerizes to DHAP). Error bars indicate standard deviation of the mean (n = 2).

WuFlux	Reaction	Glucose	Glucose	Lactate	Lactate
reaction		flux	confidence	flux	confidence
number		results	interval	results	interval
1	Glucose(substrate) +	100	_*	0	_*
	ATP == G6P				
2	G6P == F6P	2.94	1.93	-10.90	4.28
3	F6P + ATP == FBP	100.39	1.94	65.16	17.62
4	FBP == F6P	100.00	1.56	75.14	16.80
6	FBP == DHAP + GAP	0.39	0.40	-9.98	2.27
7	DHAP == GAP	0.39	0.40	-9.98	2.27
8	GAP == G3P + ATP +	88.73	0.47	-14.95	2.23
	NADH				
9	G3P == PEP	79.94	0.57	-20.42	2.34
10	PEP == PYR + ATP	70.61	5.40	40.41	12.78
11	Lactate(Substrate) ==		_*	100	_*
	PYR + NADH				
12	PYR + 2*ATP == PEP	2.08	1.69	23.79	9.01
14	PYR == AceCoA + CO2	142.61	2.61	76.36	1.68
	+ NADH				
15	AceCoA + OAA == CIT	128.28	1.09	60.57	3.40
16	CIT == ICIT	128.28	1.09	60.57	3.40
17	ICIT == AKG + CO2 +	128.28	1.91	53.78	5.86
	NADPH				
18	AKG == SucCoA +	124.26	1.93	51.36	6.09
	CO2 + NADH				
19	SucCoA == SUC + ATP	122.55	1.93	50.33	6.17
20	SUC == FUM + FADH2	124.26	1.13	58.15	3.64
21	FUM == MAL	125.47	1.11	58.88	3.56
22	MAL == OAA + NADH	44.34	11.65	62.09	7.63
23	MAL == PYR + CO2 +	26.83	9.24	3.10	4.46
	NADH				
24	MAL == PYR + CO2 +	54.30	7.42	0.48	5.05
	NADPH				
25	PEP + CO2 == OAA	8.47	5.29	0.34	25.51
26	OAA + ATP == PEP +	0.00	1.57	39.16	19.46
	CO2				

Table S1. MFA metabolic network and flux results

27	PYR + ATP + CO2 ==	86.08	9.14	43.29	9.69
20		0.00	1 75	6 7 0	2.00
28	ICH == GLX + SUC	0.00	1.75	6.79	2.80
29	GLX + AceCoA ==	0.00	1.75	6.79	2.80
20		05.72	1.04	10.10	4 20
30 21	GOP == PGO + NADPH	95.72	1.94	10.10	4.30
51	PG0 == CO2 + Ku3P +	1.22	2.44	4.90	5.50
22	NADI'П D::5D У5D	1.22	1 64	1 15	2 49
33 24	RuSP == XSP	1.22	1.04	1.15	2.48
34 25	KUSP == KSP	0.00	0.81	3.82	1.19
35	X3P + K3P == GAP +	1.28	0.82	0.98	1.21
26	S/P	1.00	0.92	0.00	1.01
30	GAP + S/P == E4P +	1.28	0.82	0.98	1.21
27		0.06	0.92	0.17	1.26
57	A3P + E4P == GAP + E6P	-0.06	0.83	0.17	1.20
38	POF $PC6 = - DVP + CAP$	88 50	0.04	5 13	2 17
30 40	$A \cos C \circ A = -A \circ + A T P$	1.46	0.94	0.88	2.17
40	AKC + NADDH	-1.40	0.02	-0.00	1.76
41	GUU	27.11	0.57	10.11	1.70
12	GLU + ATP GLN	2.45	0.03	1 47	0.16
42	GLU + ATP +	2.45	0.03	0.42	0.10
45	OLO + AII +	0.70	0.01	0.42	0.04
44	$2 \operatorname{NADFII} = - \operatorname{FRO}$	0.76	0.01	0.46	0.05
44	$\Delta SP + \Delta coCoA +$	0.70	0.01	0.40	0.05
	AST + ACCOA +				
	$3^{\circ}AII + NADIII = -$				
	ARO + ARO + FOM +				
15	AC	8 80	0.35	/ 01	0.74
40		0.00	0.55	4.91	0.74
46	$\Delta SP \pm 2 * \Delta TP \Delta SN$	1.01	0.01	0.61	0.06
40 17	PYR + GIII AIA +	1.01	0.01	1.15	0.00
	AKG	1.91	0.02	1.15	0.12
48	G3P + GLU == SFR +	5 48	0.17	3 49	0 39
10	AKG + NADH	5.10	0.17	5. 77	0.57
49	SER == GLY +	3 64	0 17	2.38	0 30
12	Methylene THF	5.51	0.17	2.50	0.50
	1,1001,10110_1111				

50	GLY ==	1.43	0.17	0.67	0.25
	Methylene_THF + CO2				
	+ NADH				
51	Methylene_THF +	0.44	0.01	0.27	0.03
	NADH == Methyl_THF				
52	Methylene_THF ==	0.44	0.01	0.27	0.03
	Formyl_THF + NADPH				
53	ASP + 2*ATP +	3.85	0.33	1.93	0.53
	2*NADPH == THR				
54	THR == GLY +	1.69	0.33	0.63	0.47
	AceCoA + NADH				
55	SER + AceCoA +	0.70	0.01	0.42	0.04
	3*ATP + 4*NADPH ==				
	CYS + Ac				
56	ASP + PYR + GLU +	1.27	0.02	0.76	0.08
	SucCoA + ATP +				
	2*NADPH == LYS +				
	CO2 + AKG + SUC				
57	ASP + Methyl_THF +	0.44	0.01	0.27	0.03
	CYS + SucCoA + ATP				
	+ 2*NADPH == MET +				
	PYR + SUC				
58	GLU + NADPH +	1.27	0.02	0.76	0.08
	2*PYR == VAL + AKG				
	+ CO2				
59	AceCoA + 2*PYR +	1.46	0.02	0.88	0.09
	GLU + NADPH ==				
	LEU + AKG + NADH +				
	2*CO2				
60	THR + PYR + GLU +	1.01	0.01	0.61	0.06
	NADPH == ILE + AKG				
	+ CO2				
61	E4P + 2*PEP + GLU +	0.70	0.01	0.42	0.04
	ATP + NADPH == PHE				
	+ AKG + CO2				
62	E4P + 2*PEP + GLU +	0.44	0.01	0.27	0.03
	ATP + NADPH == TYR				

	+ AKG + NADH + CO2				
63	SER + R5P + 2*PEP +	0.19	0.00	0.12	0.01
	E4P + GLN + 3*ATP +				
	NADPH == TRP + GAP				
	+ PYR $+$ GLU $+$ CO2				
66	R5P + Formyl_THF +	0.44	0.01	0.27	0.03
	GLN + ASP + 5*ATP				
	== HIS + AKG + FUM				
	+ 2*NADH				
67	NADH == NADPH	-209.06	8.70	-24.30	14.72
68	NADH == $3*ATP$	654.55	3.88	313.13	20.60
69	FADH2 == 2*ATP	124.26	1.13	58.15	3.64
71	ATP ==	2000.00	1.93	814.79	66.28
	ATP_maintenance				
72	$CO2 == CO2_ex$	397.43	2.19	190.47	11.62
74	Biomass formation [†]	5.34	0.06	3.21	0.34
75	Exchange coefficient of	0.11	0.06	0.56	0.20
	Reaction:G6P == F6P				
76	Exchange coefficient of	0.00	0.25	0.44	0.25
	Reaction:FBP == DHAP				
	+ GAP				
77	Exchange coefficient of	0.18	0.19	0.99	0.23
	Reaction:DHAP ==				
	GAP				
78	Exchange coefficient of	1.00	0.26	0.08	0.26
	Reaction: $GAP == G3P +$				
	ATP + NADH				
79	Exchange coefficient of	1.00	0.19	1.00	0.25
	Reaction:G3P == PEP				
80	Exchange coefficient of	0.50	0.05	0.60	0.10
	Reaction:CIT == ICIT				
81	Exchange coefficient of	0.28	0.25	0.00	0.00
	Reaction:ICIT == AKG				
	+ CO2 + NADPH				
82	Exchange coefficient of	0.32	0.16	0.60	0.23
	Reaction:SucCoA ==				
	SUC + ATP				

Exchange coefficient of	0.36	0.16	0.42	0.23
Reaction:SUC == FUM				
+ FADH2				
Exchange coefficient of	0.81	0.08	1.00	0.04
Reaction:FUM == MAL				
Exchange coefficient of	1.00	0.01	1.00	0.06
Reaction:MAL == OAA				
+ NADH				
Exchange coefficient of	0.00	0.02	0.00	0.00
Reaction:PYR + ATP +				
CO2 == OAA				
Exchange coefficient of	0.00	0.00	0.52	0.25
Reaction:Ru5P == X5P				
Exchange coefficient of	1.00	0.26	0.58	0.25
Reaction:Ru5P == R5P				
Exchange coefficient of	0.99	0.23	0.04	0.26
Reaction:X5P + R5P ==				
GAP + S7P				
Exchange coefficient of	0.07	0.24	0.39	0.26
Reaction:GAP + S7P ==				
E4P + F6P				
Exchange coefficient of	1.00	0.25	0.09	0.25
Reaction:X5P + E4P ==				
GAP + F6P				
Exchange coefficient of	0.08	0.09	0.05	0.02
Reaction:SER == GLY				
+ Methylene_THF				
Exchange coefficient of	0.00	0.00	0.00	0.00
Reaction:GLY ==				
$Methylene_THF+CO2$				
+ NADH				
Intracellular 13CO_2	0.40	0.00	0.24	0.01
fraction				
SSR (95% CI)	93.19	76.8–133.0	67.89	48.8–95.0
	Exchange coefficient of Reaction:SUC == FUM + FADH2 Exchange coefficient of Reaction:FUM == MAL Exchange coefficient of Reaction:MAL == OAA + NADH Exchange coefficient of Reaction:PYR + ATP + CO2 == OAA Exchange coefficient of Reaction:Ru5P == X5P Exchange coefficient of Reaction:Ru5P == R5P Exchange coefficient of Reaction:X5P + R5P == GAP + S7P Exchange coefficient of Reaction:GAP + S7P == E4P + F6P Exchange coefficient of Reaction:X5P + E4P == GAP + F6P Exchange coefficient of Reaction:SER == GLY + Methylene_THF Exchange coefficient of Reaction:GLY == Methylene_THF + CO2 + NADH Intracellular 13CO_2 fraction SSR (95% CI)	Exchange coefficient of Reaction:SUC == FUM + FADH2 0.36 Exchange coefficient of Reaction:FUM == MAL 0.81 Exchange coefficient of Reaction:MAL == OAA + NADH 1.00 Reaction:MAL == OAA + NADH 0.00 Reaction:PYR + ATP + CO2 == OAA 0.00 Reaction:Ru5P == X5P 0.00 Reaction:Ru5P == R5P 0.99 Reaction:Ru5P == R5P 0.99 Reaction:SPR + R5P == GAP + S7P 0.07 Reaction:GAP + S7P 0.07 Reaction:SF + R5P == GAP + F6P 0.00 Reaction:SER == GLY + Methylene_THF 0.00 Reaction:SER == GLY + NADH 0.00 Reaction:GLY == 0.00 Reaction:GLY == 0.40 fraction SSR (95% CI) 93.19	Exchange coefficient of 0.36 0.16 Reaction:SUC == FUM $+$ FADH2Exchange coefficient of 0.81 0.08 Reaction:FUM == MAL 0.00 0.01 Reaction:MAL == OAA $+$ NADHExchange coefficient of 0.00 0.02 Reaction:PYR + ATP + $CO2 == OAA$ Exchange coefficient of 0.00 0.00 Reaction:RuSP == XSP 0.00 0.00 Reaction:RuSP == RSP 0.99 0.23 Reaction:RuSP == RSP 0.99 0.23 Reaction:RuSP + RSP == 0.07 0.24 Reaction:GAP + S7P 0.07 0.24 Reaction:GAP + S7P == 0.00 0.00 Exchange coefficient of 1.00 0.25 Reaction:SSP + E4P == 0.08 0.09 Reaction:SER == GLY $+$ Methylene_THFExchange coefficient of 0.00 0.00 Reaction:GLY == 0.00 0.00 Reaction:GLY == 0.40 0.00 fraction SSR (95% CI) 93.19 $76.8-133.0$	Exchange coefficient of 0.36 0.16 0.42 Reaction:SUC == FUM + FADH2 Exchange coefficient of 0.81 0.08 1.00 Reaction:FUM == MAL Exchange coefficient of 1.00 0.01 1.00 Reaction:MAL == OAA + NADH 1.00 0.02 0.00 Reaction:PYR + ATP + $CO2 == OAA$ $CO2 == OAA$ $CO2 == OAA$ Exchange coefficient of 0.00 0.00 0.52 Reaction:RuSP == XSP $CO2 = OAA$ $CO2 = OAA$ $CO2 = OAA$ Exchange coefficient of 0.00 0.26 0.58 Reaction:RuSP == XSP $CO2 = OAA$ $CO2 = OAA$ $CO2 = OAA$ Exchange coefficient of 0.00 0.26 0.58 Reaction:RuSP == RSP $CAP + SP = =$ $GAP + F6P$ $CO2 = 0.09$ $O.05$ Reaction:SER == GLY + Methylene_THF $CO2 = O.40$ $O.00$ $O.00$ $O.00$ Reaction:GLY == $Methylene_THF + CO2$ $HADH$ $NADH$ $NADH$

*Flux values were set manually in each situation to represent glucose or lactate uptake. Thus, no confidence intervals are provided.

†Biomass formulation equation =

0.357*ALA+0.143*ARG+0.19*ASN+0.19*ASP+0.048*CYS+0.196*GLU+0.196*GLN+0.729*GLY+0.083*HIS+ 0.19*ILE+0.274*LEU+0.238*LYS+0.083*MET+0.131*PHE+0.131*PRO+0.179*SER+0.214*THR+0.036*TRP+ 0.083*TYR+0.238*VAL+0.25*G6P+0.706*F6P+0.766*R5P+0.129*GAP+0.619*G3P+0.051*PEP+0.083*PYR+2. 725*AceCoA+0.087*AKG+0.340*OAA+0.783*Methylene_THF+33.247*ATP+5.363*NADPH==39.68*Biomass+ 1.455*NADH

Additional data table S1. (XLS)

Dataset S1: Mass isotopomer distribution data from steady state and dynamic flux analysis

Additional data table S2. (XLS)

Dataset S2: RNA sequencing data

References

- 1. Abernathy MH, et al. (2017) Deciphering cyanobacterial phenotypes for fast photoautotrophic growth via isotopically nonstationary metabolic flux analysis. *Biotechnol Biofuels* 10:273 https://doi.org/10.1186/s13068-017-0958-y.
- 2.. Ma F, Jazmin JL, Young, JD, Allen DK (2014) Isotopically nonstationary 13C flux analysis of changes in *Arabidopsis thaliana* leaf metabolism due to high light acclimation. *Proc Natl Acad Sci* U S A 111(47):16967-16972.
- 3. Pramanik J, Keasling JD (1997) Stoichiometric model of *Escherichia coli* metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. *Biotechnol Bioeng* 56(4):398–421.
- 4. Pramanik J, Keasling JD (1998) Effect of *Escherichia coli* biomass composition on central metabolic fluxes predicted by a stoichiometric model. *Biotechnol Bioeng* 60(2):230–238.
- 5. Neidhardt FC, Ingraham JL, Schaechter M (1990) *Physiology of the Bacterial Cell:A Molecular Approach* (Sinauer Associates, Sunderland, MA), pp xii, 506 p.