
Supplemental Information

Interactions and clusters through time

The distribution of the measured interactions between the stressors changes
when growth is measured at di�erent timepoints (Supplemental Figure 2). Most
calculated interactions are antagonistic at early timepoints (4, 8 hr), and using
the clustering procedure in these timepoints fails to separate the antibiotics by
their mechanism of action (Supplemental Figure 3), since there are not enough
di�erences in the measured interactions between the stressors to clearly dis-
tinguish the clusters. At later timepoints (12h, 24h), there is a gradual shift
towards more synergistic interactions, and the clustering successfully separates
the stressors into functionally related classes.

We attribute the lack of information to distinguish the clusters in early
timepoints to two factors: 1) The interactions at early timepoints depend on
detecting smaller di�erences in growth across the di�erent conditions than in
later timepoints. Furthermore, the interactions must be inferred from measure-
ments of low optical densities, which have large measurement errors. Because of
this, the measured interactions between stressors are much noisier and harder
to distinguish from each other. After the bacterial populations have had more
time to grow under each condition, di�erential growth patterns are easier to
discern and the OD values are more reliable. 2) Some e�ects of the antibiotics
and temperatures in cell physiology (which include the cellular response) may
not be fully realized until later timepoints.

At 12h, monochromatic clustering successfully separates the antibiotics into
their mechanisms of action, but the resulting clustering still shows some in-
consistencies (such as grouping the lowest, middle and highest temperatures
together). Because of this, we chose to use the 24h timepoint for the analysis.
At this timepoint, all antibiotics which share the same mechanism of action
form part of the same cluster and the temperatures cluster in a consistent way
(with no clusters that have skipped intermediate temperatures).
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Supplemental Figures
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Supplemental Figure 1: Median interaction e�ects between antibiotics and tem-

perature after 24 hour growth. The interaction e�ect (ε̃) values are color coded
in a gradient, from synergy (red) to additive (grey) and antagonism (green).
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Supplemental Figure 2: Time-resolved distribution of interaction e�ects. The
distribution of the mean antibiotic and temperature interaction e�ects at the
four measured timepoints (4, 8, 12 and 24 hr) is shown. At hour 4, synergistic
interactions are rare. As time goes by, the antibiotics gradually show their full
e�ects on growth. This results in more synergistic e�ects being apparent, and
an overall shift in the distribution to the left. By hour 24, four modes are
clearly visible in the distribution, corresponding to strong antagonism (≈ −1),
additivity (≈ 0), and moderate (≈ 0.5) and strong (≈ 1) antagonistic bu�ering.
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Supplemental Figure 3: Time-resolved interaction networks. Clusterings con-
structed based on early time point measurements of growth are uninformative
because the observed interactions are less reliable (due to their dependence on
measurements of low optical densities (OD)) and the e�ect of the antibiotics
not being fully realized until later time points.
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Supplemental Figure 4: E�ect of the non-shared interaction penalty α in the

clustering algorithm. The clusters obtained when discretizing the interactions
as in [?] (producing fewer edges in the network than the method used in the
main text) is shown for α = 0 and α = 0.1. The penalty prevents the merging of
clusters with no or few shared edges, thus improving the quality of the clustering
as evaluated by cluster membership of antibiotics with the same mechanism of
action. This penalty makes an especially large di�erence in networks that have
few edges.
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Supplemental Figure 5: Dissimilarity of interactions. A heatmap with the dis-
similarity between the interactions of each pair of conditions (see Methods) is
shown. The dissimilarities are color coded in a gradient from white (more sim-
ilar) to dark blue (more dissimilar). From these results, it is apparent that
temperatures can be similar to multiple classes of antibiotics.

6



ERY

44C

46C

GEN

STR

TMP

TOB

AMP

FOXTET

CPR

LVXNTR

22C

25C

30C37C

CLI

A B

C

Supplemental Figure 6: Interactions and clustering under no salt conditions.

The interaction e�ect (ε̃) values are color coded in a gradient, from synergy
(red) to additive (grey) and antagonism (green). (a) Matrix heatmap of the
mean interaction e�ects. Antibiotics with the same mechanism of action show
similar interaction patterns. (b) Matrix heatmap of the discretized interaction
types used for constructing the edges of the interaction network. (c) Network
clustered into monochromatic classes by the modi�ed Prism2 algorithm (see
Methods).
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Species Background Notes Strain

E. coli REL1206 High-temperature adapted line HA1

E. coli REL1206 High-temperature adapted line HA2

E. coli REL1206 High-temperature adapted line HA3

E. coli REL1206 High-temperature adapted line HA4

E. coli REL1206 High-temperature adapted line HA5

E. coli REL1206 High-temperature adapted line HA6

E. coli REL1206 High-temperature adapted line HA7

E. coli REL1206 High-temperature adapted line HA8

E. coli REL1206 High-temperature adapted line HA9

E. coli REL1206 High-temperature adapted line HA10

E. coli REL1206 Ancestor

E. coli REL1206 REL1206 with mutation rpoB I572F M1

E. coli REL1206 REL1206 with mutation rpoB I572L M2

E. coli REL1206 REL1206 with mutation rpoB I572N M3

Supplemental Table 1: Information of temperature-adapted and related strains.
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Supplemental methods

Rescaling of drug and temperature interactions

The raw interaction values εxy = wxy − wxwy in the same way as in [1], in
accordance to the table below.

Interaction type Growth rates condition Rescaled interaction (ε̃xy) ε̃xy interval

Synergy wxy < wxwy
εxy

|0−wxwy| [−1, 0)
Antagonistic bu�ering wxwy ≤ wxy < min(wx, wy)

εxy

|min(wx,wy)−wxwy| [0, 1)

Antagonistic suppression wxy ≥ min(wx, wy) 1 +
εxy

|1−wxwy| [1,∞)∗

Supplemental Table 2: De�nition of the rescaled deviation from additivity ε̃xy
for the synergy, antagonistic bu�ering and suppression cases, and the interval of
values ε̃xy can take for each interaction type. ∗ While mathematically possible,
ε̃xy values greater than two are uncommon, since it is almost always true that
wxy ≤ 1 (i.e. the growth under conditions (x, y) simultaneously is less than the
growth under optimal conditions).

The modi�ed Prism2 algorithm for monochromatic clustering

The modi�ed Prism2 algorithm used in this work is a variant of hierarchical
clustering, with an added entropy term to penalize non-monochromaticity. Each
node starts in a di�erent cluster, and at each iteration of the algorithm the pair
of clusters (X, Y ) that minimizes the penalty

F (X,Y ) = kDD(X,Y ) + kS (∆S(X,Y ) + α(1− pXY ))

is merged. This procedure is repeated until a single cluster remains, containing
all nodes in the network.

The �rst term in F (X, Y ) corresponds to the standard cost term in hierar-
chical clustering. It penalizes merging clusters that are dissimilar to each other
in terms of their interactions with other clusters. The interaction dissimilarity
between nodes x, y is de�ned as

d(x, y) =
1

N(x, y)

∑
z 6=x,y

(
ˆ̃εxz − ˆ̃εyz

2

)2

whereN(x, y) is the number of interactions with other nodes z 6=x,y (i.e., number
of (ε̃xz, ε̃yz) pairs) that were measured for both conditions x and y. The mean
value of the dissimilarity between all pairs of nodes belonging to clusters (X, Y )

D(X,Y ) =
1

nX · nY

∑
x∈X,y∈Y

d(x, y)

where nX , ny are the number of nodes in clustersX and Y , respectively, is taken
as a measure of the dissimilarity between the clusters. This is another di�erence
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with respect to the previous algorithm. The use of the mean distance between
the antibiotics (average linkage) as the distance between clusters D(X, Y ) is less
sensitive to outliers than the previous choice of the minimum distance (single-
linkage).

The second term in the penalty is based on the information-theoretic concept
of entropy, and penalizes non-monochromatic interactions between clusters X
and Y . The interaction entropy between two clusters is de�ned as

S(~mX,Y ) = −(m+
X,Y +m−X,Y )(p+

X,Y log2 p
+
X,Y + p−X,Y log2 p

−
X,Y )

where m+
X,Y and m−X,Y are the number of red (synergy) and green (antagonism)

edges between clusters X and Y , and p+
X,Y =

m+
XY

m+
XY +m−

XY

, p−X,Y =
m−

XY

m+
XY +m−

XY

are the corresponding proportions (we use the vector ~mX,Y = (m+
XY ,m

−
XY ) as

a shorthand for notational simplicity). Only the entropy of between-clusters
interactions is penalized (but not the entropy of interactions where both nodes
are part of the same cluster). When a pair of clusters X, Y is merged into
clusterM = X ∪Y , the entropy of their interactions S(~mX,Y ) is �hidden� inside
the new cluster and no longer penalized. The change in the interaction entropy
across all the network upon merging is

∆S(X,Y ) = Sgained − Slost

=
∑

Z 6=X,Y

[S(~mM,Z)− S(~mX,Z)− S(~mY,Z)]− S(~mX,Y )

=
∑

Z 6=X,Y

[S(~mX,Z + ~mY,Z)− S(~mX,Z)− S(~mY,Z)]− S(~mX,Y )

where Sgained is the net change in entropy over all interactions X and Y had
with all other clusters, and Slost = S(~mX,Y ) is the entropy lost by the newly
�hidden� interactions between X and Y . Note that in this formulation we chose
to write ∆S with an opposite sign as in [1], to be consistent with the usual
convention that positive values mean increases and negative values decreases.

A third ingredient in the algorithm, which is not present in previous versions,
is the term α(1 − pXY ), where pXY is the proportion of shared edges between
clusters X,Y and α an arbitrary tuning constant. It is always possible to form
monochromatic clusters by simply merging clusters with members which have
no, or few, shared edges, but these clusters need not have similar overall interac-
tions (and thus lack any physiological relevance). This is particularly important
in the earlier steps of the algorithm, where most clusters are small, so there is a
larger proportion of clusters with missing or unknown edge colors. The purpose
of this term is to avoid this problem by penalizing the entropy term so joining
clusters with more shared interactions is favored with respect to clusters with
few (Supplemental Figure 4).

In the penalty F (X,Y ), each term is multiplied by constants that a�ect the
relative weight of each term. We chose kD = 1, kS = 0.1 to be the same values
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as in [1]. The third tuning constant, α = 0.2, is new to this work, and was
chosen to be of roughly the same order of magnitude, but smaller, than the
entropy ∆SXY ∈ [0, 1].

Promoter library data analysis

Background removal

The promoter library is split into six 384-well plates. Besides the GFP-expressing
strains of the library, which are fused to di�erent E. coli promoters, the plates
also contain empty wells and strains with a promoterless plasmid as controls.
The raw measured OD values were background-corrected by subtracting the
mean OD of the empty wells in the same plate at each timepoint. Since the
measurements were done in the absence of the resistance marker of the plasmids
(KAN) to avoid interference with the response to the antibiotics, empty wells
would ocassionally become contaminated with a neighboring strain. Because of
this, the data was �rst processed to remove contaminated wells before calculat-
ing the mean. This was done by excluding all empty wells for which the raw
measured OD was more than 0.3 by the last measured timepoint (20 hours after
exposure to the stressor) from the background calculation.

Background subtraction of the raw GFP �uorescence measurements was
done relative to the promoterless strains in the corresponding plate. A sim-
ple strategy of substracting the mean �uorescence of the promoterless strain
is unsatisfactory since a small number of genes with small �uorescence yield
negative values, which prevent the calculation of log-fold changes. Because of
this, we followed a background-removal strategy similar to that used in RMA,
a popular method for normalizing microarray data [2, 3]. This is a model-based
btechnique in which the measured raw �uorescence intensity Xi is assumed to
be a sum of normally distributed background Bi and strictly positive, exponen-
tially distributed, signal Si. That is, the raw �uorescence measurements are
modeled as

Xi = Bi + Si

Bi ∼ N(µ, σ2)

Si ∼ Exponential(α)

An estimate of the signal (i.e. background-removed measurement) is obtained
by calculating the expected value of the signal given the measured intensity Xi.
The parameters were estimated with the �nonparametric estimator� detailed
in [3]. Brie�y, the parameters (µ, σ2) of the background were estimated with
the sample mean and variance of the promoterless wells (which are assumed to
have only background, no signal) in the corresponding plate. The parameter
α corresponds to the mean of the signal. It was estimated with the di�erence
between the sample means of the measurements of the strains with promoters
and the promoterless strains. Once the parameters are estimated, a closed form
solution, also available in [3], was used to calculate the background-removed
measurement for all promoter-containing strains.
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Data processing

Since the experimental conditions resulted in di�erent overall growth, the background-
removed GFP �uorescence measurements at each timepoint were normalized
by the corresponding OD mesaurement to get a quantity proportional to the
amount of �uorescence per cell. To make replicates comparable, the resulting
GFP/OD values were median-normalized. The median-normalized values were
used to calculate log2-fold changes with respect to the control condition (37◦C).
Four replicates of the log2-fold change were averaged to yield a �nal value of the
log2-fold change in expression at each timepoint of each experimental condition
(44◦C, STR, TET) compared to control.

Finding over-expressed and under-expressed genes

A set of overexpressed and underexpressed genes under each experimental con-
dition was found by the robust z-score method, as in (Reyes et al., 2012). The
robust z-score for promoter p in condition c and time t is given by

z
(r)
cpt =

xcpt −median(xct)

MAD(xct)

where xcpt is the log2-fold change with respect to control of the corresponding
promoter, condition and time, median(xct) is the sample median of the log2-fold
change measurements for all promoters at that timepoint and condition, and

MAD(xct) = 1.4826×median (|xcpt −median(xct)|)

is the median absolute deviation. A gene was considered overexpressed at time

t if z
(r)
cpt > 2.5 and underexpressed if z

(r)
cpt < −2.5. The genes overexpressed and

underexpressed at all timepoints were pooled together to yield a single set of
overexpressed and underexpressed genes for each condition.

Finding IC50 values

The �ve parameter logistic model

IC50 values were found by �tting a �ve-parameter logistic model, which allows
for assymetric dose-response curves, to the drug concentration vs growth data
for each antibiotic. The model is given by

g(c) = gmin + (gmax − gmin)

(
1

1 +
(
cb
c

)n
)s

where g(c) is the growth as a function of the drug concentration c. The IC50
can be calculated as

IC50 =
cb

(2
1
s − 1)

1
n
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Inference of model parameters

This model was �t with a Bayesian procedure, by extending it to a statistical
model. It is important to make the distinction between the observed data values
and the underlying parameters of the model. In statistics, model parameters
are typically given Greek letter notation and observed values Roman letters, but
this convention is inconvenient when dealing with deterministic models, which
use Roman letters throughout. To avoid confusion, we will use the same Roman
letters for parameters that come from the deterministic model, and only use
Greek letters for extra parameters that are needed for the statistical model (e.g.
variances).

Let P = {gmin, gmax, cb, n, s} be the parameters of the logistic model and yci
be the i-th replicate of the OD measurement at drug concentration c. We �t a
model of the form

yci|P, σ ∼ Gamma(µ = g(c), σ = σy(c))

σy(c) = σmin + β [g(c)− gmin]

The model for the standard deviation was motivated by the observation that
the growth measurements tend to have low variance when there is essentially
no growth (at high concentrations), and that the variance increases as the OD
increases. A linear form was chosen for simplicity.

We used the following priors:

IC50 ∼ Uniform(0, 500)

∆g ∼ Uniform(0, 1)

gmin ∼ Gamma(µ = 0.05, σ = 0.02)

lnn ∼ Normal(0, 1.5)

ln s ∼ Normal(0, 1.5)

σmin ∼ Gamma(µ=0.02, σ = 0.02)

β ∼ Gamma(µ = 0.1, σ = 0.3)

(where we reparametrized the model). To recover the original parameters P,
we have that

gmax = gmin + ∆g

n = exp(lnn)

s = exp(ln s)

cb = IC50(2
1
s − 1)

1
n

The motivation for the non-uniform priors is as follows. In the �ve-parameter
logistic model, n determines the steepness of the change in growth as a function
of concentration, and s allows for assymetric curves. When s = 1, the curve
is symmetric and the model reduces to a Hill equation. When s = 1 and
n = 1, the model reduces to a simple Michaelis-Menten-like form. We chose to
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use weakly informative priors for n and s as a form of regularization to keep
the values for n and s in a reasonable range (roughly 1

20 to 20). We chose to
give greater prior probability to models where n and s are close to one due to
the connection to simpler models. The informative prior for σmin represents
that we expect bacterial growth to be essentially zero at very high antibiotic
concentrations, and the variance to consist mostly of measurement error for OD,
which is typically below 0.02 in OD units.

Model �tting

For each antibiotic and strain, the model above was �t to the data using NUTS
(the no-u-turn sampler), a variant of Hamiltonian Monte Carlo, as implemented
in the Python library PyMC3 [5]. Three chains were run for 5000 iterations,
after an initial 1500 samples were used for tuning. The output samples from
the posterior distribution were used to construct a mean estimate and a credible
interval for the IC50 for each antibiotic and strain. For a few strain-antibiotic
combinations, the NUTS chain did not converge (as evaluated by R̂ > 1.2)
or had a low number of e�ective samples (neff < 500). These estimates were
considered unreliable and were removed from the plots and analysis.
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