HIF-1a triggers ER stress and CHOP-mediated apoptosis in alveolar epithelial cells,

a key event in pulmonary fibrosis.

Eva Delbrel¹, Abdoulaye Soumare¹, Adnan Naguez¹, Rabab Label¹, Olivier Bernard¹, Alain Bruhat³, Pierre Fafournoux³, Geoffrey Tremblais¹, Dominique Marchant¹, Thomas Gille^{1,2}, Jean-François Bernaudin^{1,2,4}, Patrice Callard⁴, Marianne Kambouchner², Emmanuel Martinod^{1,2}, Dominique Valeyre^{1,2}, Yurdagül Uzunhan^{1,2}, Carole Planès^{1,2}, Emilie Boncoeur¹

Supplementary figure 1. Co-expression of CHOP and HIF-1 α in alveolar epithelial cells of patients with IPF. CHOP and HIF-1 α expression in alveolar epithelial cells in UIP areas of patients with IPF (UIP) (A-C, E-G), and in normal lung sample (D, H, K). Supranuclear localization of CHOP (A, B) and HIF-1 α (E-F) in hyperplastic cells and in pneumocytes in a less fibrotic region (C and G respectively). No labelling was observed for isotype control (L), nor HIF-2 α except a faint nonspecific extracellular one above the ciliated cells in a bronchiolization area (I, J). No labelling was observed for CHOP (D) or HIF-1 α (H) in the alveolar cells in normal lung (D, H). Sections were counterstained with Nuclear Fast Red. Original magnification: x400. Scale bars represent 200 µm.

Supplementary figure 2. Tunicamycin induces UPR pathways activation in AECs. Primary rat AECs were treated with the ER stress inducer tunicamycin (TM, 1 μ g/ml) or with vehicle (ctrl) for 24 h, and protein levels of ATF6, ATF6 α , ATF4, and CHOP were evaluated by western blotting. Representative blot from at least n = 3 independent experiments is shown.

Supplementary figure 3. Modulation of HIF-1 α transactivation activity by YC-1 treatment and by HIF-1 α overexpression. Primary rat AECs transfected with a plasmid encoding for luciferase reporter activity of hypoxia response element (HRE) and treated or not with the HIF-1 α inhibitor YC-1 (10 μ M) were exposed to normoxia (Nx) (21% of O₂) or hypoxia (Hx) (1.5% of O₂) for 24 h (A). A549 were co-transfected with either an empty pcDNA3.1 vector or a plasmid encoding HIF-1 α or a mutated HIF-1 α (HIF-1 $\alpha\Delta$), and with a plasmid coding for

luciferase reporter activity of HRE (B). HRE relative transcriptional activity was evaluated 48 h post-transfection. n = at least 6 experiments. Data were submitted to a Kruskal-Wallis oneway analysis of variance followed by a Dunn's multiple comparison tests. **: P<0.01 and ***: P<0.001: significantly different from control value in normoxic cells (untreated or transfected with pcDNA). #: P<0.05 and ##: P<0.01: significantly different from values in untreated hypoxic cells or in hypoxic cells transfected with pcDNA3.1 plasmid.

Supplementary figure 4. Extinction of HIF-1 α expression by siRNA. A549 cells were transfected with scrambled (scr) or *HIF-1\alpha* siRNA. 24 h post-transfection, A459 cells were placed 24 h hypoxia (0.5% of O₂). HIF-1 α protein levels were evaluated by western blot 48 h post-transfection. n = 3 experiments, data were submitted to a Kruskal-Wallis one-way analysis of variance followed by a Dunn's multiple comparison tests. **: *P*<0.01: significantly different from normoxic condition and #: *P*<0.05: significantly different as compared with hypoxic cells transfected with scrambled siRNA.