

Supplementary Information for

Species interactions limit the occurrence of urban-adapted birds in cities

Paul R. Martin & Frances Bonier

Corresponding author: Paul Martin Email: pm45@queensu.ca

This PDF file includes:

Supplementary text Figs. S1 to S14 Tables S1 to S6 References for SI reference citations Additional Acknowledgments List of the cities included in this study List of the bird species examined in this study Literature reviewed for behavioral dominance relationships References used for assessing breeding range overlap of cities

Other supplementary materials for this manuscript include the following:

Dataset and R code are available at the Dryad Digital Repository: https://doi.org/10.5061/dryad.t85bf04

Supplementary Text

Supplementary Methods and Results.

Selection of Species. In twelve cases, the youngest, phylogenetically-independent species comparisons involved more than two species. For example, *Melospiza melodia* is dominant to both *M. georgiana* and *M. lincolnii* (sister species) that are equally divergent from *M. melodia*. We have no data on dominance relationships between *M. georgiana* and *M. lincolnii*, so we included the three species (*M. melodia* dominant, *M. geogiana* and *M. lincolnii* subordinate) as one phylogenetically-independent comparison. For this reason, the 142 phylogenetically-independent comparisons in our study incorporate 296 species in total (rather than 284 species expected if each comparison represented only two species).

In two cases, multiple species pairs were not phylogenetically independent, and one species was both dominant and subordinate to two different species at equal genetic distances. In these two cases (*Falco, Sterna*), we included only the species pair with the most data (i.e., data from the most cities across both species in the species pair). We took this approach rather than including all of the data because one species could not be coded as both dominant and subordinate at the same time.

Phylogeny. We imported our maximum clade credibility tree into R using the R package *ape* (1), and exported the tree in Newick format for editing. Once exported, we made 3 edits. (i) We updated the names of species to match those of the International Ornithologists' Union (2) that we use in our dataset, necessary to match the data with

branches in the phylogeny. (ii) One of the branch lengths in the phylogeny was negative and thus nonsensical (*Acrocephalus – Sylvia/Turdoides*). We changed this value to positive and adjusted the branch lengths immediately downstream so that all branches remained ultrametric. (iii) One of our focal species, *Corvus cornix*, was missing from ref. 3 because the taxonomy used in that source considered it to form one species with *C. corone*. Thus, we added *Corvus cornix* as the sister lineage to *C. corone* in our phylogeny (following ref. 4), and specified a branch length of 0.003 to reflect a divergence time on the order of a few thousand years (4). After these modifications, we imported the new phylogeny using *ape* (1) for use in our statistical analyses.

Spatial Autocorrelation. We tested for the effects of spatial autocorrelation in our analyses by calculating Moran's I values and their significance for [(rescaled breeding occurrence values - MCMCglmm model predicted values)/(standard deviation of rescaled breeding occurrence values)] using the R package *ncf* (5). We also plotted spatial autocorrelation by geographic distance between cities (correlograms) using the *spline.correlog* function in *ncf* (5) (Fig. S11). Moran's I values were significant, but very small and negative overall: main model (predictors = dominance * sympatry * urban-breeding propensity), correlation = -0.0012, *P* = 0.003; continent model (predictors = dominance * sympatry * urban-breeding propensity * continent), correlation = -0.0010, *P* = 0.002; economic development model (predictors = dominance * sympatry * urban-breeding propensity * economic development), correlation = -0.0087, *P* = 0.005. Correlograms, however, revealed significant, positive spatial autocorrelation at short distances between cities (clustering) (Fig. S11), particularly in the main model, and thus

we ran additional models that incorporated spatial autocorrelation to test our hypotheses. We knew of no straightforward way to incorporate spatial autocorrelation into Bayesian generalized linear mixed models [MCMCglmms (6)], so we used generalized least squares (gls) models in the R package *nlme* (7) instead. We initially chose MCMCglmm models because alternatives (linear mixed-effects [lme] and gls models) did not fit our data well. Nonetheless, lme and gls models provided similar results to MCMCglmm models that did fit well, suggesting that any lack of fit did not overly influence the main results of lme/gls models.

We first compared the performance of gls models with the same predictor variables, but with different forms of spatial autocorrelation (Exponential, Gaussian, Spherical, Linear, Ratio), and compared these again to a linear mixed-effects model that did not incorporate spatial autocorrelation but included species pair as a random effect. All models used restricted maximum likelihood; we assessed model performance using Akaike Information Criterion (AIC) estimates. Models that incorporated exponential spatial autocorrelation performed best (lowest AIC; same result for our main model and models with continent and economic development), so we incorporated the exponential form into our subsequent gls tests.

We next re-ran our analyses using gls models incorporating exponential spatial autocorrelation. We first compared models with different combinations of variance heterogeneity with the goal of finding the best fit possible for each model (following ref. 8). We ran all combinations of variance heterogeneity (fixed effects were the same for all models) using restricted maximum likelihood and AIC values to identify the bestperforming model for each analysis. We then tested the importance of the focal

4

interaction term by comparing AIC values for models using maximum likelihood and differing only in the inclusion of the interaction term (our main effect). R code for these analyses are available from the Dryad Digital Repository:

https://doi.org/10.5061/dryad.t85bf04.

Our analysis incorporating spatial autocorrelation revealed similar results (Table S5). The interaction between dominance, sympatry, and urban-breeding propensity improved the gls model controlling for spatial autocorrelation ($\Delta AIC = -12.5$), with breeding occurrence varying as a function of behavioral dominance, sympatry, and urbanbreeding propensity (3-way interaction, P = 0.0001). The interaction between our main effects and continent no longer improved model fit once spatial autocorrelation was included ($\Delta AIC = +0.4$), as we expected given that continental effects reflected spatial clustering. In contrast, our main effects again varied as a function of economic development: dominant species had higher occurrence values in cities compared with closely-related subordinate species, but only when the species pair was sympatric, adapted to urban environments, and occurred in countries with developed economies (P <(0.0001) or countries in economic transition (P = 0.029). Among the alternative hypotheses to explain continental variation, only economic development improved model fit overall, and in an interaction with our main effect. All other predictor variables did not improve model fit (positive Δ AICs for all) when included in an interaction with our main effect in models incorporating spatial autocorrelation (Table S5). These results suggest that economic development was the only predictor to explain variation in our main effects beyond spatial clustering.

Dominance Data. Our dataset comprised 142 species pairs for which dominance relationships have been described in the literature. These included cases where we could reanalyze raw competitive interaction data (binomial tests of wins; N = 76 species pairs), cases where dominance was tested using statistical tests on the results of experiments (e.g., song playback experiments; N = 4 species pairs), and cases where the dominance relationship was described in the literature but the interaction data were not accessible for reanalysis (N = 62 species pairs). We had greater confidence in dominance relationships among species pairs for which we could statistical tests of behaviors had already been performed). Thus, we retested our main findings using the subset of species pairs for which we had the highest confidence in dominance relationships (N = 80 species pairs), predicting that our main results should persist in this subset of our data.

Re-running our main analyses with this subset (N = 80 species pairs) yielded similar results. In allopatry, breeding occurrence values of dominant and subordinate congeners again did not differ as a function of their propensity to breed in cities [MCMCglmms; differences in linear slopes (subordinate relative to dominant) in allopatry, estimate = -0.096, 95% CI: -0.19, +0.0028, $P_{MCMC} = 0.054$]; in sympatry, however, urban-adapted dominant species were more widespread than subordinate congeners [differences in linear slopes (subordinate relative to dominant) in sympatry, estimate = -0.59, 95% CI: -0.69, -0.49, $P_{MCMC} < 0.0001$; Fig. S12]. This general pattern again depended on the level of a country's economic development (Fig. S13). In developed countries, breeding occurrence values of dominant and subordinate congeners did not differ as a function of urban adaptation in allopatry [difference in slopes

(subordinate relative to dominant) in allopatry, linear component estimate = -3.63, 95%CI: -7.87, +0.50, $P_{MCMC} = 0.09$; polynomial component estimate = -2.36, 95% CI: -6.41, +1.73, P_{MCMC} = 0.26], while urban-adapted dominant species were more widespread than subordinate congeners in sympatry [difference in slopes (subordinate relative to dominant), linear component estimate = -18.39, 95% CI: -22.00, -14.76, $P_{MCMC} < 0.0001$; quadratic component estimate = -1.78, 95% CI: -5.35, +1.75, $P_{MCMC} = 0.32$; Fig. S13]. Countries in transition between developing and developed economies also showed no difference in occurrence between dominant and subordinate congeners as a function of their propensity to breed in urban habitats in allopatry [difference in slope (subordinate relative to dominant) in allopatry, linear component estimate = -3.69, 95% CI: -18.00, +10.48, P_{MCMC} = 0.61; quadratic component estimate = +4.65, 95% CI: -6.66, +15.57, $P_{MCMC} = 0.41$], while urban-adapted dominant species were more widespread than subordinate congeners in sympatry [difference in slopes (subordinate relative to dominant) in sympatry, linear component estimate = -13.79, 95% CI: -20.56, -7.08, $P_{MCMC} < 0.0001$; quadratic component estimate = +8.87, 95% CI: +2.10, +15.49, P_{MCMC} = 0.009; Fig. S13]. Analysis of data from developing countries showed no difference in occurrence between dominant and subordinate species as a function of urban adaptation in allopatry [difference in slopes (subordinate relative to dominant) in allopatry, linear component estimate = -0.83, 95% CI: -5.00, +3.28, $P_{MCMC} = 0.69$; quadratic component estimate = +3.66, 95% CI: -0.41, +7.66, $P_{MCMC} = 0.07$]; urban-adapted dominant species, however, were marginally more widespread than subordinate species in sympatry, although they showed no clear decline with increasing propensity to breed in cities [difference in slopes (subordinate relative to dominant) in sympatry, linear component

7

estimate = -7.73, 95% CI: -14.08, -1.24, P_{MCMC} = 0.018; quadratic component estimate = +6.96, 95% CI: +0.74, +13.22, P_{MCMC} = 0.029; Fig. S13].

Cultural Bias. Different cultural backgrounds of our survey respondents could have influenced how they perceived and responded to our survey questions. Such cultural bias could have influenced our results, particularly the variation that we found among different levels of economic development. Accounting for potential cultural bias is difficult because some observers did not share the cultural background of the countries to which they responded. For example, professional bird guides raised or living in Western countries (e.g., USA, UK, Sweden) provided data on the breeding birds of some cities in developing countries (e.g., in South America, Asia, and Africa).

We expected cultural bias to have a more pronounced effect on subtler distinctions between occurrence that are more open to different interpretations (e.g., local versus widespread breeders), rather than simpler, unequivocal distinctions of presence versus absence. Thus, we reanalyzed variation in our main results with a country's economic development using a simplified dataset that included only presence or absence of species as breeders in cities. The results of this test were similar to the results of the main analysis (Fig. S14). In developed countries, breeding presence/absence of dominant and subordinate congeners again did not differ as a function of urban adaptation in allopatry [difference in slopes (subordinate relative to dominant) in allopatry, estimate = +0.23, 95% CI: -0.84, +1.31, $P_{MCMC} = 0.67$], but urban-adapted dominant species were more likely to be present than subordinate congeners in sympatry [difference in slopes (subordinate relative to dominant) in sympatry, estimate = -2.77, 95% CI: -3.62, -1.95,

8

 $P_{MCMC} < 0.0001$; Fig. S14]. Developing countries showed no difference in presence/absence between dominant and subordinate species as a function of urban adaptation in allopatry [difference in slopes (subordinate relative to dominant) in allopatry, estimate = +0.39, 95% CI: -0.40, +1.23, P_{MCMC} = 0.33] or sympatry [difference in slopes (subordinate relative to dominant) in sympatry, estimate = -0.44, 95% CI: -1.44, +0.54, P_{MCMC} = 0.37; Fig. S14]. Countries in transition between developing and developed economies showed no difference in presence/absence between dominant and subordinate congeners as a function of their propensity to breed in urban habitats in allopatry [difference in slope (subordinate relative to dominant) in allopatry, estimate = -0.49, 95% CI: -2.35, +1.35, P_{MCMC} = 0.61], but showed patterns intermediate between developing and developed countries in sympatry [difference in slopes (subordinate relative to dominant) in sympatry, estimate = -1.32, 95% CI: -2.60, -0.056, P_{MCMC} = 0.035; Fig. S14].

Presence/Absence

Fig. S1. Presence versus absence of birds breeding in urban habitats as a function of dominance status, range overlap, and propensity for species pairs to breed in cities. Breeding occurrence values greater than zero were categorized as "present" and zero values as "absent." Upper panel shows data for allopatry (i.e., cities where focal dominant and subordinate congeners did not overlap their breeding ranges); bottom panel shows data for sympatry (i.e, cities where focal dominant and subordinate congeners overlapped breeding ranges). The effect of dominance depended on both sympatry and the propensity for species pairs to breed in cities

(Categorical [bivariate] MCMCglmm, $P_{MCMC} < 0.0001$). In allopatry, dominant and subordinate congeners did not consistently differ in their breeding occurrence values in urban habitat (Categorical MCMCglmm, difference in slopes, $P_{MCMC} = 0.22$). In sympatry, dominant species were more widespread than their subordinate congeners when species pairs had a high propensity to breed in cities (Categorical MCMCglmm, difference in slopes, $P_{MCMC} < 0.0001$). Lines (red = dominant species; blue = subordinate species) are loess splines (span = 1.5) with 95% confidence limits shown in gray. Point size reflects the number of overlapping points (see legend at bottom right of graphs).

Fig. S2. Presence (only) of birds breeding in urban habitats as a function of dominance status, range overlap, and propensity for species pairs to breed in cities. Plots reflect breeding occurrence values restricted to cases were the species was present breeding in urban habitats (i.e., all zeros removed). Thus, for sympatric species, we included occurrence data for

species that were present, even if their congener was absent (i.e., had a value of zero for occurrence, and thus was dropped). Upper panel shows data for allopatry (i.e., cities where focal dominant and subordinate congeners did not overlap their breeding ranges); bottom panel shows data for sympatry (i.e., cities where focal dominant and subordinate congeners overlapped breeding ranges). The effect of dominance depended on both sympatry and the propensity for species pairs to breed in cities (MCMCglmm, $P_{MCMC} < 0.0001$). In allopatry, dominant and subordinate congeners did not consistently differ in their breeding occurrence values in urban habitat (MCMCglmm, difference in slopes, $P_{MCMC} = 0.14$). In sympatry, dominant species were more widespread than their subordinate congeners when species pairs had a high propensity to breed in cities (MCMCglmm, difference in slopes, $P_{MCMC} < 0.0001$). Lines (red = dominant species; blue = subordinate species) are loess splines (span = 1.5) with 95% confidence limits shown in gray. Point size reflects the number of overlapping points (see legend at top left of graphs).

Fig. S3. Geographic variation in the urban-breeding occurrence of dominant and subordinate bird species in allopatry. Panels show only cases where dominant and subordinate species did not overlap their breeding ranges (allopatry). See Table S2 for statistical results. See

caption of Fig. 2 in the main text for definitions of axes. Solid lines (red = dominant species; blue = subordinate species) are (*A*) loess splines (span = 1.5) with 95% confidence limits shown in gray, and (*B*) model predicted values with 95% confidence limits shown in gray from a MCMCglmm analysis. Slopes in (*B*) are flattened relative to slopes in (*A*) because statistical models in (*B*) incorporated standardized breeding occurrence values (y-axes) = [breeding occurrence value - mean(breeding occurrence for the species pair)] / [2 * standard deviation(breeding occurrence for the species pair)]. Point size in (*A*) reflects the number of overlapping points (see legend at top right of graph). Sample sizes (allopatry only): Africa, N = 328 points; Asia, N = 562; Australia, N = 62, Europe, N = 929; North America, N = 1,231; South America, N = 323. In our analysis, we included cities in New Zealand with Australia, and Central America and the Caribbean with North America.

Fig. S4. Geographic variation in the urban-breeding occurrence of dominant and subordinate bird species in sympatry. Panels show only cases where dominant and subordinate

species overlapped their breeding ranges (sympatry). See Table S2 for statistical results. See caption of Fig. 2 in the main text for definitions of axes. Solid lines (red = dominant species; blue = subordinate species) are (*A*) loess splines (span = 1.5) with 95% confidence limits shown in gray, and (*B*) model predicted values with 95% confidence limits shown in gray from a MCMCglmm analysis. Slopes in (*B*) are flattened relative to slopes in (*A*) because statistical models in (*B*) incorporated standardized breeding occurrence values (y-axes) = [breeding occurrence value - mean(breeding occurrence for the species pair)] / [2 * standard deviation(breeding occurrence for the species pair)]. Point size in (*A*) reflects the number of overlapping points (see legend at top right of graph). Sample sizes (sympatry only): Africa, N = 218 points; Asia, N = 276; Australia, N = 74, Europe, N = 874; North America, N = 577; South America, N = 174. In our analysis, we included cities in New Zealand with Australia, and Central America and the Caribbean with North America.

Urban breeding birds - Toronto

Urban breeding birds of Toronto, Ontario, Canada

Please indicate which bird species (listed below) **breed every year in urban habitats** within the city limits of **Toronto**. Note that we are only interested in **breeding**; please do not select "yes" if the species only winters, migrates through, or visits, but does not breed, in your city.

Please note that **not all** urban breeding species are listed (only the focal species that we are studying), and many of the species listed may not breed in urban habitats.

"Urban habitats" include urban parks and ponds, and industrial, commercial, residential, and suburban areas, in addition to the downtown core, but **do not** include natural areas within the city (for example, wildlife preserves, conservation areas, or isolated patches of natural habitat).

If species have undergone a major decline recently (for example, Asian vultures, some aerial insectivores), please record the historical breeding status in your city.

All responses are anonymous; however, your are welcome to leave your name in the "Comments" section at the end. Responses are limited to one response per city per device. For more information on this study and links to surveys for other cities, please click <u>here</u>.

[Taxonomy and order follow the <u>International Ornithological Congress, World Bird List</u> (version 6.2) http://dx.doi.org/10.14344/IOC.ML.6.2]

1. Mute Swan, Cygnus olor

city, found in only a few locations

city, found in only a few locations

yes - this species is a widespread breeder in urban habitats across the city

 \boldsymbol{yes} - this species is a \boldsymbol{local} breeder in urban habitats in the

no - this species does not breed in urban habitats in the city

```
not sure
```

) yes - this species is **somewhere in between** a local and widespread breeder in urban habitats in the city

2. Trumpeter Swan, Cygnus buccinator

- yes this species is a widespread breeder in urban habitats across the city
-) **no** this species does not breed in urban habitats in the city
- yes this species is a local breeder in urban habitats in the
-) yes this species is somewhere in between a local and widespread breeder in urban habitats in the city

68. Northern Car	dinal, <i>Cardin</i>	alis cardinalis		
yes - this species is a wides across the city	spread breeder in urban h	abitats O no - this spec	ies does not breed	in urban habitats in the city
yes - this species is a local breeder in urban habitats in the city, found in only a few locations		in the not sure		
yes - this species is somew widespread breeder in urban	here in between a local a n habitats in the city	ind		
69. Please rate y (you know the cit well).	our knowledų y's birds a liti	ge of the breedir tle bit) to 5 (you l	ng birds of know the	[:] Toronto from 1 city's birds very
1. I know the city's birds a little bit.	2.	 I know the city's birds moderately well. 	4.	5. I know the city's birds very well.
\bigcirc	\bigcirc	0	\bigcirc	0
70. Please incluc If you would like contact informatic complete. Thank	le any additic to hear about on. Note that you!!	onal comments h t the results of th the study may ta	iere (optio iis study, p ake a yea	onal). please leave your r or two to

Fig. S5. An example of one of our surveys (Toronto, Canada). For brevity, we show only the first and last pages. The intervening pages included other bird species whose breeding ranges overlap Toronto.

		dominancesub	orginate:zbreed.propensity:sympa	atrysympatric	
-0.4 -(utu pitub kan kan tu	ու, հետո հեմի բունչուներին, որևույններներ, որ հեն կեր 	al den ber har har hall dir minister Attainen hydratetter ander 	alaten herdele locks ters auf sis d'Archera stals en he 	ad have been appreciantly
 9.0_	and have been all the particular production of the	land and the first second of the optimization of the first second second second second second second second se	la general de la construction de la	adaminya ana kata mataka na ana mana kata ana an	
		zbi	eed.propensity:sympatrysympatri	c	
00 0.10	hulmalagnanaalagmu	ndi flattandin talihkundinkalihila hitungan pik	nden mandelige og bedangete hver og og belefikteret	athreadowed a proceeding bit to be destricted	nashina bana pan
-0.10 0.	disalariya sedisiya yeri	an a filia fa fa fa an an an an an faile an fai	utena halinen erste sigte av segen av ander det og til	andan physik (ang haranan dia kapana dipantanan nang dahaya	energioners and the light the
-02		domi	nancesubordinate:sympatrysympa	atric	
0.15 -0	(terripatile) supercentering and	i na kana mani kana kana kana kana kana kana kana k	s, a norma homini substitution a statuti kan addi stara kurputaka isharila k	here was a low and hard has been well you dhe planted by provide a state	helings all a strating was not
-0.25 -	n an an an Artholy (an Artholy) an Artholy an Artholy an Artholy an Artholy and Artholy and Artholy and Artholy	unin harpen harpen pulpin per	anland ha an ann an diann ann an dian ann an dian di	l parte de la construction de la presidente de la construction de la construction de la construction de la cons	and the second
		domi	nancesubordinate:zbreed.propens	sity	
0.00 0.10	perfection and adjusticity as with	hadaalaan oo dhill tidaad daaraa ahaan oo	a sinita a sinit shi a yana ita ita bia a a di si	dalaan kana saarad kara saalaan Gitarah sharta sii	derete des ballite, als bar et as
0.15	<mark>naladoredaptaredaptar</mark> agan	al the end of the state of the	n han hai la dhan dha ha dha an	serifitificiti poteneticis pretti finetne positicio en los tratestas (te 	ngghaintesintiditesin
			sympatrysympatric		
0 0:05 0.	dina di shinda kana sa dara	ilolanitasi di kalennala isana dalaha ka klaisa	n in the second state of the se	apoles de dialacente al celle la care fra ha celetter la	antitist anna staac staat (fa fa stàrt a
0.050.00	werden alle the state of the second second	anayan ya kana kana kana kana kana kana	waqtatiyar Halandan fan fertergan fahnya fra far	lige allowed as we have a large all a she performent	na han han han han ha
Ϋ́			zbreed.propensity		
50.100.1	base also details postforden aver	house and as general set of the second s	da aktorphicologia and a canceled with he	ne hla konentralan ina kan matan tai kan etter perteti kati kan ha	local attemption (and a second
0.000.0	herein half fahr film hander fo	ana sa harana ku ka ku a hara na hara n	na ja jara j <mark>ana na pajajan jara na pana na pana na pana na pana na p</mark> ana na pa	hinadoogaanayaa kaabka pabila yaa hada ba	an ghallala an garai
			dominancesubordinate		
1	prostant Middl (bload a boll, pAp	elistas kuultuuremituisentuisen kuultaanikkuultas lisensi	ronalise derively and marking the line of a state	nsende, meine die Ehreiten Ersten die Ehren voor ander die Erste Berlin voor die Erste Berlin voor die Erste B Die die Erste Berlin en Berlin e	sanalat sa kabula dalaman
0.10-0.0	diality of summer allowed	ուս ավերական անդրությունը։ Դես ավերական հանգակությունը	a na Langana Aberasal Langaran Inda.	ally operated from the foregoing a strated of the second second second second second second second second second	llhagen largen uten her
' _			(Intercept)		
02 0.06	nikilinaksi, albalarinash.	seallanalandan (populari	with flaten blow attention to diversion and only providence	ahitektoonakoa, kyn ^{it} eto _n okiitaja ykienen koosaasta more	alline at present at he he provide
0.02 0.1	al an a the second s	an dinama di kana kana mangkana di kana	aalaadaadaalaadaa falada waxaa haya dahaa ahaa ahaa ahaa ahaa ahaa a	มประกอบของที่สุดที่มาใหญ่ และเป็นสายหารไห้ที่ เห็นสายหารไห้ที่ เห็นสายไปได้ได้ เป็นที่ และให้เห็นสายหารไห้ผู้ เป็นที่มีการได้เห็นสายได้ที่ได้ได้เห็นสายได้ได้ได้	a dhyanga hipapa a dhan
"	10000	20000	30000 Iteration number	40000	50000

Fig. S6. Trace plots for fixed factors in our main MCMCglmm analysis. See Table S6 for additional diagnostics.

Fig. S7. Density plots for fixed factors in our main MCMCglmm analysis. See Table S6 for additional diagnostics.

	dominances:/bonfinster.mb/it/bread noncesitiv 202 numotines/matrice.com.da/A
•	
0 01	
ř	dominancesubordinate poly(zbreed, propensity, 2)1 sympatrysympatric econ. dev3
90	deland with the sector of a state of a monormal and a sector and a state of a state of a state of a sector
010	
	dominancesubordinate poly(zbreed propensity, 2)/2:sympatry:sympatric:econ.dev/2
8	
5	In A new down i providence of the second of the
8	dominancesubordinate poly(zbred propensity. 2)1:sympatrysympatric.econ.dev2
20	
:	
12	population and the second of t
0.5	
6	
	a, and distributed in the second
Τ.	poly(zbreed propensity, 2)2:sympatrix:econ.dev2
10	
2	
Ÿ.	poly(zbreed propensity, 2)1:sympatrysympatric econ.dev2
2	a station of the second s
8	
÷.	dominancesubordinate sympatrysympatricecon.dev3
0.20	
8.0	A standard from the f
	comnancesubordinate sympatry sympatric econ. dev2
100	
Ŷ	
ę :	
505	
Ť	dominancesubordinate poly/zbreed propensity. 21: secon.dev3
15	
5.5	
	dominancesubordinate poly/zbreed propensity, 2/2 econ. dev2
010	
8	
٢,	dominancesubordinate poly/zbreed propensity, 2)1 econ.dev2
•	and the first section and the
8	
٢.	dominancesubordinate:poly(zbreed.propensily, 2)2 sympatrysympatric
0.5	
۴.	
	dominancesubordinate poly/zbreed propersity. 2[1:sympatrysympatric
Ξ	
ě	
0	
5	
Υ.	Support Statements
2	Little loss i le son la serie de la constance de
-	
Υ.	poly(zbreed propensity, 2)2:econ.dev3
\$	
÷.	
	poly/zbreed propensity, 211:econ dev3
Ξ.	ersembles context and a context in a context of the destination of the
ę.	ugar ben also end of the end of t
	poly(zbreed propensity, 2)2 econ dev2
0.5	
÷.	- opportant of the second of t
ę.	population of the second secon
•	
Ŗ.	6 Animancesubortaniate cost device a second a s
5	
-	
1	dominancesubordinate.econ.dev2
20.4	
0.0	
	polytiztreed propensity 202 sympathysympathic
•	
-10	Varpeted sources(). (in the control of the control
	polycerosytemy (1) symptoms (2)
20	
	dominancesubordinate summatives
8	Applements of the and the present control of the present and the present of the p
35-1	
9	dominancesubordinate poly(zbreed propensity, 2)2
0.5	
₽.	
	dominancesubordinate polycitizeed propensity, 2/1
20	
۳.	i vas telefon i vas de calendaria en la calendaria
8	
15.6	
Ŷ	
2	
3	
9	aympabric
0.10	
0.05	
Ť	poly(zbreed propensity, 2)2
024	
7	
	poly(ztreed_propanely, 2)1
468	
02	
0.05	
10	
9	(hardening)
0.10	an weda westering to select it is a selection of the second and a second
8	
0.0	
	Anno and

Fig. S8. Trace plots for fixed factors in our MCMCglmm analysis with economic development. See Table S6 for additional diagnostics.

Fig. S9. Density plots for fixed factors in our MCMCglmm analysis with economic development. See Table S6 for additional diagnostics.

Fig. S10. Test of hypotheses for how competitive dominance influences breeding occurrence of birds in cities as a function of the propensity for species pairs to breed in cities, with propensity calculated using mean rather than maximum occurrence values. The effect of dominance depended on both sympatry and the propensity for species pairs to breed in cities (MCMCglmm, $P_{MCMC} < 0.0001$). In allopatry, breeding occurrence values of dominant and subordinate congeners did not differ (MCMCglmm, difference in slopes, $P_{MCMC} = 0.90$). In

sympatry, dominant species were more widespread than subordinate congeners when species pairs had a high propensity to breed in cities (MCMCglmm, difference in slopes, $P_{MCMC} < 0.0001$). Each point in the figures represents the breeding occurrence of one species in one city (allopatry, N = 3,425; sympatry, N = 2,193); point size reflects the number of overlapping points (see legend at bottom right of graphs). Solid lines (red = dominants; blue = subordinates) are loess splines (span = 1.5) with 95% confidence limits shown in gray. Breeding occurrence values are means for each species in each city (averaged across observers, weighted by observer ability), and range from 0 (absent from urban habitats) to 3 (widespread breeder in urban habitats). The propensity to breed in cities was calculated for each paired dominant and subordinate species (one value for each pair) as the mean (rather than maximum, which was used in the main analyses) breeding occurrence value within a species pair for each city, averaged across all focal cities that overlapped their breeding ranges.

Distance between cities (km)

Fig. S11. Spatial autocorrelation in residuals from our main analyses. Plots illustrate spatial variation in correlations (95% bootstrap confidence limits in gray) of residuals [(rescaled breeding occurrence values - model predicted values) / (standard deviation of rescaled breeding occurrence values)] for our main model with the three-way interaction of dominance, sympatry, and urban-breeding propensity (top), and the four-way interactions between these terms and continent (middle) or economic development (bottom).

Fig. S12. Variation in the urban-breeding occurrence of dominant and subordinate bird species as a function of their propensity to breed in cities, restricted to the subset of species pairs for which quantitative data used to determine behavioral dominance were accessible (N = 80 species pairs). In allopatry, breeding occurrence values of dominant and subordinate congeners did not differ (MCMCglmm, difference in slopes, $P_{MCMC} = 0.053$). In sympatry, dominant species were more widespread than subordinate congeners when species pairs had a high propensity to breed in cities (MCMCglmm, difference in slopes, $P_{MCMC} < 0.0001$). Each

point in the figures represents the breeding occurrence of one species in one city (allopatry, N = 1,767; sympatry, N = 1,342); point size reflects the number of overlapping points (see legend at top left of graphs). Solid lines (red = dominant species; blue = subordinate species) are loess splines (span = 1.5) with 95% confidence limits shown in gray. Breeding occurrence values are means for each species in each city (averaged across observers, weighted by observer ability), and range from 0 (absent from urban habitats) to 3 (widespread breeder in urban habitats). Propensity to breed in cities was calculated for each paired dominant and subordinate species as the maximum breeding occurrence within a species pair for each city, averaged across all focal cities that overlapped their breeding ranges (one value per species pair; same value for sympatry and allopatry). See *Supplementary Methods and Results* for statistical results.

Fig. S13. Variation in the urban-breeding occurrence of dominant and subordinate bird species across levels of economic development, restricted to the subset of species pairs for which quantitative data on behavioral dominance were accessible (N = 80 species pairs). Economic development categorization follows country-level designations of the United Nations from 2014. Solid lines (red = dominant species; blue = subordinate species) are loess splines (span = 1.5) with 95% confidence limits shown in gray. Point size reflects the number of overlapping points (see legend at top right of graphs). See caption of Fig. 2 in the main text for definitions of axes. In allopatry, linear slopes for dominant and subordinate species did not differ in developed, in-transition, or developing countries (MCMCglmm, difference in linear slopes, $P_{MCMC} > 0.05$). In sympatry, linear slopes for dominant and subordinate species differed in developed ($P_{MCMC} < 0.0001$) and in-transition countries ($P_{MCMC} < 0.0001$), but less so in developing countries ($P_{MCMC} < 0.0001$) and in-transition N = 160, developing N = 633; sympatry: developed N = 821, in transition N = 182, developing N = 339. See *Supplementary Methods and Results* for statistical results.

Fig. S14. Variation in the presence versus absence of urban-breeding dominant and subordinate bird species across levels of economic development. Economic development categorization follows country-level designations of the United Nations from 2014. Solid lines (red = dominant species; blue = subordinate species) are loess splines (span = 1.5) with 95% confidence limits shown in gray. Point size reflects the number of overlapping points (see legend at top right of graphs). See caption of Fig. 2 in the main text for definitions of axes. In allopatry, linear slopes for dominant and subordinate species did not differ in developed, in-transition, or developing countries (Categorical MCMCglmm, difference in linear slopes, $P_{MCMC} > 0.10$). In sympatry, linear slopes for dominant and subordinate species differed in developed ($P_{MCMC} < 0.0001$) and in-transition countries ($P_{MCMC} = 0.035$), but not developing countries ($P_{MCMC} = 0.37$). Sample sizes, allopatry: developed N = 1,803, in transition N = 303, developing N = 1,329; sympatry: developed N = 1,184, in transition N = 370, developing N = 639. See Supplementary Methods and Results for statistical results.

Table S1. Results and model performance before and after accounting for phylogeny in our analyses¹. We accounted for phylogeny in two ways: (A) incorporating the phylogeny of our focal species into the analysis as a random factor, and (B) including taxonomic order as a fixed factor in a saturated model with dominance, urban-breeding propensity, and sympatry as other predictors.

(A) Phylogeny as a Random Factor	Saturated model	3-way interaction ² removed	3-way interaction ² contribution
	DIC ³	DIC ³	Δ DIC ⁴
Main effect ⁵ (phylogeny not included as a random factor)	7,823.1	7,878.0	-54.90
Main effect ⁵ (phylogeny included as a random factor)	7,817.6	7,871.8	-54.24
		4-way	4-way
(B) Taxonomic Order as a Fixed Factor	Saturated model	interaction ⁶	interaction ⁶
	(with taxonomic order)	removed	contribution
	DIC ³	DIC ³	Δ DIC ⁴
Taxonomic order (all orders included)	7,802.4	7,795.2	+7.24
Taxonomic order (orders with <3 species pairs removed)	7,207.0	7,200.2	+6.73

¹ response variable = breeding occurrence value for each species in each city = average across observers, weighted by the observer's self-reported ability (N = 5,618); random factor = phylogenetically-independent species pair

² 3-way interaction term = dominance : urban-breeding propensity : sympatry

³ DIC = Deviance Information Criterion; lower values denote better model performance

⁴ negative values denote an improvement on the model

⁵ main effect: the effect of dominance depended on urban-breeding propensity and sympatry (3-way interaction term)

⁶ 4-way interaction term = dominance : urban-breeding propensity : sympatry : taxonomic order

Table S2. Results and model performance after accounting for geographic variation across continents¹. We accounted for geographic variation by including continent as a fixed factor in a saturated model with dominance, urban-breeding propensity, and sympatry as other predictors. (*A*) Model performance when continent was included as an interaction term with our main effects (saturated model), and when the 4-way interaction term was removed. (*B*) Estimates (slopes for subordinate species relative to dominants) and P_{MCMC} values for tests of the difference in slopes between dominant and subordinate species in allopatry (Fig. S3) and sympatry (Fig. S4) for each continent.

(A) Continent as a Fixed Factor ²	Saturated model	4-way interaction ³	4-way interaction ³			
	(with continent)	removed	contribution	_		
		DIC ⁴	Δ DIC ⁵			
Continent	7,755.5	7,775.5	-20.02			
(B) Model Results with Continent Included (Saturated Model)	Linear componen	t		Quadratic c	omponent	
	Estimate ⁶	95% confidence intervals	Р _{МСМС}	Estimate ⁶	95% confidence intervals	Р _{МСМС}
Allopatry						
Africa	9.72	+1.96, +17.43	0.013	5.05	-3.39, +13.62	0.25
Asia	3.95	-2.15, +9.93	0.20	3.69	-2.30, +9.64	0.23
Australia	-1.16	-19.67, +18.60	0.90	-9.29	-34.02, +15.75	0.47
Europe	-3 83	-8 79 +1 12	0.13	-0.70	-5.40.+4.05	0.77
1	5.05	0.75, 1112	0110		0110) + 1100	
North America	1.61	-3.09, +6.26	0.49	-1.59	-6.35, +3.32	0.52

Sympatry

Africa	0.18	-17.81, +18.39	0.98	5.26	-7.82, +17.78	0.42
Asia	2.22	-5.65, +10.27	0.58	1.67	-6.44, +9.74	0.69
Australia	-13.33	-31.95, +5.90	0.17	-18.96	-41.55, +2.91	0.096
Europe	-20.28	-25.16, -15.25	< 0.0001	8.20	+3.35, +12.91	0.0009
North America	-27.50	-33.91, -20.74	< 0.0001	-9.90	-15.73 <i>,</i> -4.03	0.0011
South America	-0.96	-14.63, +12.86	0.89	19.34	+3.50, +34.36	0.015

¹ response variable = breeding occurrence value for each species in each city = average across observers, weighted by the observer's self-reported ability (N = 5,618); random factor = phylogenetically-independent species pair

² main effect: the effect of dominance depended on urban-breeding propensity and sympatry (3-way interaction term)

³ 4-way interaction term = dominance : urban-breeding propensity : sympatry : continent

⁴ DIC = Deviance Information Criterion; lower values denote better model performance

⁵ negative values denote an improvement on the model

⁶ estimate describes the slope of the subordinate relative to the dominant, where x=urban-breeding propensity and y=breeding occurrence

Table S3. Comparisons of model performance for candidate factors to explain geographic variation in our main result¹. Each candidate factor was included as a predictor variable in saturated models with dominance, urban-breeding propensity, and sympatry. The influence of candidate factors on our main result was assessed by comparing saturated models with the candidate factor to the saturated model with continent identity, as well as by dropping the 4-way interaction and comparing the saturated model with the 4-way interaction removed. We used the Deviance Information Criterion values (DIC) to assess model performance for all comparisons. We also assessed the influence of candidate factors in models by dropping them completely from the model, and comparing DIC between the saturated model and the model with the candidate factor removed.

		4-way	4-way	
	Saturated model	interaction	interaction	Candidate factor
Candidate Factor ²	(with factor)	removed	contribution	contribution ³
	DIC ⁴	DIC ⁴	Δ DIC ⁵	Δ DIC ⁵
Continent	7,755.5	7,775.5	-20.0	-67.5
Continent (with full phylogeny added as a random effect)	7,748.5	7,768.4	-19.9	-74.5
Economic development (country)	7,731.2	7,743.1	-11.9	-91.8
Continent peripheral to where dominance data collected?	7,767.1	7,765.7	+1.5	-55.9
Average annual temperature (degrees C) (city)	7,770.5	7,775.0	-4.5	-52.5
Absolute latitude (decimal degrees) (city)	7,772.8	7,775.2	-2.4	-50.2
Number of species (city)	7,788.2	7,792.4	-4.2	-34.8
Taxonomic order	7,802.1	7,795.2	+6.9	-20.9
Net primary productivity (g/m²/year) (city)	7,810.4	7,811.3	-0.9	-12.6
Number of sympatric, urban-adapted species (city)	7,814.0	7,812.3	+1.7	-9.0
Number of observers (city)	7,814.1	7,812.8	+1.3	-8.9
Continent peripheral to species range centroid?	7,826.4	7,825.3	+1.0	+3.4
Human population size (city)	7,827.3	7,828.3	-1.1	+4.2
Average ability of observers (city)	7,829.9	7,830.6	-0.7	+6.9

¹ response variable = breeding occurrence value for each species in each city = average across observers, weighted by the observer's self-reported ability (N = 5,618); random factor = phylogenetically-independent species pair

² see Methods for definitions and sources of data for candidate factors

³ DIC for the models with only dominance, propensity to breed in urban habitats, and sympatry was 7,823

⁴ DIC = Deviance Information Criterion; lower values denote better model performance

⁵ negative values denote an improvement to the model

Table S4. Results and model performance after accounting for a country's level of economic development¹. Economic development categorization follows country-level designations of the United Nations from 2014. We included economic development as a fixed factor in a saturated model with dominance, urban-breeding propensity, and sympatry as other predictors. Table provides estimates and P_{MCMC} values for tests of the difference in slopes between dominant and subordinate species in allopatry and sympatry (Fig. 3).

Economic Development ²	Linear component			Quadratic comp		
	Estimate ³	95% confidence intervals	Рмсмс	Estimate ³	95% confidence intervals	Р _{мсмс}
Allopatry						
Developed	-1.04	-4.62, +2.45	0.56	-1.43	-5.06, +2.19	0.44
In transition	-9.42	-18.89 <i>,</i> -0.002	0.051	-4.58	-13.17, +4.00	0.30
Developing	3.23	-0.64, +7.12	0.10	3.05	-0.90, +6.93	0.13
Sympatry						
Developed	-22.01	-26.19, -17.61	< 0.0001	-1.88	-5.99, +2.26	0.37
In transition	-14.78	-22.00, -7.63	< 0.0001	7.63	+0.53, +14.48	0.034
Developing	-0.40	-6.18, +5.47	0.89	6.79	+0.79, +12.75	0.026

¹ response variable = breeding occurrence value for each species in each city = average across observers, weighted by the observer's self-reported ability (N = 5,618); random factor = phylogenetically-independent species pair

² economically developed countries, countries in transition between developing and developed economies, and economically developing countries

³ estimate describes the slope of the subordinate relative to the dominant, where x=urban-breeding propensity and y=breeding occurrence

Table S5. Comparisons of model performance for our main model (A), and for candidate factors to explain geographic variation in our main result (B), using a generalized least squares approach that incorporates spatial autocorrelation¹. (A) We tested if the effects of dominance on breeding occurrence varied as a function of urban-breeding propensity and sympatry by dropping the 3way interaction from the model and comparing model performance using Akaike Information Criterion values (AIC). (B) Each candidate factor was included as a predictor variable in saturated models with dominance, urban-breeding propensity, and sympatry. The influence of candidate factors on our main result was assessed by dropping the 4-way interaction and comparing AIC values between the saturated model and the model with the 4-way interaction removed. We also assessed the influence of candidate factors by dropping them completely from the model, and comparing AIC values between the saturated model and the model with the candidate factor removed. The model with economic development (bold) was the only factor that improved model fit in an interaction with the main effects.

(A) Main Analysis	Saturated model	3-way interaction removed	3-way interaction contribution	
	AIC ²	AIC ²	Δ AIC ³	
Model (dominance * sympatry * urban-breeding propensity)	7,061.3	7,073.8	-12.5	
		4-way	4-way	Candadate
_	Saturated model	Interaction	Interaction	Tactor
(B) Test of Candidate Factors ⁴	(with factor)	removed	contribution	contribution ⁵
	AIC ²	AIC ²	Δ AIC ³	Δ AIC ³
Generalised least squares analysis				
Continent	7,102.0	7,101.6	+0.4	+40.7
Economic development (country)	7,009.5	7,012.4	-2.9	-51.8
Continent peripheral to where dominance data collected?	7,064.7	7,051.5	+13.2	+3.4
Average annual temperature (degrees C) (city)	7,055.0	7,042.7	+12.3	-6.3

Absolute latitude (decimal degrees) (city)	7,053.5	7,050.9	+2.6	-7.8
Number of species (city)	7,053.7	7,044.2	+9.5	-7.6
Taxonomic order ⁶	na	na	na	na
Net primary productivity (g/m/year) (city)	7,068.1	7,057.9	+10.2	+6.8
Number of sympatric, urban-adapted species (city)	7,070.4	7,057.6	+12.8	+9.1
Number of observers (city)	6,935.4	6,928.6	+6.8	-125.9
Continent peripheral to species range centroid?	7,084.8	7,072.0	+12.8	+23.5
Human population size (city)	7,066.9	7,055.2	+11.7	+5.6
Average ability of observers (city)	7,068.3	7,059.0	+9.3	+7.0

¹ response variable = breeding occurrence value for each species in each city = average across observers, weighted by the observer's self-reported ability (N = 5,618)

² AIC = Akaike Information Criterion; lower values denote better model performance

³ negative values denote an improvement to the model

⁴ see Methods for definitions and sources of data for candidate factors

⁵ AIC for the models with only dominance, propensity to breed in urban habitats, and sympatry was 7,061

⁶ models with taxonomic order resulted in singularities and could not be run

Table S6. Diagnostic values for assessing model fit for our main MCMCglmm analyses. Values for (*A*) our main model with fixed factors dominance*sympatry*urban-breeding propensity, and (*B*) our model with economic development (i.e., dominance*sympatry*urban-breeding propensity*economic development).

	Upper confidence interval	Effective	Geweke's
Factor	for Gelman and Rubin's	sample	Convergence
	Convergence Diagnostic	size	Diagnostic
(A) Main analysis			
Intercept (dominant, allopatric)	1	36,782	1.03
Dominance (subordinate)	1	40,000	0.22
Sympatry (sympatric)	1	38,824	-0.42
Urban-breeding propensity	1	40,000	0.81
Dominance : sympatry	1	40,000	-1.01
Dominance : urban-breeding propensity	1	40,000	0.65
Sympatry : urban-breeding propensity	1	40,000	-1.12
Dominance: sympatry : urban-breeding propensity	1	40,624	0.04
Multivariate potential scale reduction factor	1	na	na
Species pair (random)	na	1,818	na
Units (random)	na	40,000	na
(B) Economic development analysis ¹			
Intercept (dominant, allopatric, developed)	1	40,000	0.87
Dominance (subordinate)	1	40,000	0.08
Sympatry (sympatric)	1	40,000	-0.73
Economic development (in transition)	1	40,000	-1.30
Economic development (developing)	1	40,000	-0.58

Urban-breeding propensity (linear)	1	38,890	0.09
Urban-breeding propensity (quadratic)	1	40,000	-0.27
Dominance : sympatry	1	40,000	0.45
Dominance : economic development (in transition)	1	40,000	0.13
Dominance : economic development (developing)	1	40,000	0.33
Dominance : urban-breeding propensity (linear)	1	40,000	-0.57
Dominance : urban-breeding propensity (quadratic)	1	40,000	-0.60
Sympatry : economic development (in transition)	1	40,000	0.48
Sympatry : economic development (developing)	1	40,000	0.42
Sympatry : urban-breeding propensity (linear)	1	40,000	1.35
Sympatry : urban-breeding propensity (quadratic)	1	40,000	0.19
Economic development (in transition) : urban-breeding propensity			
(linear)	1	39,427	1.77
Economic development (in transition) : urban-breeding propensity			
(quadratic)	1	40,903	2.79
Economic development (developing) : urban-breeding propensity			
(linear)	1	40,000	-1.65
Economic development (developing) : urban-breeding propensity			
(quadratic)	1	39,344	1.17
Dominance : sympatry : urban-breeding propensity (linear)	1	40,000	0.33
Dominance : sympatry : urban-breeding propensity (quadratic)	1	42,209	1.57
Dominance : economic development (in transition) : urban-breeding			
propensity (linear)	1	38,879	-0.53
Dominance : economic development (in transition) : urban-breeding			
propensity (quadratic)	1	40,631	-2.54
Dominance : economic development (developing) : urban-breeding			
propensity (linear)	1	40,000	2.09
Dominance : economic development (developing) : urban-breeding			
propensity (quadratic)	1	40,000	-0.46
Dominance : sympatry : economic development (in transition)	1	40,000	0.56

Dominance : sympatry : economic development (developing)	1	40,000	-0.46
Sympatry : economic development (in transition) : urban-breeding			
propensity (linear)	1	40,000	-1.05
Sympatry : economic development (in transition) : urban-breeding			
propensity (quadratic)	1	40,000	-2.35
Sympatry : economic development (developing) : urban-breeding			
propensity (linear)	1	40,000	0.48
Sympatry : economic development (developing) : urban-breeding			
propensity (quadratic)	1	41,348	-0.29
Dominance : sympatry : economic development (in transition) : urban-			
breeding propensity (linear)	1	38,048	-0.32
Dominance : sympatry : economic development (in transition) : urban-			
breeding propensity (quadratic)	1	41,190	1.67
Dominance : sympatry : economic development (developing) : urban-			
breeding propensity (linear)	1	40,000	-1.68
Dominance : sympatry : economic development (developing) : urban-			
breeding propensity (quadratic)	1	40,000	-0.75
Multivariate potential scale reduction factor	1	na	na
······································	_		
Species pair (random)	na	1 705	na
Units (random)	110	20.221	na na
Units (random)	na	39,331	na

¹ includes orthogonal polynomial for urban-breeding propensity

Additional Acknowledgments

We are grateful to the many people who helped with data collection for this study, by completing surveys, providing translations, and sharing information about our study with friends and colleagues. In addition to those acknowledged in the main text, we would like to thank A. Ruiz Leal, Aasheesh Pittie, Abhijit Menon-Sen, Abubakr Mohammad, Ada Echevarria, Adrián Antúnez, Adrián Azpiroz, Ady Kristanto, Agustín Zarco, Alberto Macias, Alejandro Perlaza Gamboa, Aleksandra Pepkowska-Król, Alena Klvaňová, Alexander Lees, Alexander Mitschke, Alexander Ponomarenko, Alexandre Vintchevski, Allen T. Chartier, Amanda Guercio, Anand Pendharkar, Anand Sundaram, André Vielma Mansilla, Andrea Corso, Andrew de Blocg, Andrew Hart, Andrey Kovalenko, Andris Dekants, Andriy Bokotey, Andy Engilis, Andy Mabbett, Andy Musgrove, Anelisa Ferreira de Almeida Magalhães, Angel Guardiola Gómez, April Olson, Arery Muñoz, Armenian Society for the Protection of Birds, Arne Jent Lesterhuis, Ashanti African Tours, Ashok Kumar Sharma, Aves de la Laguna, B.G. Sloan, Benoit Maire, Berinaldo Bueno, Bill Rowe, Birding Ecotours (Johannesberg), Bishwaranjan Mohanty, Blaine Carnes, Bob Kortright, Bram Piot, Brent Ortego, Bruce Di Labio, Bruno Portier, Brvant Olsen, Bulgarian Society for the Protection of Birds - BirdLife Bulgaria, C. Can Bilgin, Cameron Ghalambor, Carles Oliver, Carolina Prudente de Oliveira, Carolina Tosta, Chan-Ryul Park, Chris Lotz, Christian Olaciregui, Christine Southwick, Claire Gallagher, Clive Mann, Craig Brelsford, Cristian Mihai, Csaba Lendvai, D. Caron (Manchester), Dan Potts, Dani Dragan, Daniel Almiron, Daniel Cadena, Daniel Dias, Daniel Martínez Castaño, Daniel Teodoro Esser Neto, Danilo Etechebere, Darryl Jones, Dave Brown, David Ascanio, David Muth, David Warrington, Dennis Paulson, Derek Pomeroy, Derek Schuurman, Dhuha Abdul-Hamid Al-Hashemi, Diana Flora Padrón Novoa, Dick Hoffman, Diego F. Cisneros-Heredia, Dolores Hidalgo, Dongming Li, Doug Knapp, Dragan Simic, Dustin Wang, Eduardo R. Alexandrino, Efrén Hernández, Ellen Blackstone, Emily Rondel, Emin Yogurtcuoglu, Emmanuel M. Loqueh, Eran Tomer, Eric Gyllenhaal, Erik Enbody, Ernesto Ruelas Inzunza. Fares Khoury, Fataï Aina, Fernando Angulo Pratolongo, Florin Chirila, Francisco A. García Castellanos, Francisco Javier Almansa Paredes, Francisco Javier García-Gans, Francisco Robledano, François Shaffer, Frank Rheindt, Frank Willems, Frédéric Dupuy, Fulvio Fraticelli, Fundación Miguel Lillo (Argentina), Gang Wang, Ganjar Cahyadi, Geert Groot Koerkamp, Geoff Carpentier, Geoffrey Williamson, Georgann Schmalz, George Eshiamwata, Gerard Gorman, Gilberto Flores-Walter, Girish Punjabi, Giuseppe Bogliani, Glenn Ousset, Gombobaatar Sundey, Gou Jun, Graham Bundy, Greg Hanisek, Greg Neise, Gus Yaki, Gustavo Gonsioroski, Hernan Perlaza, Hiroshi Hashimoto, Hopeland (Chennai), Hugo Rainey, Hugo Rodríguez-García, Iain Fleming, Ian Harrison, Ian Woodward, Ilhami Kiziroglu, Ion Grosu, İhsan Eroğlu, Ivana Schoepf, Jacinto Martinez, Jack Park, Jakarta Birdwatcher's Society, January Nicholaus Ching'enva, Jay Kaplan, Jeanette Frazier, Jeffrey Sanders, Jeisson Zamudio, Jennifer Backo, Jenny Ouyang, Jens Hering, Jesper Johannes Madsen, Jevgeni Shergalin, Jim Danzenbaker, Jin Hwan Choi, Jip Louwe Kooijmans, Jo Ann MacKenzie, Joachim Weiss, Joan Carles Boncompte, João Henrique Dittmar Filho, João Menezes, Joël Coutu, John Miskell, Jonatas Rocha, Joost Brouwer, Josmar Esteban, Marquez Alvarado, Juan Freile Ortiz, Juan Klavins, Juan Pérez-García, Julia Pierini, Julie A. Craves, Julio Amaro Betto Monsalvo, Justin Watts, Kai Gauger, Karlla Barbosa, Kate Wallace, Kazimierz Walasz, Keith Evans, Keith Russell, Kelley

McHenry, Kenyon Moon, Kerem Ali Boyla, Kim Blomme, Kresimir Mikulic, Kun-Hai Lin, Laura Borse, Laura Peskin, Leander Khil, Lee-Lien Wang, Leo Campagna, Leonardo Victor, Levon Harutyunyan, Li Jianping, Lisandro Moran, Lubomir Peske, Luc Blanchette, Lucía Belén Vera Dominguez, Luciano Ruggieri: EBN Italia, Lucienne Wilmé, Luis Martinez-Mena, Luis Muñoz, Luiz Trinchão, Lynne Freeman, M. Elisa Fanjul, M. Isabel Gómez, M. Valeria Martínez, Maciej Luniak, Manuel Andres Sanchez Martinez, Marc Nollet, Marcio Efe, Marina Nova, Marine Le Louarn, Mario Cohn-Haft, Maristela Benites, Mark Bonta, Mark Cranford, Mark Jason Villa, Mark Walters, Martin O'Brien, Martin Weggler, Mary Crickmore, Masahiko Hibino, Mauricio Ugarte, Mauro Guimarães Diniz, Maxime Zucca, Menno Schilthuizen, Michael Mills, Michel Bertrand, Miguel Angel Aponte Justiniano, Miguel Matta, Mike Clarke, Mike Houck, Mikhail Banik, Mikhail Markovets, Momoh Sesay, Mongolian Ornithological Society, Moses Massah, Mudhafar Salim, Muhammad Igbal, Muntasir Akash, Naim Beg, Namassiyayan L, Natali Vilic, Natalia Kolyakina, Natalja Reshetkova, Niall Keogh, Nick Brickle, Nick Fry, Nick Upton, Nik Borrow, Numerov A. (Voronezh), Oleksandr Ruchko, Olga Babushkina, Oliver Burrus, Olivier Barden, Ondřej Sedláček, Orlando J. Torres, Oscar Gonzalez, Oscar Humberto Marín Gómez, Pablo Cerqueira, Pablo Eguia, Patrick Bergier, Paul Isenmann, Paulo Boute, Pedro Sánchez Ruiz, Peng Cui, Petar Dilchev, Petar Iankov, Pete Leonard, Peter Turner, Peter Yaukey, Philippe Clergeau, Phoua Vang, Pier Francesco Pandolfi de Rinaldis, Pierre-Yves Henry, Pilar Carbó Ramírez, Prashanth N S, Quentin Brown, Rachel Thiel, Rafael Sánchez, Rainer Altenkamp, Randy Shonkwiler, Rapa Lorenzo, Rebecca Calisi, Renato Gaban Lima, Rene de Roland Lily Arison, Riadh Moulaï, Ricardo Gagliardi, Richard Hoath, Rob P. Clay, Rob Parsons, Robert Guth, Robert Janssen, Roberto Thomson, Rodolfo Marliani, Rolf Nessing, Rollin Deas, Roman Martin, Ron Demey, Ron Johnstone, Rubén Darío Palacio, Ruben Saey, Rudy Gelis, Ruslan Urazaliyev, Sabina Caula, San Luis de la Paz, Sasha Kitaysky, Savam Chowdhury, Sean Kelly, Seejan (Earlybirdbirders, Nepal), Sergej A. Soloviev, Sergio Chaparro Herrera, Sergio Gabriel Sanchez, Sergio Rios, Shimada Akihide, Shuping Zhang, Shupova Tatiana, Sidiq Pambudi, Sidnei Dantas, Simon Liao, Somoyita Sur, Stanislav Viter, Stefan Brehme, Stefan Hage, Stefano Zanotto, Stephen Ambrose, Steve Goodman, Stewart Wechsler, Subramanian Sankar, Szalai Kornél, Taku Awa II, Tatiana Guerrero Vallejos, Terry Pavletic, Terry Townshend, Terry Whittam, Thierry Helsens, Thomas Giglio, Thomas Latt, Tim McCarthy, Tiwonge Gawa, Togarasei Fakarayi, Tom Ledford, Tommy P. Pedersen, Tony Russell, Tran Long, Tyler Hoar, Vasily Pchelintsev, Vedran Lucić, Vicente Giménez, Victor Cueto, Vikrant Choursiya, W. Hum, Wand Ali, Washington Wachira, Wen-Loung Lin, Willem Van Den Bossche, Wouter Faveyts, Yongjie Wu, Yves Gauthier, Yvonne Pigott, Zheng Guang-Mei, Zülfü Ferecli, and many anonymous respondents.

References

- 1. Paradis E, *et al.* (2016) *ape*: Analyses of phylogenetics and evolution. R package version 3.5.
- 2. Gill F, Donsker D (2016) *IOC World Bird List (v 6.2)*, http://www.worldbirdnames.org/.
- 3. Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. *Nature* 491:444-448.
- 4. Wolf JB, *et al.* (2010) Nucleotide divergence vs. gene expression differentiation: comparative transcriptome sequencing in natural isolates from the carrion crow and its hybrid zone with the hooded crow. *Mol Ecol* 19:162-175.
- 5. Bjornstad ON (2018) *ncf*: Spatial nonparametric covariance functions. R package version 1.2-1.
- 6. Hadfield J (2011) https://stat.ethz.ch/pipermail/r-sig-mixed-models/2011q2/016366.html.
- 7. Pinheiro J, *et al.* (2016) *nlme*: Linear and nonlinear mixed effects models. R package version 3.1-128.
- 8. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) *Mixed Effects Models and Extensions in Ecology with R* (Springer, New York).

Continent ¹	Country	City	Latitude	Longitude	Human	Number of
			(degrees)	(degrees)	Population ²	completed surveys
Africa	Algeria	Algiers	36.75	3.06	1,569,897	1
Africa	Angola	Luanda	-8.84	13.29	2,776,168	1
Africa	Benin	Cotonou	6.37	2.39	780,000	1
Africa	Cameroon	Yaoundé	3.85	11.50	1,817,524	2
Africa	Côte d'Ivoire	Abidjan	5.36	-4.01	1,929,079	1
Africa	Democratic Republic of the Congo	Kinshasa	-4.39	15.97	7,785,965	1
Africa	Egypt	Cairo	30.04	31.24	7,771,617	1
Africa	Ethiopia	Addis Ababa	8.98	38.76	2,757,729	1
Africa	Ghana	Accra	5.60	-0.19	1,594,419	1
Africa	Ghana	Kumasi	6.67	-1.62	1,730,249	1
Africa	Guinea	Conakry	9.64	-13.58	1,091,500	1
Africa	Kenya	Nairobi	-1.29	36.82	3,133,518	2
Africa	Liberia	Monrovia	6.29	-10.76	970,824	1
Africa	Libya	Tripoli	32.89	13.19	1,150,989	2
Africa	Madagascar	Antananarivo	-18.88	47.51	1,300,000	2
Africa	Malawi	Lilongwe	-13.96	33.77	1,087,917	2
Africa	Mali	Bamako	12.64	-8.00	1,810,366	1
Africa	Morocco	Casablanca	33.57	-7.59	3,144,909	1
Africa	Morocco	Fes	34.02	-5.01	964,891	1
Africa	Morocco	Marrakesh	31.63	-7.98	839,296	2
Africa	Niger	Niamey	13.51	2.13	774,235	1
Africa	Nigeria	Ibadan	7.38	3.95	1,835,300	1
Africa	Senegal	Dakar	14.76	-17.37	1,056,009	1

List of the cities for which we obtained breeding bird occurrence data used in this study (*N* = 260 cities).

Africa	Sierra Leone	Freetown	8.47	-13.23	802,639	1
Africa	Somalia	Mogadishu	2.05	45.32	2,587,183	1
Africa	South Africa	Cape Town	-33.92	18.42	987,007	3
Africa	South Africa	Port Elizabeth	-33.71	25.52	775,255	1
Africa	South Africa	Soweto / Johannesberg	-26.25	27.85	904,165	1
Africa	Sudan	Khartoum	15.50	32.56	1,974,647	2
Africa	Tanzania	Dar es Salaam	-6.79	39.21	1,360,850	1
Africa	Uganda	Kampala	0.35	32.58	1,516,210	1
Africa	Zambia	Lusaka	-15.39	28.32	1,747,152	1
Africa	Zimbabwe	Harare	-17.83	31.03	1,485,231	1
Asia	Afghanistan	Kabul	34.56	69.21	3,043,532	2
Asia	Armenia	Yerevan	40.18	44.50	1,060,138	2
Asia	Azerbaijan	Baku	40.41	49.87	2,166,355	3
Asia	Bangladesh	Chittagong	22.35	91.81	2,023,489	2
Asia	Bangladesh	Dhaka	23.81	90.41	5,333,571	2
Asia	Bangladesh	Khulna	22.85	89.54	770,498	2
Asia	Cambodia	Phnom Penh	11.54	104.89	1,573,544	3
Asia	China	Beijing	39.90	116.41	11,509,595	3
Asia	China	Chengdu	30.57	104.07	4,333,541	1
Asia	China	Shanghai	31.23	121.47	14,348,535	2
Asia	China	Shijiazhuang	38.04	114.51	1,969,975	2
Asia	China	Ürümqi	43.83	87.62	1,753,298	1
Asia	China	Yantai	37.46	121.45	1,724,404	1
Asia	China, Hong Kong SAR	Hong Kong	22.40	114.11	7,241,700	1
Asia	Georgia	Tbilisi	41.72	44.83	1,172,700	1
Asia	India	Bangalore	12.97	77.59	5,701,446	2
Asia	India	Chennai (Madras)	13.08	80.27	6,560,242	3
Asia	India	Delhi	28.61	77.21	12,877,470	1
Asia	India	Durg-Bhilai Nagar	21.19	81.35	927,864	1

Asia	India	Guwahati	26.14	91.74	818,809	1
Asia	India	Hyderabad	17.39	78.49	5,742,036	1
Asia	India	Jaipur	26.91	75.79	2,322,575	1
Asia	India	Kanpur	26.45	80.33	2,715,555	2
Asia	India	Kozhikode	11.26	75.78	880,247	1
Asia	India	Ludhiana	30.90	75.86	1,398,467	1
Asia	India	Madurai	9.93	78.12	1,203,095	1
Asia	India	Mumbai (Bombay)	19.08	72.88	16,434,386	5
Asia	India	Mysore	12.30	76.64	799,228	1
Asia	India	Nagpur	21.15	79.09	2,129,500	1
Asia	India	Pune	18.52	73.86	3,760,636	4
Asia	India	Salem	11.66	78.15	751,438	1
Asia	Indonesia	Bandung	-6.92	107.62	2,394,873	2
Asia	Indonesia	Jakarta	-6.17	106.82	9,607,787	1
Asia	Indonesia	Palembang	-2.98	104.78	1,455,284	1
Asia	Indonesia	Surabaya	-7.26	112.75	2,765,487	1
Asia	Iraq	Baghdad	33.31	44.36	3,841,268	2
Asia	Japan	Hiroshima	34.39	132.46	1,173,843	1
Asia	Japan	Nagoya	35.18	136.91	2,263,894	2
Asia	Japan	Osaka	34.69	135.50	2,665,314	1
Asia	Japan	Sapporo	43.06	141.35	1,913,545	1
Asia	Japan	Sendai	38.27	140.87	1,045,986	2
Asia	Jordan	Amman	31.96	35.95	1,055,262	3
Asia	Kazakhstan	Almaty	43.22	76.85	1,507,509	2
Asia	Kazakhstan	Astana	51.16	71.47	814,435	3
Asia	Malaysia	Kuala Lumpur	3.14	101.69	1,588,750	1
Asia	Mongolia	Ulaanbaatar	47.89	106.91	1,367,508	1
Asia	Myanmar	Yangon	16.87	96.20	5,209,541	1
Asia	Nepal	Kathmandu	27.72	85.32	1,003,285	2

Asia	Oman	Muscat	23.59	58.41	797,000	1
Asia	Pakistan	Karachi	24.86	67.01	9,339,023	1
Asia	Philippines	Cebu	10.32	123.89	866,171	3
Asia	Philippines	Quezon City / Manila	14.68	121.04	2,761,720	3
Asia	Qatar	Doha	25.29	51.53	796,947	1
Asia	Republic of Korea	Seoul	37.57	126.98	9,860,372	8
Asia	Russian Federation	Ekaterinburg	56.84	60.61	1,420,285	1
Asia	Saudi Arabia	Jiddah	21.29	39.24	2,801,481	1
Asia	Singapore	Singapore	1.35	103.82	5,469,724	5
Asia	Syria	Damascus	33.51	36.28	1,569,394	2
Asia	Syria	Homs	34.73	36.71	775,404	2
Asia	Taiwan	Kaohsiung City	22.63	120.30	1,519,711	1
Asia	Taiwan	Taichung	24.15	120.67	1,040,725	3
Asia	Taiwan	Таіреі	25.03	121.57	7,871,900	2
Asia	Thailand	Bangkok	13.76	100.50	8,305,218	2
Asia	United Arab Emirates	Dubai	25.20	55.27	1,137,347	2
Asia	Vietnam	Ho Chi Minh City	10.82	106.63	3,467,331	1
Australia	Australia	Adelaide	-34.93	138.60	1,263,888	1
Australia	Australia	Brisbane	-27.47	153.02	2,143,121	2
Australia	Australia	Melbourne	-37.81	144.96	4,181,021	2
Australia	Australia	Perth	-31.95	115.86	1,901,582	3
Australia	Australia	Sydney	-33.87	151.21	4,373,433	1
Australia	New Zealand	Auckland	-36.85	174.76	1,526,900	1
Europe	Austria	Wien	48.21	16.37	1,766,746	3
Europe	Belarus	Minsk	53.90	27.56	1,911,433	1
Europe	Belgium	Bruxelles (Brussels)	50.85	4.35	1,561,395	2
Europe	Bulgaria	Sofia	42.70	23.32	1,210,820	2
Europe	Croatia	Zagreb	45.82	15.98	790,017	2
Europe	Czech Republic	Praha	50.08	14.44	1,244,762	3

Europe Denmark Copenhagen 55.68 12.57 1,153,615 Europe France Bordeaux 44.84 -0.58 843,425 Europe France Marseille 43.30 5.37 1,559,789 Europe France Paris 48.86 2.35 10,460,118 Europe Germany Berlin 52.52 13.41 3,421,829 Europe Germany Hamburg 53.55 9.99 1,746,342 Europe Germany München (Munich) 48.14 11.58 1,407,836 Europe Greece Athinai 37.98 23.73 789,166 Europe Ireland Dublin 53.35 6.62 1,110,627 Europe Italy Napoli 40.85 14.27 974,082 Europe Italy Napoli 40.85 14.27 974,082 Europe Italy Roma 41.09 1,203,135 Europe 1,304,329 Europe							
Europe France Bordeaux 44.84 -0.58 843,425 Europe France Marseille 43.30 5.37 1,559,789 Europe France Paris 48.86 2.35 10,460,118 Europe Germany Berlin 53.55 9.99 1,746,342 Europe Germany Hamburg 53.55 9.99 1,746,342 Europe Germany München (Munich) 48.14 11.58 1,407,836 Europe Greece Athinai 37.98 23.73 789,166 Europe Ingary Budapest 47.50 19.04 2,548,428 Europe Ireland Dublin 53.35 -6.26 1,110,627 Europe Italy Milano 43.67 9.19 1,293,135 Europe Italy Napoli 40.85 14.27 974,082 Europe Italy Roma 41.90 12.50 2,751,082 Europe Italy T	Europe	Denmark	Copenhagen	55.68	12.57	1,153,615	2
EuropeFranceMarseille43.305.371,559,789EuropeFranceParis48.862.3510,460,118EuropeGermanyBerlin52.5213.413,421,829EuropeGermanyMünchen (Munich)48.1411.581,407,836EuropeGermanyMünchen (Munich)48.1411.581,407,836EuropeGreceAthinai37.9823.73789,166EuropeIngaryBudapest47.5019.042,548,428EuropeIrelandDublin53.35-6.261,110,627EuropeItalyMilano45.479.191,293,135EuropeItalyNapoli48.5479.74,082EuropeItalyRoma41.9012.502,751,082EuropeItalyRoma41.9012.502,751,082EuropeItalyRoma45.077.69887,114EuropeItalyRoma52.374.901,068,724EuropePolandKraków50.6619.95759,131EuropePolandKraków52.3321.011,711,324EuropeRomaniaBucuresti44.4326.101,912,515EuropeRomaniaBucuresti44.4326.101,912,515EuropeRussian FederationKresburg59.3930.344,990,602EuropeRussian FederationVoronezh51.6839.21997,447Europe	Europe	France	Bordeaux	44.84	-0.58	843,425	1
EuropeFranceParis48.862.3510,460,118EuropeGermanyBerlin52.5213.413,421,829EuropeGermanyHamburg53.559.991,746,342EuropeGermanyMünchen (Munich)48.1411.581,407,836EuropeGreeceAthinai37.9823.73789,166EuropeHungaryBudapest47.5019.042,548,428EuropeIrelandDublin53.35-6.261,110,627EuropeItalyMilano45.479.191,293,135EuropeItalyNapoli40.8514.27974,082EuropeItalyRoma41.9012.502,751,082EuropeItalyRoma45.077.69887,114EuropeItalyRoma52.374.901,068,724EuropeNetherlandsAmsterdam52.374.901,068,724EuropePolandKraków50.0619.95759,131EuropePolandKoáva51.7619.46756,666EuropePolandKoáva55.7637.6211,918,057EuropeRomaiaBucuresti44.4326.101,912,515EuropeRussian FederationSt. Petersburg59.9330.344,990,602EuropeRussian FederationVoronezh51.6839.21997,447EuropeRussian FederationVoronezh51.6839.21997,447 </td <td>Europe</td> <td>France</td> <td>Marseille</td> <td>43.30</td> <td>5.37</td> <td>1,559,789</td> <td>1</td>	Europe	France	Marseille	43.30	5.37	1,559,789	1
EuropeGermanyBerlin52.5213.413,421,829EuropeGermanyHamburg53.559.991,746,342EuropeGermanyMünchen (Munich)48.1411.581,407,836EuropeGreeceAthinai37.9823.73789,166EuropeHungaryBudapest47.5019.042,548,428EuropeItelandDublin53.35-6.261,110,627EuropeItalyMilano45.479.191,293,135EuropeItalyNapoli40.8514.27974,082EuropeItalyRoma41.9012.502,751,082EuropeItalyRoma45.077.69887,114EuropeItalyTorino45.077.69887,114EuropeLatviaRiga52.374.901,068,724EuropePolandKraków50.0619.95759,131EuropePolandKraków50.0619.95759,131EuropePolandKraków51.7619.46756,666EuropeRomaniaBucuresti44.4326.101,912,515EuropeRussian FederationMokva55.7637.6211,918,057EuropeRussian FederationVolgograd48.7144.511,018,762EuropeRussian FederationVolgograd48.7144.511,018,762EuropeRussian FederationVolgograd48.7144.511,018,7	Europe	France	Paris	48.86	2.35	10,460,118	4
EuropeGermanyHamburg\$3.559.991,746,342EuropeGermanyMünchen (Munich)48.1411.581,407,836EuropeGreeceAthinai37.9823.73789,166EuropeHungaryBudapest47.5019.042,548,428EuropeIrelandDublin53.35-6.261,110,627EuropeItalyMilano45.479.191,293,135EuropeItalyNapoli40.8514.27974,082EuropeItalyRoma41.9012.502,751,082EuropeItalyTorino45.077.69887,114EuropeItalyRiga56.9524.11764,329EuropeItalyAmsterdam52.374.901,068,724EuropePolandKraków50.0619.95759,131EuropePolandKraków50.0619.95759,131EuropePolandKoáź51.7619.46756,666EuropeRepublic of MoldovaChisiñau (Kishinev)47.0128.86785,917EuropeRomaniaBucuresti44.4326.101,912,515EuropeRussian FederationMoskva55.7637.6211,918,057EuropeRussian FederationVolgograd48.7144.511,018,762EuropeRussian FederationVolgograd48.7144.511,018,762EuropeSpainBarcelona41.392.17 <td>Europe</td> <td>Germany</td> <td>Berlin</td> <td>52.52</td> <td>13.41</td> <td>3,421,829</td> <td>3</td>	Europe	Germany	Berlin	52.52	13.41	3,421,829	3
Europe Germany München (Munich) 48.14 11.58 1,407,836 Europe Greece Athinai 37.98 23.73 789,166 Europe Hungary Budapest 47.50 19.04 2,548,428 Europe Ireland Dublin 53.35 -6.26 1,110,627 Europe Italy Milano 45.47 9.19 1,293,135 Europe Italy Napoli 40.85 14.27 974,082 Europe Italy Napoli 45.07 7.69 887,114 Europe Italy Torino 45.07 7.69 887,114 Europe Italy Torino 45.07 7.69 887,114 Europe Italy Amsterdam 52.37 4.90 1,068,724 Europe Poland Kraków 50.06 19.95 759,131 Europe Poland Kraków 50.06 19.95 759,131 Europe Poland Kraków	Europe	Germany	Hamburg	53.55	9.99	1,746,342	1
EuropeGreeceAthinai37.9823.73789,166EuropeHungaryBudapest47.5019.042,548,428EuropeIrelandDublin53.35-6.261,110,627EuropeItalyMilano45.479.191,293,135EuropeItalyNapoli40.8514.27974,082EuropeItalyRoma41.9012.502,751,082EuropeItalyRoma45.077.69887,114EuropeItalyRiga56.9524.11764,329EuropeNetherlandsAmsterdam52.374.901,068,724EuropePolandKraków50.0619.95759,131EuropePolandKraków50.0619.95759,131EuropePolandKoáxawa52.2321.011,711,324EuropeRepublic of MoldovaChişinäu (Kishinev)47.0128.86785,917EuropeRomaniaBucuresti44.4326.101,912,515EuropeRussian FederationMoskva55.7637.6211,918,057EuropeRussian FederationVolgograd48.7144.511,018,762EuropeRussian FederationVolgograd48.7144.511,018,762EuropeSpainBarcelona41.392.171,667,552EuropeSpainBarcelona41.392.171,607,104EuropeSpainMadrid40.42-3.70<	Europe	Germany	München (Munich)	48.14	11.58	1,407,836	2
EuropeHungaryBudapest47.5019.042,548,428EuropeIrelandDublin53.35-6.261,110,627EuropeItalyMilano45.479.191,293,135EuropeItalyNapoli40.8514.27974,082EuropeItalyRoma41.9012.502,751,082EuropeItalyTorino45.077.69887,114EuropeLatviaRiga56.9524.11764,329EuropeNetherlandsAmsterdam52.374.901,068,724EuropePolandKraków50.0619.95759,131EuropePolandKraków51.7619.46756,666EuropePolandWarszawa52.2321.011,711,324EuropeRepublic of MoldovaChişinău (Kishinev)47.0128.86785,917EuropeRomaniaBucuresti44.4326.101,912,515EuropeRussian FederationMoskva55.7637.6211,918,057EuropeRussian FederationVolgograd48.7144.511,018,762EuropeRussian FederationVolgograd48.7144.511,018,762EuropeSpainBaccelona41.7920.451,669,552EuropeSpainBarcelona41.392.171,607,104EuropeSpainMadrid40.42-3.703,186,241EuropeSpainMadrid40.42-3.70<	Europe	Greece	Athinai	37.98	23.73	789,166	3
EuropeIrelandDublin53.35-6.261,110,627EuropeItalyMilano45.479.191,293,135EuropeItalyNapoli40.8514.27974,082EuropeItalyRoma41.9012.502,751,082EuropeItalyTorino45.077.69887,114EuropeLatviaRiga56.9524.11764,329EuropeNetherlandsAmsterdam52.374.901,068,724EuropePolandKraków50.0619.95759,131EuropePolandKraków50.0619.95759,131EuropePolandKraków50.0619.95759,131EuropePolandKraków52.2321.011,711,324EuropeRepublic of MoldovaChişinău (Kishinev)47.0128.86785,917EuropeRomaniaBucuresti44.4326.101,912,515EuropeRussian FederationMoskva55.7637.6211,918,057EuropeRussian FederationSt. Petersburg59.9330.344,990,602EuropeRussian FederationVoronezh51.6839.2197,447EuropeSerbiaBeograd (Belgrade)44.7920.451,669,552EuropeSpainBarcelona41.392.171,607,104EuropeSpainMadrid40.42-3.703,186,241EuropeSpainMadrid47.90-1	Europe	Hungary	Budapest	47.50	19.04	2,548,428	4
EuropeItalyMilano45.479.191,293,135EuropeItalyNapoli40.8514.27974,082EuropeItalyRoma41.9012.502,751,082EuropeItalyTorino45.077.69887,114EuropeLatviaRiga56.9524.11764,329EuropeNetherlandsAmsterdam52.374.901,068,724EuropePolandKraków50.0619.95759,131EuropePolandŁódź51.7619.46756,666EuropePolandWarszawa52.2321.011,711,324EuropeRepublic of MoldovaChişinău (Kishinev)47.0128.86785,917EuropeRomaniaBucuresti44.4326.101,912,515EuropeRussian FederationMoskva55.7637.6211,918,057EuropeRussian FederationVolgograd48.7144.511,018,762EuropeRussian FederationVoronezh51.6839.21997,447EuropeSerbiaBeograd (Belgrade)44.7920.451,669,552EuropeSpainMadrid40.42-3.703,186,241EuropeSpainMadrid40.42-3.703,186,241	Europe	Ireland	Dublin	53.35	-6.26	1,110,627	2
EuropeItalyNapoli40.8514.27974,082EuropeItalyRoma41.9012.502,751,082EuropeItalyTorino45.077.69887,114EuropeLatviaRiga56.9524.11764,329EuropeNetherlandsAmsterdam52.374.901,068,724EuropePolandKraków50.0619.95759,131EuropePolandKraków50.0619.95759,131EuropePolandKoáź51.7619.46756,666EuropePolandWarszawa52.2321.011,711,324EuropeRepublic of MoldovaChișinău (Kishinev)47.0128.86785,917EuropeRomaniaBucuresti44.4326.101,912,515EuropeRussian FederationMoskva55.7637.6211,918,057EuropeRussian FederationVolgograd48.7144.511,018,762EuropeRussian FederationVoronezh51.6839.21997,447EuropeSerbiaBeograd (Belgrade)44.7920.451,669,552EuropeSpainMadrid40.42-3.703,186,241EuropeSpainMadrid40.42-3.703,186,241	Europe	Italy	Milano	45.47	9.19	1,293,135	3
Europe Italy Roma 41.90 12.50 2,751,082 Europe Italy Torino 45.07 7.69 887,114 Europe Latvia Riga 56.95 24.11 764,329 Europe Netherlands Amsterdam 52.37 4.90 1,068,724 Europe Poland Kraków 50.06 19.95 759,131 Europe Poland Kraków 51.76 19.46 756,666 Europe Poland Warszawa 52.23 21.01 1,711,324 Europe Republic of Moldova Chişinău (Kishinev) 47.01 28.86 785,917 Europe Romania Bucuresti 44.43 26.10 1,912,515 Europe Russian Federation Moskva 55.76 37.62 11,918,057 Europe Russian Federation Volgograd 48.71 44.51 1,018,762 Europe Russian Federation Voronezh 51.68 39.21 997,447	Europe	Italy	Napoli	40.85	14.27	974,082	2
EuropeItalyTorino45.077.69887,114EuropeLatviaRiga56.9524.11764,329EuropeNetherlandsAmsterdam52.374.901,068,724EuropePolandKraków50.0619.95759,131EuropePolandŁódź51.7619.46756,666EuropePolandWarszawa52.2321.011,711,324EuropeRepublic of MoldovaChişinău (Kishinev)47.0128.86785,917EuropeRomaniaBucuresti44.4326.101,912,515EuropeRussian FederationMoskva55.7637.6211,918,057EuropeRussian FederationSt. Petersburg59.9330.344,990,602EuropeRussian FederationVolgograd48.7144.511,018,762EuropeRussian FederationVoronezh51.6839.21997,447EuropeSerbiaBeograd (Belgrade)44.7920.451,669,552EuropeSpainBarcelona41.392.171,607,104EuropeSpainMadrid40.42-3.703,186,241EuropeSpainMadrid40.42-3.703,186,241	Europe	Italy	Roma	41.90	12.50	2,751,082	4
EuropeLatviaRiga56.9524.11764,329EuropeNetherlandsAmsterdam52.374.901,068,724EuropePolandKraków50.0619.95759,131EuropePolandŁódź51.7619.46756,666EuropePolandWarszawa52.2321.011,711,324EuropeRepublic of MoldovaChişinău (Kishinev)47.0128.86785,917EuropeRomaniaBucuresti44.4326.101,912,515EuropeRussian FederationMoskva55.7637.6211,918,057EuropeRussian FederationSt. Petersburg59.9330.344,990,602EuropeRussian FederationVolgograd48.7144.511,018,762EuropeRussian FederationVoronezh51.6839.21997,447EuropeSpainBacelona41.392.171,607,104EuropeSpainMadrid40.42-3.703,186,241EuropeSpainMadrid37.99-1.13772,211	Europe	Italy	Torino	45.07	7.69	887,114	5
EuropeNetherlandsAmsterdam52.374.901,068,724EuropePolandKraków50.0619.95759,131EuropePolandŁódź51.7619.46756,666EuropePolandWarszawa52.2321.011,711,324EuropeRepublic of MoldovaChişinău (Kishinev)47.0128.86785,917EuropeRomaniaBucuresti44.4326.101,912,515EuropeRussian FederationMoskva55.7637.6211,918,057EuropeRussian FederationSt. Petersburg59.9330.344,990,602EuropeRussian FederationVolgograd48.7144.511,018,762EuropeRussian FederationVoronezh51.6839.21997,447EuropeSerbiaBeograd (Belgrade)44.7920.451,669,552EuropeSpainBarcelona41.392.171,607,104EuropeSpainMadrid40.42-3.703,186,241EuropeSpainMadrid40.42-3.703,186,241	Europe	Latvia	Riga	56.95	24.11	764,329	3
EuropePolandKraków50.0619.95759,131EuropePolandŁódź51.7619.46756,666EuropePolandWarszawa52.2321.011,711,324EuropeRepublic of MoldovaChişinău (Kishinev)47.0128.86785,917EuropeRomaniaBucuresti44.4326.101,912,515EuropeRussian FederationMoskva55.7637.6211,918,057EuropeRussian FederationSt. Petersburg59.9330.344,990,602EuropeRussian FederationVolgograd48.7144.511,018,762EuropeRussian FederationVoronezh51.6839.21997,447EuropeSerbiaBeograd (Belgrade)44.7920.451,669,552EuropeSpainBarcelona41.392.171,607,104EuropeSpainMadrid40.42-3.703,186,241EuropeSpainMurcia37.99-1.13772,211	Europe	Netherlands	Amsterdam	52.37	4.90	1,068,724	1
EuropePolandŁódź51.7619.46756,666EuropePolandWarszawa52.2321.011,711,324EuropeRepublic of MoldovaChişinău (Kishinev)47.0128.86785,917EuropeRomaniaBucuresti44.4326.101,912,515EuropeRussian FederationMoskva55.7637.6211,918,057EuropeRussian FederationSt. Petersburg59.9330.344,990,602EuropeRussian FederationVolgograd48.7144.511,018,762EuropeRussian FederationVoronezh51.6839.21997,447EuropeSerbiaBeograd (Belgrade)44.7920.451,669,552EuropeSpainBarcelona41.392.171,607,104EuropeSpainMadrid40.42-3.703,186,241EuropeSpainMurcia37.99-1.13772,211	Europe	Poland	Kraków	50.06	19.95	759,131	2
EuropePolandWarszawa52.2321.011,711,324EuropeRepublic of MoldovaChişinău (Kishinev)47.0128.86785,917EuropeRomaniaBucuresti44.4326.101,912,515EuropeRussian FederationMoskva55.7637.6211,918,057EuropeRussian FederationSt. Petersburg59.9330.344,990,602EuropeRussian FederationVolgograd48.7144.511,018,762EuropeRussian FederationVoronezh51.6839.21997,447EuropeSerbiaBeograd (Belgrade)44.7920.451,669,552EuropeSpainBarcelona41.392.171,607,104EuropeSpainMadrid40.42-3.703,186,241EuropeSpainMurcia37.99-1.13772,211	Europe	Poland	Łódź	51.76	19.46	756,666	1
EuropeRepublic of MoldovaChişinău (Kishinev)47.0128.86785,917EuropeRomaniaBucuresti44.4326.101,912,515EuropeRussian FederationMoskva55.7637.6211,918,057EuropeRussian FederationSt. Petersburg59.9330.344,990,602EuropeRussian FederationVolgograd48.7144.511,018,762EuropeRussian FederationVoronezh51.6839.21997,447EuropeSerbiaBeograd (Belgrade)44.7920.451,669,552EuropeSpainBarcelona41.392.171,607,104EuropeSpainMadrid40.42-3.703,186,241EuropeSpainMurcia37.99-1.13772,211	Europe	Poland	Warszawa	52.23	21.01	1,711,324	2
EuropeRomaniaBucuresti44.4326.101,912,515EuropeRussian FederationMoskva55.7637.6211,918,057EuropeRussian FederationSt. Petersburg59.9330.344,990,602EuropeRussian FederationVolgograd48.7144.511,018,762EuropeRussian FederationVoronezh51.6839.21997,447EuropeSerbiaBeograd (Belgrade)44.7920.451,669,552EuropeSpainBarcelona41.392.171,607,104EuropeSpainMadrid40.42-3.703,186,241EuropeSpainMurcia37.99-1.13772,211	Europe	Republic of Moldova	Chișinău (Kishinev)	47.01	28.86	785,917	1
EuropeRussian FederationMoskva55.7637.6211,918,057EuropeRussian FederationSt. Petersburg59.9330.344,990,602EuropeRussian FederationVolgograd48.7144.511,018,762EuropeRussian FederationVoronezh51.6839.21997,447EuropeSerbiaBeograd (Belgrade)44.7920.451,669,552EuropeSpainBarcelona41.392.171,607,104EuropeSpainMadrid40.42-3.703,186,241EuropeSpainMurcia37.99-1.13772,211	Europe	Romania	Bucuresti	44.43	26.10	1,912,515	7
EuropeRussian FederationSt. Petersburg59.9330.344,990,602EuropeRussian FederationVolgograd48.7144.511,018,762EuropeRussian FederationVoronezh51.6839.21997,447EuropeSerbiaBeograd (Belgrade)44.7920.451,669,552EuropeSpainBarcelona41.392.171,607,104EuropeSpainMadrid40.42-3.703,186,241EuropeSpainMurcia37.99-1.13772,211	Europe	Russian Federation	Moskva	55.76	37.62	11,918,057	2
EuropeRussian FederationVolgograd48.7144.511,018,762EuropeRussian FederationVoronezh51.6839.21997,447EuropeSerbiaBeograd (Belgrade)44.7920.451,669,552EuropeSpainBarcelona41.392.171,607,104EuropeSpainMadrid40.42-3.703,186,241EuropeSpainMurcia37.99-1.13772,211	Europe	Russian Federation	St. Petersburg	59.93	30.34	4,990,602	1
Europe Russian Federation Voronezh 51.68 39.21 997,447 Europe Serbia Beograd (Belgrade) 44.79 20.45 1,669,552 Europe Spain Barcelona 41.39 2.17 1,607,104 Europe Spain Madrid 40.42 -3.70 3,186,241 Europe Spain Murcia 37.99 -1.13 772,211	Europe	Russian Federation	Volgograd	48.71	44.51	1,018,762	1
Europe Serbia Beograd (Belgrade) 44.79 20.45 1,669,552 Europe Spain Barcelona 41.39 2.17 1,607,104 Europe Spain Madrid 40.42 -3.70 3,186,241 Europe Spain Murcia 37.99 -1.13 772,211	Europe	Russian Federation	Voronezh	51.68	39.21	997,447	1
Europe Spain Barcelona 41.39 2.17 1,607,104 Europe Spain Madrid 40.42 -3.70 3,186,241 Europe Spain Murcia 37.99 -1.13 772,211	Europe	Serbia	Beograd (Belgrade)	44.79	20.45	1,669,552	2
Europe Spain Madrid 40.42 -3.70 3,186,241 Europe Spain Murcia 37.99 -1.13 772,211	Europe	Spain	Barcelona	41.39	2.17	1,607,104	1
Europe Spain Murcia 37.99 -1.13 772,211	Europe	Spain	Madrid	40.42	-3.70	3,186,241	1
· · · · · · · · · · · · · · · · · · ·	Europe	Spain	Murcia	37.99	-1.13	772,211	16

Europe	Spain	Sevilla	37.39	-5.98	984,092	1
Europe	Spain	Valencia	39.47	-0.38	789,364	3
Europe	Sweden	Göteborg (Gothenburg)	57.71	11.97	883,764	2
Europe	Sweden	Stockholm	59.33	18.07	789,024	1
Europe	Switzerland	Zürich	47.38	8.54	1,210,875	2
Europe	Turkey	Ankara	39.93	32.86	3,517,182	5
Europe	Turkey	Antalya	36.90	30.71	758,188	1
Europe	Turkey	Istanbul	41.01	28.98	11,174,257	3
Europe	Ukraine	Dnepropetrovsk	48.46	35.05	990,025	2
Europe	Ukraine	Kharkov	49.99	36.23	1,431,461	2
Europe	Ukraine	Kiev	50.45	30.52	2,803,716	3
Europe	Ukraine	Lvov	49.84	24.03	751,225	2
Europe	Ukraine	Odessa	46.48	30.72	997,189	1
Europe	United Kingdom	London	51.51	-0.13	8,278,251	3
Europe	United Kingdom	Manchester	53.48	-2.24	2,244,931	5
Europe	United Kingdom	Tyneside	54.99	-1.45	879,996	1
Europe	United Kingdom	West Midlands	52.48	-1.83	2,284,093	2
North America	Canada	Calgary	51.05	-114.07	1,406,721	3
North America	Canada	Edmonton	53.54	-113.49	1,328,290	5
North America	Canada	Montréal	45.50	-73.57	4,027,121	5
North America	Canada	Ottawa	45.42	-75.70	1,318,122	9
North America	Canada	Québec	46.81	-71.21	799,632	5
North America	Canada	Toronto	43.65	-79.38	6,055,724	38
North America	Canada	Vancouver	49.28	-123.12	2,470,289	11
North America	Canada	Winnipeg	49.90	-97.14	782,640	3
North America	Cuba	La Habana	23.11	-82.37	2,121,871	1
North America	Dominican Republic	Santo Domingo	18.49	-69.93	965,040	1
North America	Guatemala	Ciudad de Guatemala	14.63	-90.51	1,022,001	1
North America	Honduras	Tegucigalpa	14.07	-87.19	765,675	1

North America	Jamaica	Kingston	18.02	-76.81	937,700	1
North America	Mexico	Aguascalientes	21.89	-102.29	932,369	1
North America	Mexico	Chihuahua	28.63	-106.07	852,533	1
North America	Mexico	Ciudad de Mexico	19.43	-99.13	20,116,842	2
North America	Mexico	Ciudad Del Carmen	18.65	-91.81	17,963,196	1
North America	Mexico	Coatzacoalcos	18.13	-94.46	1,301,452	1
North America	Mexico	Guadalajara	20.66	-103.35	4,434,878	1
North America	Mexico	Irapuato	20.68	-101.35	3,764,371	1
North America	Mexico	Mérida	20.97	-89.59	973,046	1
North America	Mexico	Morelia	19.71	-101.20	807,902	2
North America	Mexico	San Luis Potosí - Soledad de	22.16	-100.99	1,040,443	1
		Graciano Sanchez				
North America	Mexico	Santiago de Querétaro	20.59	-100.39	1,097,025	1
North America	Mexico	Torreón	25.54	-103.41	1,215,817	1
North America	Mexico	Veracruz	19.17	-96.13	801,295	1
North America	Mexico	Villahermosa	17.99	-92.95	755,425	1
North America	Nicaragua	Managua	12.12	-86.24	908,892	1
North America	United States of America	Atlanta (GA)	33.75	-84.39	3,499,840	3
North America	United States of America	Austin (TX)	30.27	-97.74	842,592	4
North America	United States of America	Boston (MA)	42.36	-71.06	4,032,484	2
North America	United States of America	Charlotte (NC)	35.23	-80.84	775,202	3
North America	United States of America	Chicago (IL)	41.88	-87.63	2,714,856	22
North America	United States of America	Cincinnati (OH)	39.10	-84.51	1,503,262	1
North America	United States of America	Cleveland (OH)	41.50	-81.69	1,786,647	3
North America	United States of America	Columbus (OH)	39.96	-83.00	809,798	1
North America	United States of America	Dallas (TX)	32.78	-96.80	1,241,162	6
North America	United States of America	Denver (CO)	39.74	-104.99	1,984,887	6
North America	United States of America	Detroit (MI)	42.33	-83.05	910,921	3
North America	United States of America	Hartford (CT)	41.76	-72.69	851,535	1

North America	United States of America	Houston (TX)	29.76	-95.37	2,160,821	1
North America	United States of America	Indianapolis (IN)	39.77	-86.16	834,852	2
North America	United States of America	Jacksonville (FL)	30.33	-81.66	836,507	1
North America	United States of America	Kansas City (MO)	39.10	-94.58	1,361,744	1
North America	United States of America	Las Vegas (NV)	36.17	-115.14	1,314,357	1
North America	United States of America	Los Angeles (CA)	34.05	-118.24	3,857,799	5
North America	United States of America	Louisville (KY)	38.25	-85.76	863,582	2
North America	United States of America	Memphis (TN)	35.15	-90.05	972,091	1
North America	United States of America	Miami (FL)	25.76	-80.19	4,919,036	2
North America	United States of America	Milwaukee (WI)	43.04	-87.91	1,308,913	2
North America	United States of America	Minneapolis (MN)	44.98	-93.27	2,388,593	5
North America	United States of America	New Orleans (LA)	29.95	-90.07	1,009,283	11
North America	United States of America	New York (NY)	40.71	-74.01	8,336,697	2
North America	United States of America	Orlando (FL)	28.54	-81.38	1,157,431	1
North America	United States of America	Philadelphia (PA)	39.95	-75.17	1,547,607	2
North America	United States of America	Phoenix (AZ)	33.45	-112.07	1,488,750	2
North America	United States of America	Pittsburgh (PA)	40.44	-80.00	1,753,136	2
North America	United States of America	Portland (OR)	45.52	-122.68	1,583,138	3
North America	United States of America	Richmond (VA)	37.54	-77.44	818,836	2
North America	United States of America	Sacramento (CA)	38.58	-121.49	1,393,498	7
North America	United States of America	Salt Lake City (UT)	40.76	-111.89	887,650	7
North America	United States of America	San Antonio (TX)	29.42	-98.49	1,382,951	3
North America	United States of America	San Jose (CA)	37.34	-121.89	982,765	1
North America	United States of America	Seattle (WA)	47.61	-122.33	2,712,205	22
North America	United States of America	St. Louis (MO)	38.63	-90.20	2,077,662	2
North America	United States of America	Tampa (FL)	27.95	-82.46	2,062,339	1
North America	United States of America	Virginia Beach (VA)	36.85	-75.98	1,394,439	1
North America	United States of America	Washington (DC)	38.91	-77.04	3,933,920	3
South America	Argentina	Buenos Aires	-34.60	-58.38	12,847,328	5

South America	Argentina	Córdoba	-31.42	-64.19	1,517,610	2
South America	Argentina	Mendoza	-32.89	-68.85	1,079,744	1
South America	Argentina	Tucumán - Tafí Viejo	-26.73	-65.27	867,724	1
South America	Bolivia	La Paz	-16.49	-68.12	789,585	2
South America	Bolivia	Santa Cruz	-17.81	-63.16	1,113,582	1
South America	Brazil	Belém	-1.46	-48.49	1,381,475	2
South America	Brazil	Belo Horizonte	-19.92	-43.94	2,375,151	5
South America	Brazil	Brasilia	-15.79	-47.88	2,481,272	2
South America	Brazil	Campo Grande	-20.47	-54.62	776,242	6
South America	Brazil	Curitiba	-25.42	-49.27	1,751,907	6
South America	Brazil	Goiânia	-16.69	-49.26	1,297,154	1
South America	Brazil	Maceió	-9.65	-35.71	932,078	2
South America	Brazil	Manaus	-3.12	-60.02	1,792,881	1
South America	Brazil	Recife	-8.05	-34.88	1,537,704	1
South America	Brazil	Rio de Janeiro	-22.91	-43.17	6,320,446	3
South America	Brazil	Salvador	-12.97	-38.50	2,674,923	3
South America	Brazil	São Luís	-2.54	-44.28	958,545	2
South America	Brazil	São Paulo	-23.55	-46.63	11,152,968	8
South America	Brazil	Teresina	-5.09	-42.80	767,559	1
South America	Chile	Santiago	-33.45	-70.67	5,150,010	3
South America	Colombia	Barranquilla	10.98	-74.82	1,112,889	1
South America	Colombia	Bogotá	4.71	-74.07	6,778,691	6
South America	Colombia	Cali	3.45	-76.54	2,075,380	6
South America	Colombia	Medellín	6.24	-75.58	2,219,861	3
South America	Ecuador	Guayaquil	-2.17	-79.92	2,291,158	1
South America	Ecuador	Quito	-0.18	-78.47	1,619,146	4
South America	Paraguay	Asunción	-25.26	-57.58	1,620,483	5
South America	Peru	Arequipa	-16.41	-71.54	784,651	1
South America	Peru	Lima	-12.05	-77.04	8,472,935	2

South America	Uruguay	Montevideo	-34.90	-56.16	1,379,560	3
South America	Venezuela	Barquisimeto	10.07	-69.35	1,000,632	1
South America	Venezuela	Caracas	10.48	-66.90	2,104,423	7
South America	Venezuela	Ciudad Guayana	8.37	-62.65	850,262	1
South America	Venezuela	Maracaibo	10.65	-71.71	1,339,019	2
South America	Venezuela	Valencia	10.16	-68.00	917,999	1

¹ "North America" includes Central America and the Caribbean; "Australia" includes New Zealand

² from United Nations (data.un.org/; accessed June 2016); for countries missing from the UN dataset, values are from http://www.geonames.org/, accessed July 2016

Phylogenetically-	Taxonomic	Taxonomic	Genus	Dominant species	Subordinate species			
independent	order	Tamily						
comparison								
1	Anseriformes	Anatidae	Dendrocygna	autumnalis	bicolor			
2	Anseriformes	Anatidae	Cygnus	cygnus	olor			
2 ²	Anseriformes	Anatidae	Cygnus	buccinator	olor			
3	Anseriformes	Anatidae	Anas	strepera	americana			
4	Anseriformes	Anatidae	Anas	discors	cyanoptera			
5	Anseriformes	Anatidae	Anas	acuta	carolinensis			
6	Anseriformes	Anatidae	Aythya	americana	collaris			
7	Anseriformes	Anatidae	Bucephala	islandica	clangula			
8	Galliformes	Phasianidae	Tympanuchus	phasianellus	cupido			
9	Podicipediformes	Podicipedidae	Podiceps	grisegena	auritus			
10	Pelecaniformes	Ardeidae	Ardeola	idae	ralloides			
11	Pelecaniformes	Ardeidae	Ardea	cinerea	alba			
11 ²	Pelecaniformes	Ardeidae	Ardea	herodias	alba			
12	Pelecaniformes	Ardeidae	Egretta	tricolor	caerulea			
13	Pelecaniformes	Ardeidae	Egretta	garzetta	thula			
14	Suliformes	Phalacrocoracidae	Phalacrocorax	lucidus	capensis			
15	Accipitriformes	Cathartidae	Cathartes	aura	burrovianus			
15 ²	Accipitriformes	Cathartidae	Cathartes	aura	melambrotus			
16	Accipitriformes	Accipitridae	Gyps	rueppellii	africanus			
16 ²	Accipitriformes	Accipitridae	Gyps	coprotheres	africanus			
17	Accipitriformes	Accipitridae	Accipiter	gentilis	cooperii			
18	Accipitriformes	Accipitridae	Circus	pygargus	aeruginosus			
19	Accipitriformes	Accipitridae	Milvus	migrans	milvus			
20	Accipitriformes	Accipitridae	Haliastur	indus	sphenurus			
21	Accipitriformes	Accipitridae	Buteo	swainsoni	jamaicensis			

List of the bird species examined in this study.¹

21 ²	Accipitriformes	Accipitridae	Buteo	swainsoni	regalis
22	Gruiformes	Rallidae	Fulica	armillata	leucoptera
23	Gruiformes	Gruidae	Grus	antigone	rubicunda
24	Charadriiformes	Charadriidae	Vanellus	coronatus	lugubris
25	Charadriiformes	Charadriidae	Charadrius	vociferus	melodus
26	Charadriiformes	Scolopacidae	Numenius	arquata	phaeopus
27	Charadriiformes	Laridae	Chroicocephalus	ridibundus	genei
28	Charadriiformes	Laridae	Larus	marinus	smithsonianus
29	Charadriiformes	Laridae	Sterna	dougallii	paradisaea
30	Columbiformes	Columbidae	Columba	palumbus	oenas
31	Columbiformes	Columbidae	Streptopelia	decaocto	turtur
32	Columbiformes	Columbidae	Spilopelia	chinensis	senegalensis
33	Cuculiformes	Cuculidae	Crotophaga	ani	sulcirostris
34	Strigiformes	Strigidae	Bubo	lacteus	africanus
35	Strigiformes	Strigidae	Strix	varia	occidentalis
36	Caprimulgiformes	Caprimulgidae	Chordeiles	minor	acutipennis
37	Apodiformes	Trochilidae	Phaethornis	longirostris	striigularis
38	Apodiformes	Trochilidae	Colibri	coruscans	thalassinus
39	Apodiformes	Trochilidae	Amazilia	tzacatl	franciae
40	Apodiformes	Trochilidae	Amazilia	beryllina	violiceps
41	Apodiformes	Trochilidae	Lampornis	clemenciae	amethystinus
42	Apodiformes	Trochilidae	Calypte	anna	costae
43	Apodiformes	Trochilidae	Selasphorus	rufus	calliope
44	Coraciiformes	Alcedinidae	Halcyon	pileata	smyrnensis
45	Coraciiformes	Alcedinidae	Chloroceryle	inda	americana
46	Coraciiformes	Meropidae	Merops	apiaster	persicus
47	Bucerotiformes	Bucerotidae	Bycanistes	albotibialis	fistulator
48	Piciformes	Ramphastidae	Ramphastos	tucanus	vitellinus
49	Piciformes	Megalaimidae	Psilopogon	pyrolophus	oorti
50	Piciformes	Lybiidae	Pogoniulus	bilineatus	leucomystax
51	Piciformes	Lybiidae	Lybius	melanopterus	torquatus

50	Diciformos	Lyhiidaa	Trachuphonuc	arythrocophalys	darnaudii
52	Disiformos	LyDilude	Indicator	erythrocephulus	malinhilus
55	Piciformes	Indicatoridae	Indicator	variegatus	menprinus
54	Piciformes	Indicatoridae	inaicator	indicator	minor
55	Piciformes	Picidae	Melanerpes	lewis	erythrocephalus
56	Piciformes	Picidae	Sphyrapicus	thyroideus	nuchalis
57	Piciformes	Picidae	Dendrocopos	major	leucotos
58	Piciformes	Picidae	Picoides	arcticus	dorsalis
59	Piciformes	Picidae	Picus	viridis	canus
60	Falconiformes	Falconidae	Falco	peregrinus	biarmicus
61	Psittaciformes	Psittaculidae	Platycercus	elegans	eximius
62	Psittaciformes	Psittaculidae	Trichoglossus	moluccanus	chlorolepidotus
63	Passeriformes	Furnariidae	Synallaxis	gujanensis	albigularis
64	Passeriformes	Dendrocolaptidae	Dendrocincla	merula	fuliginosa
65	Passeriformes	Dendrocolaptidae	Dendrocolaptes	picumnus	certhia
66	Passeriformes	Dendrocolaptidae	Xiphorhynchus	lachrymosus	susurrans
67	Passeriformes	Thamnophilidae	Thamnophilus	doliatus	aethiops
68	Passeriformes	Tyrannidae	Todirostrum	chrysocrotaphum	maculatum
69	Passeriformes	Tyrannidae	Contopus	pertinax	sordidulus
70	Passeriformes	Tyrannidae	Empidonax	traillii	alnorum
71	Passeriformes	Tyrannidae	Empidonax	wrightii	oberholseri
72	Passeriformes	Tyrannidae	Tyrannus	vociferans	verticalis
73	Passeriformes	Climacteridae	Climacteris	picumnus	erythrops
74	Passeriformes	Meliphagidae	Phylidonyris	novaehollandiae	niger
75	Passeriformes	Meliphagidae	Philemon	corniculatus	citreogularis
76	Passeriformes	Meliphagidae	Melithreptus	lunatus	brevirostris
77	Passeriformes	Meliphagidae	Anthochaera	carunculata	phrygia
78	Passeriformes	Meliphagidae	Manorina	melanocephala	flavigula
79	Passeriformes	Pardalotidae	Pardalotus	striatus	punctatus
80	Passeriformes	Acanthizidae	Sericornis	magnirostra	citreogularis
81	Passeriformes	Malaconotidae	Tchagra	senegalus	australis
82	Passeriformes	Laniidae	Lanius	minor	collurio

83	Passeriformes	Vireonidae	Vireo	olivaceus	ailvus
83 ²	Passeriformes	Vireonidae	Vireo	olivaceus	nhiladelnhicus
84	Passeriformes	Oriolidae	Oriolus	auratus	oriolus
85	Passeriformes	Corvidae	Cvanocitta	stelleri	cristata
86	Passeriformes	Corvidae	Anhelocoma	wollweheri	woodhouseii
87	Passeriformes	Corvidae	Pyrrhocorax	nvrrhocorax	araculus
88	Passeriformes	Corvidae	Corvus	culminatus	snlendens
89	Passeriformes	Corvidae	Corvus	corone	cornix
90	Passeriformes	Corvidae	Corvus	coronoides	mellori
90 91	Passeriformes	Paridae	Poecile	nalustris	montanus
91	Passeriformes	Paridae	Poecile	atricanillus	aamheli
92 02	Passeriformos	Puchanatidaa	Puenonotus	tricolor	guilibeli
93	Passeriformos	Hirundinidaa	Tachycinota	hisolor	thalassing
94	Passeriformes	Dhyllosoonidoo	Dhullosoonus	burnoi	trachilaidac
95	Passeriformes	Phylloscopidae	Phylloscopus	numei	trochiloides
96	Passeriformes	Acrocephalidae	Acrocephalus	schoenobaenus	paludicola
97	Passeriformes	Acrocephalidae	Acrocephalus	palustris	scirpaceus
98	Passeriformes	Leiothrichidae	Turdoides	hartlaubii	jardineii
99	Passeriformes	Sylviidae	Sylvia	atricapilla	borin
100	Passeriformes	Sylviidae	Sylvia	ruppeli	cantillans
100 ²	Passeriformes	Sylviidae	Sylvia	ruppeli	melanocephala
101	Passeriformes	Regulidae	Regulus	calendula	satrapa
102	Passeriformes	Troglodytidae	Troglodytes	aedon	solstitialis
103	Passeriformes	Sittidae	Sitta	castanea	frontalis
104	Passeriformes	Certhiidae	Certhia	familiaris	brachydactyla
105	Passeriformes	Sturnidae	Sturnus	unicolor	vulgaris
106	Passeriformes	Buphagidae	Buphagus	africanus	erythrorhynchus
107	Passeriformes	Turdidae	Sialia	currucoides	sialis
108	Passeriformes	Turdidae	Turdus	merula merula	iliacus
109	Passeriformes	Muscicapidae	Luscinia	luscinia	megarhynchos
110	Passeriformes	Muscicapidae	Ficedula	albicollis	hypoleuca
111	Passeriformes	Muscicapidae	Phoenicurus	ochruros	phoenicurus

112	Passeriformes	Muscicapidae	Saxicola	rubicola	rubetra
113	Passeriformes	Muscicapidae	Oenanthe	isabellina	oenanthe
113 ²	Passeriformes	Muscicapidae	Oenanthe	pileata	oenanthe
114	Passeriformes	Muscicapidae	Oenanthe	deserti	pleschanka
115	Passeriformes	Muscicapidae	Oenanthe	finschii	lugens
115 ²	Passeriformes	Muscicapidae	Oenanthe	finschii	chrysopygia
116	Passeriformes	Nectariniidae	Cinnyris	afer	chalybeus
116 ²	Passeriformes	Nectariniidae	Cinnyris	fuscus	chalybeus
117	Passeriformes	Passeridae	Passer	domesticus	montanus
117 ²	Passeriformes	Passeridae	Passer	hispaniolensis	montanus
118	Passeriformes	Ploceidae	Ploceus	xanthops	velatus
119	Passeriformes	Ploceidae	Euplectes	ardens	orix
120	Passeriformes	Prunellidae	Prunella	fulvescens	atrogularis
121	Passeriformes	Motacillidae	Motacilla	capensis	clara
122	Passeriformes	Motacillidae	Motacilla	grandis	alba
123	Passeriformes	Motacillidae	Anthus	spinoletta	pratensis
124	Passeriformes	Fringillidae	Fringilla	montifringilla	coelebs
125	Passeriformes	Fringillidae	Haemorhous	mexicanus	purpureus
126	Passeriformes	Fringillidae	Astragalinus	psaltria	lawrencei
127	Passeriformes	Parulidae	Leiothlypis	celata	virginiae
128	Passeriformes	Parulidae	Setophaga	tigrina	americana
129	Passeriformes	Parulidae	Setophaga	aestiva	magnolia
130	Passeriformes	Parulidae	Setophaga	pinus	dominica
131	Passeriformes	Icteridae	Sturnella	defilippii	superciliaris
132	Passeriformes	Icteridae	lcterus	parisorum	abeillei
133	Passeriformes	Icteridae	Agelaius	phoeniceus	tricolor
134	Passeriformes	Emberizidae	Zonotrichia	leucophrys	albicollis
135	Passeriformes	Emberizidae	Junco	phaeonotus	hyemalis
136	Passeriformes	Emberizidae	Melospiza	melodia	lincolnii
136 ²	Passeriformes	Emberizidae	Melospiza	melodia	georgiana
137	Passeriformes	Emberizidae	Ammodramus	maritimus	caudacutus

138	Passeriformes	Thraupidae	Ramphocelus	nigrogularis	carbo
139	Passeriformes	Thraupidae	Thraupis	sayaca	palmarum
140	Passeriformes	Thraupidae	Tangara	icterocephala	gyrola
141	Passeriformes	Thraupidae	Diglossa	lafresnayii	humeralis
142	Passeriformes	Cardinalidae	Cardinalis	cardinalis	sinuatus

¹ references for dominance and phylogenetic relationships are included in the dataset, available at Dryad ² see Supplemental Methods for an explanation of cases where one phylogenetically-independent comparison consisted of more than two species

Literature reviewed for behavioral dominance relationships

Ali, S., and S. D. Ripley. 1978-1999. Handbook of the birds of India and Pakistan. Volumes 1-10. Second edition. Oxford University Press, New Delhi, India.

Alström, P., and K. Mild. 2003. Pipits and wagtails. Princeton University Press, Princeton, New Jersey, USA.

Brown, L. H., E. K. Urban, and K. Newman, eds. 1982. The birds of Africa. Volume I. Academic Press, San Diego, California, USA.

Cramp, S., ed. 1977. The birds of the Western Palearctic. Vol. I. Ostrich to ducks. Oxford University Press, Oxford, UK.

Cramp, S., ed. 1980. The birds of the Western Palearctic. Vol. II. Hawks to bustards. Oxford University Press, Oxford, UK.

Cramp, S., ed. 1983. The birds of the Western Palearctic. Vol. III. Waders to gulls. Oxford University Press, Oxford, UK.

Cramp, S., ed. 1985. The birds of the Western Palearctic. Vol. IV. Terns to woodpeckers. Oxford University Press, Oxford, UK.

Cramp, S., ed. 1988. The birds of the Western Palearctic. Vol. V. Tyrant flycatchers to thrushes. Oxford University Press, Oxford, UK.

Cramp, S., ed. 1992. The birds of the Western Palearctic. Vol. VI. Warblers. Oxford University Press, Oxford, UK.

Cramp, S., and C. M. Perrins, eds. 1993. The birds of the Western Palearctic. Vol. VII. Flycatchers to shrikes. Oxford University Press, Oxford, UK.

Cramp, S., and C. M. Perrins, eds. 1994. The birds of the Western Palearctic. Vol. VIII. Crows to finches. Oxford University Press, Oxford, UK.

Cramp, S., and C. M. Perrins, eds. 1994. The birds of the Western Palearctic. Vol. IX. Buntings and New World warblers. Oxford University Press, Oxford, UK.

Frith, C. B., and D. W. Frith. 2004. The bowerbirds, Ptilonorhynchidae. Oxford University Press, Oxford, UK.

Fry, C. H., S. Keith, and E. K. Urban, eds. 1988. The birds of Africa. Volume III. Academic Press, San Diego, California, USA.

Fry, C. H., S. Keith, and E. K. Urban, eds. 2000. The birds of Africa. Volume VI. Academic Press, San Diego, California, USA.

Fry, C. H., S. Keith, and E. K. Urban, eds. 2004. The birds of Africa. Volume VII. Princeton University Press, Princeton, New Jersey, USA.

Harris, T., and G. Arnott. 1988. Shrikes of southern Africa. Struik Winchester, Cape Town, South Africa.

Higgins, P. J., and S. J. J. F. Davies, eds. 1996. Handbook of Australian, New Zealand and Antarctic Birds. Volume 3: Snipe to pigeons. Oxford University Press, Melbourne, Australia.

Higgins, P. J., ed. 1999. Handbook of Australian, New Zealand and Antarctic Birds. Volume 4: Parrots to dollarbird. Oxford University Press, Melbourne, Australia.

Higgins, P. J., J. M. Peter, and W. K. Steele, eds. 2001. Handbook of Australian, New Zealand and Antarctic birds. Volume 5: Tyrant-flycatchers to chats. Oxford University Press, Melbourne, Australia.

Higgins, P. J., and J. M. Peter, eds. 2002. Handbook of Australian, New Zealand and Antarctic Birds. Volume 6: Pardalotes to shrike-thrushes. Oxford University Press, Melbourne, Australia.

Higgins, P. J., J. M. Peter, and S. J. Cowling, eds. 2006. Handbook of Australian, New Zealand and Antarctic Birds. Volume 7: Boatbill to starlings. Oxford University Press, Melbourne, Australia.

Keith, S., E. K. Urban, and C. H. Fry, eds. 1992. The birds of Africa. Volume IV. Academic Press, San Diego, California, USA.

Marchant, S., and P. J. Higgins, eds. 1990. Handbook of Australian, New Zealand and Antarctic Birds. Volume 1: Ratites to ducks. Oxford University Press, Melbourne, Australia.

Marchant, S., and P. J. Higgins, eds. 1993. Handbook of Australian, New Zealand and Antarctic Birds. Volume 2: Raptors to lapwings. Oxford University Press, Melbourne, Australia.

Poole, A., ed. 2015. The birds of North American online. Cornell Lab of Ornithology, Ithaca, New York, USA. Retrieved from http://bna.birds.cornell.edu/bna/.

Pratt, H. D. 2005. The Hawaiian honeycreepers. Oxford University Press, Oxford, UK.

Roberts, T. J. 1991-1992. The birds of Pakistan. Volume 1 and 2. Oxford University Press, Oxford, UK.

Safford, R., and F. Hawkins, eds. 2013. The birds of Africa. Volume VIII. Christopher Helm, London, UK.

Shirihai, H., G. Gargallo, and A. J. Helbig. 2001. Sylvia warblers. Princeton University Press, Princeton, NJ.

Short, L. L., and J. F. M. Horne. 2001. Toucans, barbets and honeyguides. Oxford University Press, Oxford, UK.

Skead, C. J. 1967. Sunbirds of southern Africa, also the sugarbirds, the white-eyes and the spotted creeper. South African Bird Book Fund, A.A. Balkema, Cape Town, South Africa.

Urban, E. K., C. H. Fry, and S. Keith, eds. 1986. The birds of Africa. Volume II. Academic Press, San Diego, California, USA.

Urban, E. K., C. H. Fry, and S. Keith, eds. 1997. The birds of Africa. Volume V. Academic Press, San Diego, California, USA.

Wells, D. R. 1999. The birds of the Thai-Malay Peninsula. Volume one: non-passerines. Academic Press, San Diego, California, USA.

Wells, D. R. 2007. The birds of the Thai-Malay Peninsula. Volume two: passerines. Christopher Helm, London, UK.

References used for assessing breeding range overlap of cities

Alström, P. and K. Mild. 2003. Pipits and wagtails. Princeton University Press, Princeton, New Jersey, USA.

Benson, K.L.P. and K.A. Arnold. 2001. The Texas Breeding Bird Atlas. Texas A&M University System, College Station and Corpus Christi, Texas, USA (http://txtbba.tamu.edu).

BirdLife International and NatureServe. 2011. Bird species distribution maps of the world. BirdLife International, Cambridge, UK and NatureServe, Arlington, Virginia, USA.

Bird Studies Canada. 2016. Manitoba Breeding Bird Atlas. http://www.birdatlas.mb.ca/

Brazil, M. 2009. Birds of east Asia: China, Taiwan, Korea, Japan, and Russia. Princeton University Press, Princeton, New Jersey, USA.

Cramp, S. (ed.) 1977. The birds of the Western Palearctic. Vol. I. Ostrich to ducks. Oxford University Press, Oxford, UK.

Cramp, S. (ed.) 1980. The birds of the Western Palearctic. Vol. II. Hawks to bustards. Oxford University Press, Oxford, UK.

Cramp, S. (ed.) 1983. The birds of the Western Palearctic. Vol. III. Waders to gulls Oxford University Press, Oxford, UK.

Cramp, S. (ed.) 1985. The birds of the Western Palearctic. Vol. IV. Terns to woodpeckers. Oxford University Press, Oxford, UK.

Cramp, S. (ed.) 1988. The birds of the Western Palearctic. Vol. V. Tyrant flycatchers to thrushes. Oxford University Press, Oxford, UK.

Cramp, S. (ed.) 1992. The birds of the Western Palearctic. Vol. VI. Warblers. Oxford University Press, Oxford, UK.

Cramp, S. and C.M. Perrins. (eds.) 1993. The birds of the Western Palearctic. Vol. VII. Flycatchers to shrikes. Oxford University Press, Oxford, UK.

Cramp, S. and C.M. Perrins. (eds.) 1994. The birds of the Western Palearctic. Vol. VIII. Crows to finches. Oxford University Press, Oxford, UK.

Cramp, S. and C.M. Perrins. (eds.) 1994. The birds of the Western Palearctic. Vol. IX. Buntings and New World warblers. Oxford University Press, Oxford, UK.

Davidson, P.J.A., R.J. Cannings, A.R. Couturier, D. Lepage, and C.M. Di Corrado (eds.). 2015. The atlas of the breeding birds of British Columbia, 2008-2012. Bird Studies Canada, Delta, British Columbia, Canada. http://www.birdatlas.bc.ca/

del Hoyo, J., A. Elliott, J. Sargatal, D.A. Christie, and E. de Juana. (eds.) 2016. Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona. (retrieved from http://www.hbw.com/).

Florida Fish and Wildlife Conservation Commission. 2003. Florida's breeding bird atlas: A collaborative study of Florida's birdlife. http://myfwc.com/bba (Accessed 2016).

Garrido, O.H. and A. Kirkconnell. 2000. Field guide to the birds of Cuba. Cornell University Press, Ithaca, New York, USA.

Higgins, P.J. and S.J.J.F. Davies. (eds.) 1996. Handbook of Australian, New Zealand and Antarctic Birds. Volume 3: Snipe to pigeons. Oxford University Press, Melbourne, Australia.

Higgins, P.J. (ed.) 1999. Handbook of Australian, New Zealand and Antarctic Birds. Volume 4: Parrots to dollarbird. Oxford University Press, Melbourne, Australia.

Higgins, P.J., J.M. Peter, and W.K. Steele. (eds.) 2001. Handbook of Australian, New Zealand and Antarctic birds. Volume 5: Tyrant-flycatchers to chats. Oxford University Press, Melbourne, Australia.

Higgins, P.J. and J.M. Peter. (eds.) 2002. Handbook of Australian, New Zealand and Antarctic Birds. Volume 6: Pardalotes to shrike-thrushes. Oxford University Press, Melbourne, Australia.

Higgins, P.J., J.M. Peter, and S.J. Cowling. (eds.) 2006. Handbook of Australian, New Zealand and Antarctic Birds. Volume 7: Boatbill to starlings. Oxford University Press, Melbourne, Australia.

Hilty, S.L. 2003. Birds of Venezuela. Second edition. Princeton University Press, Princeton, New Jersey, USA.

Hilty, S.L. and W.L. Brown. 1986. A guide to the birds of Colombia. Princeton University Press, Princeton, New Jersey, USA.

Howell, S.N.G. and S. Webb. 1995. A guide to the birds of Mexico and northern Central America. Oxford University Press, Oxford, UK.

Jaramillo, A. 2003. Birds of Chile, including the Antarctic Peninsula, the Falkland Islands and South Georgia. A & C Black Publishers, Ltd., London, UK.

Jacobs, B. and J.D. Wilson. 1997. Missouri Breeding Bird Atlas, 1986-1992. Missouri Department of Conservation, Jefferson City, Missouri, USA.

Kazmierczak, K. and B. van Perlo. 2000. A field guide to the birds of the Indian subcontinent. Yale University Press, New Haven, Connecticut, USA.

MacKinnon, J. and K. Phillipps. 2000. A field guide to the birds of China. Oxford University Press, Oxford, UK.

Marchant, S. and P.J. Higgins. (eds.) 1990. Handbook of Australian, New Zealand and Antarctic Birds. Volume 1: Ratites to ducks. Oxford University Press, Melbourne, Australia.

Marchant, S. and P.J. Higgins. (eds.) 1993. Handbook of Australian, New Zealand and Antarctic Birds. Volume 2: Raptors to lapwings. Oxford University Press, Melbourne, Australia.

Narosky, T. and D. Yzurieta. 1989. Birds of Argentina and Uruguay. A field guide. Asociación Ornitológica del Plata, Buenos Aires, Argentina.

Porter, R.F., S. Christensen, and P. Schiermacker-Hansen. 1996. Birds of the Middle East. Princeton University Press, Princeton, New Jersey, USA.

Raffaele, H., J. Wiley, O. Garrido, A. Keith, and J. Raffaele. 2003. Birds of the West Indies. Princeton University Press, Princeton, New Jersey, USA.

Ridgely, R.S. and P.J. Greenfield. 2001. The birds of Ecuador. Volume II. Cornell University Press, Ithaca, New York, USA.

Robson, C. 2002. Birds of Thailand. Princeton University Press, Princeton, New Jersey, USA.

Safford, R. and F. Hawkins. (eds.) 2013. The birds of Africa. Volume VIII. Christopher Helm, London, UK.

Schulenberg, T.S., D.F. Stotz, D.F. Lane, J.P. O'Neill, and T.A. Parker III. 2007. Birds of Peru. Princeton University Press, Princeton, New Jersey, USA.

Sibley, D.A. 2014. The Sibley guide to birds. Second edition. Alfred A. Knopf, New York, USA.

Sinclair, I., P. Hockey, and W. Tarboton. 2002. Sasol birds of southern Africa. Struik Publishers, Cape Town, South Africa. Sinclair, I. and P. Ryan. 2003. Birds of Africa south of the Sahara. Princeton University Press, Princeton, New Jersey, USA. Strange, M. 2000. A photographic guide to the birds of southeast Asia. Princeton University Press, Princeton, New Jersey, USA. Strange, M. 2001. A photographic guide to the birds of Indonesia. Princeton University Press, Princeton, New Jersey, USA. van Perlo, B. 2009. A field guide to the birds of Brazil. Oxford University Press, Oxford, UK.

Wiedenfeld, D.A. and M.M. Swan. 2000. Louisiana Breeding Bird Atlas. Louisiana Sea Grant College Program, Louisiana State University, Baton Rouge, Louisiana, USA (http://www.manybirds.com/atlas/atlas.htm).