
 

 

 

 

Abstract— In this study a single experimental protocol and 

analysis pipeline is used: once for MI tasks, and once for covert 

speech tasks. The goal of this study is not to maximizing 

classification accuracy; rather the main objective is to provide 

an identical environment for both paradigms, while identifying 

the most important activities related to the most class 

dependent features. Four volunteers participated in this 

experiment. With four classes, the average classification 

accuracy for covert speech tasks is 82.5%, and for motor 

imagery is 77.2%. The average performance is significantly 

higher than chance level for both paradigms, suggesting that 

the results are meaningful, despite being imperfect. For motor 

imagery tasks the most important activities are the execution of 

imagined movements, and goal driven executive control for 

suppression of overt movements, which also occur for covert 

speech tasks. However, the most important activity for covert 

speech tasks is the linguistic processing stages of word 

production prior to articulation, which does not occur in motor 

imagery. These high-Gamma linguistic processes are extremely 

class dependent, which contribute to the higher performance of 

covert speech tasks, compared to motor imagery in an 

otherwise identical environment. 

I. INTRODUCTION 

 

Motor imagery is a well-established paradigm in BCIs. 
The low-frequency oscillations (< 35 Hz) elicited by “MI” 
activity, have been detectable by EEG for many decades. MI 
does not occur independently and is the end-result of many 
cognitive functions. For example, anticipating an onset cue 
and initiating “imagined” movement after cue recognition 
requires stimulus-driven executive control, with high-Gamma 
activity in regions such as the pre-frontal cortex [1, 2]. To 
take advantage of such class dependent cognitive activity [3, 
4], the entire data bandwidth of the EEG system must be 
utilized [5] (and not only Alpha and Beta bands). Covert 
word production begins with high-Gamma (>70 Hz) 
linguistic processing stages [6-8], followed by motor imagery 
of articulation [9, 10]. Language is exceedingly more 
complex than movement [11] and requires analysis with 
much higher resolution than traditional MI band power [12]. 
However, covert speech is more intuitive and natural for BCI 
communication compared to MI. In this study, a single 
experimental protocol and analysis pipeline is used: once for 
MI tasks, and once for covert speech tasks. The performance 
of the system for each paradigm is calculated and the results 
are discussed.       

 
 

II. METHODS 

 

A. Experiment Protocol 

  In this study, each recording run contains four classes, 

which are shown in the user interface by four arrows: up, 

down, left, and right. Within a recording run, 10 examples of 

each task are presented in a random order (each run has 40 

trials) to avoid user fatigue. During recording, a new task is 

determined by an arrow appearing on the screen for 3 

seconds. After the arrow disappears, there is a 3 second 

standby state. Task onset is presented as a beep sound for all 

classes. A second beep indicates a rest period before the next 

trial. The experimental protocol is presented in figure 1.  

  Each user completes two recording runs, which are 

identical in every way with the exception of type of mental 

task (MI, covert speech). For MI tasks, the four arrows 

represent left hand movement (left arrow), right hand (right 

arrow), left foot (down arrow), and right foot (up arrow). In 

covert speech tasks, the user imagines speaking the 

phonemic structures: BA (back/down arrow), FO 

(forward/up arrow), LE (left arrow), and RY (right arrow), 

which are phonetically very dissimilar tasks [13]. 

 

B. Data Acquisition 

  Four neurologically healthy volunteers participated in 

this experiment. The EEG signals were recorded using an 

Enobio dry electrode system with 20 channels and 10/10 

configuration [14]. Data was recorded at a sampling rate of 

500 Hz and saved in “gdf” format. Compared to wet 

electrode systems, setting up the Enobio is extremely easy. 

However, the quality of recorded signals may restrict the 

number of classes it can use simultaneously. This study 

provides an evaluation of the system’s capability.  

 

 
Figure 1. The experiment protocol for recording four randomly presented 

trials. Each class corresponds to a directional arrow. After task presentation, 
a beep sound is used for all classes as task onset. A second beep indicates a 

rest period before the next task. 
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C. Pre-Processing 

  Recorded data was pre-processed using EEGLAB [15]. 

Data was down-sampled to 256Hz and re-referenced using 

common average. Line noise was removed with an FIR 

notch filter (49.5,50.5Hz). The AAR toolkit [16] was used 

for artefact rejection. EOG and EMG artifacts were reduced, 

with SOBI [17] and CCA algorithms [18] respectively. 

These methods outperform ICA, which is ineffective beyond 

70 Hz [19, 20]. One-second epochs were extracted from the 

pre-processed data and saved as a numeric matrix for further 

analysis.  

 

D. Feature Extraction 

  The discrete Gabor transform [21, 22] was used to 

generate features. The original data can be reconstructed 

from the features with no information loss. Each Gabor 

feature contains information on both time and frequency. In 

this study, a time step of 0.015625 seconds (4 time samples) 

and a frequency band of 2Hz is used. A one-second epoch 

from one channel (256 time samples) is converted into a 

64x64 feature matrix. Figure 2 presents the definition of the 

discrete Gabor transform. This method of feature selection 

makes it possible to identify the type of neural activity from 

the indexes of the features used in classification.  

 

E. Feature Selection and classification 

  Classification true positive rate is estimated by a 5-fold 

cross validation process [23]. In each fold, 8 trials are used 

for feature selection and training the classification object, 

and 2 trials are set aside for testing. The most valuable 

features for distinguishing four classes are discovered by the 

Davies-Bouldin index [24]. Initially, all pair-wise DBI 

matrices are calculated (6 binary combinations with 4 

classes). The four-class DBI is a conservative approximation 

based on the two-class DBIs, which is defined in figure 3. In 

this experiment, 91% of the total computational cost is spend 

on generating the DBI matrix. However, the dimensionality 

of the feature space is significantly reduced. In this study, 

the 3K most valuable features (from a total of 81920) are 

identified and used to train the LDA classifier. Features in 

the test data with the same indexes are used to test the 

performance of the classifier.  
 

 
Figure 2. Definition of Gabor coefficients by implementation of the direct 

discrete Gabor transform and a Gaussian window function. 

 

 
Figure 3. Definition of the Davies-Bouldin index for 4 classes. The most 

valuable features have the smallest DBI. 

 

III. RESULTS 

 

A. Classification Accuracy 

  The true positive rates for one class vs. all, are 

estimated as the mean and standard deviation of the five-fold 

cross validation process. Table 1 contains these results for 

the four participants and both types of cognitive task. The 

reader should kindly consider that the objective of this study 

is not to maximize classification accuracy. The experimental 

protocol and analysis pipeline provided identical 

environments for both paradigms, while identifying the most 

important activities related to the selected features. With 

four classes, the classification accuracy is significantly 

higher than chance level for both paradigms, suggesting that 

the results are meaningful, despite being imperfect.  

 

B. Time-frequency distribution of best features 

  The 60K features identified in the motor imagery 

experiments, are shown in a cumulative joint time-frequency 

plot of the feature space and presented in figure 4. As 

expected, valuable class dependent activity is not limited to 

the Alpha and Beta bands. In addition, the nominal 

bandwidth of (1-125) Hz given by Enobio is confirmed, as 

valuable features are identified in the entire frequency range.  

 

Table 1. True positive rates of one class vs. all. These are estimated using a 
five-fold cross validation process. With four classes, the average 

performance is significantly higher than chance level for both paradigms, 

suggesting that the results are meaningful, despite being imperfect. 
 

 

 

 

 

 

 

 

 

 

 
 

 Covert Speech Motor Imagery 

User 1 85 ± 33.3 80.1 ± 32.7 

User 2 80.5 ± 30.8 68.5 ± 28.1 

User 3 87.3 ± 21.2 83.4 ± 33.4 

User 4 78 ± 18.9 78 ± 30.9 

Average 82.5 ± 24.1 77.2 ± 31.2 
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  Figure 4. The cumulative joint time-frequency plot of the feature 

space containing the most valuable 60K features identified in the motor 

imagery experiments (4 users, five validation folds, and 3K features per 
fold). The (0.73,0.875) second band contains 15.1% of features.  

 

  For motor imagery tasks in this experiment 15.1% of all 

the most valuable features are significantly concentrated 

within the (0.73-0.875) second range. This time period 

corresponds with performing imagined movements and the 

suppression of the Primary Motor Cortex (stopping actual 

movements) via “goal driven executive control”. Such 

executive control involves high-frequency cognitive activity 

in brain regions such as the Superior Parietal Cortex and the 

Pre-Frontal Cortex [1, 2]. 23.2% of all the most valuable 

features are within the Alpha and Beta bands (MI). The other 

76.8% of the features are in the Gamma, and high-Gamma 

bands (cognitive functions). This suggests that in motor 

imagery tasks, cognitive functions generate a significantly 

greater amount of class dependent activity compared to the 

execution movement. 

  Figure 5 presents the cumulative joint time-frequency 

plot of the feature space containing the most valuable 60K 

features identified in the covert speech experiments. 48.8% 

of these features are above 70 Hz, which correspond with the 

linguistic processing functions [8]. These linguistic 

functions, which are entirely class dependent, do not exist in 

motor imagery. This provides a possible explanation for the 

higher classification accuracy of covert speech tasks (82.5%) 

compared to motor imagery tasks (77.2%) in an identical 

environment, considering there is a direct positive 

correlation (with R=0.8822 and P=0) between their 

performances. 

  Considering that tasks are identified before trials begin, 

the cognitively demanding linguistic functions (conceptual 

preparation, Lemma selection) are completed before onset. 

The linguistic functions occurring within trials (phonological 

code retrieval, syllabification) are performed automatically 

by the brain [9] and require no user effort. All other 

cognitive functions within trials (executive control, 

imagined movement) are also present in MI tasks. As a 

result, the cognitive effort of using covert speech tasks and 

MI tasks are virtually identical in this study. 

 
Figure 5. The cumulative joint time-frequency plot of the feature space 

containing the most valuable 60K features identified in the covert speech 

experiments (4 users, five validation folds, and 3K features per fold). 48.8% 
of these features are above 70 Hz. The (0.73,0.875) second band is not as 

prominent as the MI paradigm from figure 4. 

 

IV. DISCUSSION 

 

  The linguistic processing stages of word production 

prior to articulation, which are entirely class-dependent, 

consist of conceptual preparation, Lemma selection, 

phonological code retrieval, and syllabification [25]. By 

incorporating difference in meaning, and difference in 

phonetic structure, for selecting selected covert speech tasks, 

class separability can be significantly enhanced.  

  In this experiment, linguistic class separability is 

maximized by selecting phonetically dissimilar covert 

speech classes [13]. This explains the superior performance 

of covert speech tasks compared to MI tasks in the otherwise 

identical environment designed in this study.  

  Linguistic studies using intra-cranial implants have 

demonstrated that these linguistic processing stages have 

high-Gamma signatures in the (70-170Hz) range [10, 26-

29]. As bandwidth of EEG systems increases and EMG 

removal algorithms become more reliable, covert speech 

BCIs will become much more capable. Although other BCI 

systems (such as MI) will also improve, language, which is 

the most intuitive and natural form of human 

communication, would logically be the preferred paradigm 

of choice for a BCI.  
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