Spatial arrangement of several flagellins within bacterial flagella improves motility in different environments

Kühn et al

- Supplementary Information -

This document contains:

Supplementary Figures 1 - 13

Supplementary Tables 1 - 6

Supplementary References

Supplementary Figures

Supplementary Figure 1: Sequence alignment of the polar flagellins of *Shewanella putrefaciens* CN-32. Different residues are marked by brown boxes, different but similar residues are marked by grey boxes. The predicted flagellin domains are given below the sequence. Most differences are located in the variable region, which presumably is exposed to the surrounding medium. The cysteine substitutions sites are also located within this region.

Supplementary Figure 2: Immunoblotting analysis of the polar flagellins and their chaperone FliS. Upper panels = immunoblots, lower panels = corresponding Coomassie-stained PAGE loading controls. **a** Detection of flagellins FlaA and FlaB in flagellin deletion strains and strains lacking two major glycosylation proteins, Maf1 and PseG. The thick arrows indicate the collapsed FlaA and FlaB bands. Likely due to different extents of glycosyl modifications, FlaA and FlaB can be discriminated by their molecular mass (thin arrows). **b** Detection of FlaA and FlaB in strains lacking the sigma factors 54 and 28 (RpoN and FliA, respectively) and other regulatory proteins for flagellar assembly (FlrA and FlrBC). **c** Detection of FLAG-tagged FliS in the same background strains as in **b**. Full blots are shown in Supplementary Fig. 13. **d** Radial expansion of cells producing FLAG-tagged FliS in 0.2% soft agar as control for functional integrity.

Supplementary Figure 3: Cysteine substitutions in the flagellins do not affect swimming motility. Radial expansion of the different filament type strains with cysteine-labeled and wild-type flagellins was tested in 0.2% soft agar. FlaBA was tested separately so it can only be compared internally. In all strains, including wild type, the lateral flagellins were deleted. The strains depicted in the upper row are also shown in Fig. 1 of the main manuscript, however, as a separate experiment. Asterisks indicate that these genes are expressed from the promoter of the other flagellin.

Supplementary Figure 4: Overview of the wild-type and FlaBA filaments essentially as in Fig. 1 of the main text. Additional strains are displayed that produce complete filaments but with only one of the cysteine-labeled flagellins. The glow effect around the filament segment(s) in panels **a** - **f** indicates which of the flagellin segments should be visible in the micrographs of the fluorescently labeled filaments in panels **g** - **I**. The arrows indicate the FlaA portion that is distinguishable from FlaB in the wild type (panel **g**), a faint FlaA signal in the FlaB segment (panel **h**), a gap (unlabeled FlaA) between cell body and the FlaB segment (panel **i**) and the segment where FlaB is expected but not visible in the FlaBA strain (panel **I**), respectively. Scale bars = 2 µm.

Supplementary Figure 5: Overview of the flagellar filaments that are formed by flagellins under the control of the *flaA* promoter. Lateral flagellin genes were always deleted. **a** - **d** Genetic organization of the flagellins and modifications to obtain different filaments. The DNA sequences of the duplicated flagellins were codon-optimized for *E. coli* (ECopt) to prevent recombination with the native flagellin genes. Gene deletions are marked with a cross, swapping of the gene sequences is marked with an asterisk. $P_{flaA/B} = flaA/B$ promoter. **e** - **h** Micrographs of cells with fluorescently labeled flagellar filaments displaying the outcome of the editing of the flagellin genes. All filaments produced only from the *flaA* promoter form very short stubs. Scale bars = 2 µm. **i** - **I** Radial expansion in 0.15% soft agar. Strains producing longer filament stubs can spread further. The numbers indicate the relative spreading compared to the corresponding single flagellin strain (% ± s.d.) of three individual experiments (two for FlaBB stub). **m** Length of the filament stubs measured from fluorescently labeled flagellar filaments. FlaB being produced from the *flaA* promoter forms shorter stubs than FlaA being produced from the same promoter. Duplication of a flagellin gene results in increased but not doubled length. Data points are displayed as individual values measured for 50 filaments for each strain. The boxes span the central half of the data points, the black bars indicate the median. Significance was tested for all combinations of all filament stub types. All tested combinations were significant (*P* < 0.05, Bonferroni corrected).

Supplementary Figure 6: Helix geometry of the different flagellar filament types as measured by fluorescent microscopy. **a** The geometric parameters of the flagellar helices are displayed as individual parameters measured for 50 flagellar filaments for each strain. The boxes span the central half of the data points, the black bars indicate the median. The numbered and colored dots indicate which strain is depicted in the diagram. Arc and Axis length show large cell to cell variations but are essentially very similar for all filament types. The three-dimensional arc length was calculated from the axis length, pitch and diameter. Pitch and diameter are very similar for the three filament types mainly or exclusively consisting of FlaB (wild type (FlaAB), FlaAAB and FlaB-only) as well as for the three filament types mainly or exclusively consisting of FlaA (FlaBA, FlaBBA and FlaA-only). Significance was tested for all combinations of filament types for each parameter individually. In the left diagram significant differences (P < 0.05, Bonferroni corrected) are indicated by an asterisk. In the right diagram only the non-significant differences are indicated (n.s.). **b** Illustration of which parameters were determined.

Supplementary Figure 7: Flagellin transcription levels and overexpression of *flaA*. **a** Relative transcript levels (RTL) quantified by qRT-PCR between the flagellin genes *flaA* and *flaB* of the *Shewanella putrefaciens* CN-32 wild-type strain. Transcription of *flaB* is about twice as high as of *flaA*. RTL for the three biological replicates are shown separately (colored dots) together with the mean value (black bar). The differences in RTL are significant (P < 0.05), indicated by an asterisk. **b** Immunoblotting analysis (with corresponding Coomassie stained PAGE loading control in the lower panels) of the overexpression of *flaA* (and its chaperone *fliS*) from a plasmid in a background strain lacking polar (*flaAB*) and lateral (*flaAB*₂) flagellin genes. The full blot is shown in Supplementary Fig. 13. The wild type without the plasmid (left) produces the native flagellins FlaA and FlaB which can be distinguished by their molecular weight (cp. Supplementary Fig. 2a). In the overexpression strain (right) FlaA is produced from the plasmid with the correct molecular weight, indicating that the post-transcriptional modification is not disturbed (cp. Supplementary Fig. 2a). Expression was induced with anhydrotetracycline (\pm AHT). This strain forms aberrantly long flagellar filaments only consisting of FlaA (micrograph shown in panel **c**) when induced with the same concentration of AHT as is **b**. The calculated arc length of the displayed flagellum is 18.7 µm. Scale bar = 2 µm.

Supplementary Fig. 8: Overview of the flagellin duplication strains. In all strains the genes for the lateral flagellins were deleted. **a**, **b** Genetic organization of the flagellins and genetic modifications to obtain different filament types. The duplicated genes are both under the control of the *flaA* promoter producing two identical flagellin proteins. The DNA sequences of the synthetic flagellins were codon-optimized for *E. coli* (ECopt) to prevent recombination with the native flagellin genes. Swapping of the gene sequences is marked with an asterisk. $P_{flaA/B} = flaA/B$ promoter. **c**, **d** Micrographs of cells with fluorescently labeled flagellar filaments displaying the outcome of the genetic editing of the flagellin genes. Duplication of the upstream flagellin gene increases the length of the proximal flagellin segment, although not doubling it (see also Supplementary Fig. 5). Here, the parameters of the proximal FlaA segment of the FlaAAB filament can be measured as it forms a complete helix turn (numbers in panel c). They fit well to the parameters of the FlaB-only filament, while the parameters of the remaining major segment fit well to the parameters of the FlaB-only filament (cp. Supplementary Fig. 6 and Supplementary Table 4). The proximal FlaB segment of the FlaBBA filament is still not clearly distinguishable from the cell body and the major part of the flagellum (panel **d**, question mark). Scale bars represent 2 µm. **e**, **f** Radial expansion of the flagellin duplication cells in 0.25% soft agar. The numbers indicate the relative spreading compared to the wild type (% ± s.d.) of three individual experiments (cp. Fig. 1 in the main manuscript). The FlaAAB strain performs comparatively well as the wild type and FlaB-only strains, while the FlaBBA strain spreads comparatively to the FlaBA and FlaA-only strains.

Supplementary Figure 9: Experimentally observed screw formation and simulation of screw formation. **a** and **c** are the same data as in Fig. 4 of the main text together with the flagellin duplication strains for comparison. **a**, **b** Screw formation observed for different filaments in regular and high viscosity. Significance was tested for all filament type combinations under both conditions and for each filament type between the two conditions. If no screw was observed at all, significance was not tested. Only the difference between wild type (FlaAB) and FlaAAB filament cells in regular medium is not significant (n.s.; P < 0.05, Bonferroni corrected). Error bars indicate 95% confidence intervals. About 300 cells were counted for each strain. **c**, **d** Observation of screw formation for varying flagellin compositions after a simulation time of t = 60 ms. The diagram in panel **c** is identical with the diagram in Fig. 4b. The simulation data displayed in panel **d** was obtained similarly but this time starting with a flagellum completely composed of FlaA (bottom of the diagram) and successively exchanging the segments to a FlaB configuration starting from the filament's base at the cell pole. The formation of a screw is indicated by blue circles. The color coding represents the z-position of the flagellum's free end, with negative values indicating a position below the motor segment (position 0). Blue-green squares therefore indicate filament instabilities that are, however, not comparable to proper screw formation.

Supplementary Figure 10: The flagellins of *Shewanella oneidensis* MR-1 show a similar spatial distribution as the polar flagellins of *Shewanella putrefaciens* CN-32 in the assembled flagellum. **a** Micrograph of FlaA-cysteine-labeled cells. **b** Micrograph of FlaB-cysteine-labeled cells. The arrow indicates a gap (unlabeled FlaA) between cell body and the FlaB segment. Scale bars represent 2 µm.

Supplementary Figure 11: Exchanging the amino acids of the flagellins FlaA and FlaB at the positions 129 and 134 does not affect the swimming ability of *Shewanella putrefaciens* CN-32 (here: radial expansion in 0.3% soft agar). It was proposed elsewhere that the corresponding homologous amino acids in *Shewanella oneidensis* MR-1 are responsible for the functional differences of the two flagellins ¹. The effect was analyzed in strains only expressing one of the two polar flagellins and both lateral flagellins.

Supplementary Figure 12: Full immunoblots and Coomassie-stained SDS-PAGE gels. **a** Blot and **b** gel of Supplementary Fig. 2a. **c** Blot and **d** gel of Supplementary Fig. 2b. **e** Blot and **f** gel of Supplementary Fig. 2c. Strains marked in grey were backup strains that were not used furthermore. Marker = MARKER VI Pre-colored, AppliChem. **g** Blot and **h** gel of Supplementary Fig. 7b. Expression was induced with anhydrotetracycline (± AHT).

Supplementary Figure 13: Example data of a cell track from the holographic cell tracking. **a** A nearly top-down view of the cell track shown in Fig. 3j of the main manuscript. Swimming speed is encoded by color according to the color bar on the right, and the re-orientation events are highlighted with blue circles. **b** A graph of the cell's change in swimming direction, $d\theta/dt$, as a function of time. Reorientation events are marked by blue circles, at points where $d\theta/dt$ rises above a threshold level of 5 degrees per second.

Supplementary Tables

Supplementary Table 1: Bacterial strains

Identifier	Relevant genotype	Purpose	Reference
Escherichi	ia coli		
DH5α λpir	φ80d/acZ ΔM15 Δ(lacZYA-argF)U169 recA₁ hsdR17 deoR thi-l supE44 gyrA96 relA₁/λpir	cloning strain	2
WM3064	<i>thrB1004 pro thi rpsL</i> <i>hsdS lacZ</i> ΔM15 RP4- 1360 Δ(<i>araBAD</i>) 567Δ <i>dapA</i> 1341::[<i>erm</i> <i>pir</i> (wt)]	conjugation strain	3
Shewanell	a putrefaciens		
S271	CN-32	wild type	4
S2576	<i>ΔflaAB</i> ₂ (Sputcn32_3455-3456)	markerless deletion of both lateral flagellin genes	5
S2575	<i>ΔflaAB</i> ₁ (Sputcn32_2585-2586)	markerless deletion of both polar flagellin genes	5
S4433	ΔflaAB₁; ΔflaAB₂	markerless deletion of both polar and both lateral flagellin genes	this study
S3807	Δ <i>flaA</i> ₁ -ext (Sputcn32_2586)	markerless deletion of polar minor flagellin gene; extended knock-out	6
S3810	Δ <i>flaB₁</i> -ext (Sputcn32_2585)	markerless deletion of polar major flagellin gene; extended knock-out	6
S5179	$\Delta flaB_1; \Delta flaAB_2$	markerless deletion of polar major flagellin gene and both lateral flagellin genes	this study
S4387	$\Delta flaA_1; \Delta flaAB_2$	markerless deletion of polar minor flagellin gene and both lateral flagellin genes	this study
S5165	Δ <i>flaB</i> ₁ ; <i>flaA</i> ₁ (positions swapped); Δ <i>flaAB</i> ₂	markerless insertion of position swapped wild-type <i>flaA</i> ₁ gene and Δ <i>flaB</i> ₁ into Δ <i>flaAB</i> ₁ and deletion of lateral flagellin genes	this study
S4151	<i>flaA</i> 1-S169C	markerless insertion of cysteine-labeled <i>flaA</i> ₁ gene into Δ <i>flaA</i> ₁ -ext	this study
S4152	flaA₁-T174C; ΔflaAB₂	markerless insertion of cysteine-labeled <i>flaA</i> ₁ gene into Δ <i>flaA</i> ₁ -ext and deletion of lateral flagellin genes	6
S4143	<i>flaB</i> ₁-T166C	markerless insertion of cysteine-labeled $flaB_1$ gene into $\Delta flaB_1$ -ext	6
S4154	<i>flaB</i> ₁-T166C; Δ <i>flaAB</i> ₂	markerless insertion of cysteine-labeled $flaB_1$ gene into $\Delta flaB_1$ -ext and deletion of lateral flagellin genes	6
S4352 FlaB-only	ΔflaA₁; flaB₁-T166C; ΔflaAB₂	markerless insertion of cysteine-labeled $flaB_1$ gene into $\Delta flaB_1$ -ext and markerless deletion of $flaA_1$ and $\Delta flaAB_2$	this study

S4401 Wild type	<i>flaA</i> ₁-T174C; <i>flaB</i> ₁- T166C; Δ <i>flaAB</i> ₂	markerless insertion of cysteine-labeled $flaB_1$ gene into $\Delta flaB_1$ -ext and cysteine-labeled $flaA_1$ gene into $\Delta flaA_1$ -ext and deletion of lateral flagellin genes	6
S4794 FlaA-only	Δ <i>flaB</i> ₁ ; <i>flaA</i> ₁ -T174C (positions swapped); Δ <i>flaAB</i> ₂	markerless insertion of position swapped, cysteine-labeled <i>flaA</i> ₁ gene and Δ <i>flaB</i> ₁ into Δ <i>flaAB</i> ₁ and deletion of lateral flagellin genes	this study
S4795 FlaB stub	flaB ₁ -T166C; ΔflaA ₁ (positions swapped); ΔflaAB ₂	markerless insertion of position swapped, cysteine-labeled <i>flaA</i> ¹ gene and $\Delta flaB_1$ into $\Delta flaAB_1$ and deletion of lateral flagellin genes	this study
S5219 FlaA stub	flaA₁-T174C; ΔflaB₁; ΔflaAB₂	markerless insertion of cysteine-labeled $flaA_1$ gene into $\Delta flaA_1$ -ext and deletion of deletion of polar major flagellin gene and lateral flagellin genes	this study
S5538	flaB ₁ ; flaA ₁ -T174C (positions swapped); ΔflaAB ₂	markerless insertion of wild-type <i>flaB</i> 1 gene downstream of the <i>flaA</i> 1 promoter into S4794	this study
S5539 FlaBA	flaB ₁ -T166C; flaA ₁ - T174C (positions swapped); ΔflaAB ₂	markerless insertion of cysteine-labeled <i>flaB</i> ₁ gene downstream of the <i>flaA</i> ₁ promoter into S4794	this study
S5705 FlaAAB	flaA ₁ -T174C; flaA ₁ - T174C (<i>E. coli</i> optimized); flaB ₁ -T166C; ΔflagAB ₂	markerless insertion of cysteine-labeled <i>flaA</i> 1 and an additional <i>E. coli</i> optimized <i>flaA</i> 1 into S4352	this study
S5706 FlaAA stub	flaA ₁ -T174C; flaA ₁ - T174C (<i>E. coli</i> optimized); Δ flaB ₁ ; Δ flagAB ₂	markerless insertion of cysteine-labeled $flaA_1$ and an additional <i>E. coli</i> optimized $flaA_1$ and $\Delta flaB_1$ into S4433	this study
S5707 FlaBBA	flaB ₁ -T166C; flaB ₁ - T166C (<i>E. coli</i> optimized); flaA ₁ -T174C (positions swapped); ΔflagAB ₂	markerless insertion of cysteine-labeled <i>flaB</i> ₁ and an additional <i>E. coli</i> optimized <i>flaB</i> ₁ downstream of the <i>flaA</i> ₁ promoter into S4794	this study
S5708 FlaBB stub	flaB ₁ -T166C; flaB ₁ - T166C (<i>E. coli</i> optimized); ΔflaA ₁ (positions swapped); ΔflagAB ₂	markerless insertion of cysteine-labeled $flaB_1$ and an additional <i>E. coli</i> optimized $flaB_1$ downstream of the $flaA_1$ promoter and $\Delta flaA_1$ into S4433	this study
S3142	Δ <i>rpoN</i> (Sputcn32_0715)	markerless deletion of the <i>pseG</i> gene (sigma factor 54)	this study
S2673	Δ <i>fliA</i> ₁ (Sputcn32_2559)	markerless deletion of the <i>fliA</i> ₁ gene (sigma factor 28)	this study
S3139	Δ <i>flrA</i> ₁ (Sputcn32_2580)	markerless deletion of the flrA1 gene	this study
S3174	Δ <i>flrBC</i> (Sputcn32_2578- 2579)	markerless deletion of the <i>flrB</i> and <i>flrC</i> genes	this study
S3864	Δ <i>maf1</i> (Sputcn32_2630)	markerless deletion of the maf1 gene	this study
S3863	Δ <i>pseG</i> (Sputcn32_2626)	markerless deletion of the <i>pseG</i> gene	this study
S4440	pBTOK-RBS- <i>fliS</i> ₁-RBS- <i>flaA</i> ₁-T174C	stable integration of overproduction vector pBTOK producing the full length proteins FliS1 and FlaA1	this study

S4441	ΔflaA₁; ΔflaAB₂ pBTOK-RBS-fliS₁-RBS- flaA₁-T174C	markerless deletion of polar minor flagellin gene and both lateral flagellin genes and stable integration of overproduction vector pBTOK producing the full length proteins FliS ₁ and FlaA ₁	this study
S4442	ΔflaAB₁; ΔflaAB₂ pBTOK-RBS-fliS₁-RBS- flaA₁-T174C	markerless deletion of both polar flagellin genes and both lateral flagellin genes and stable integration of overproduction vector pBTOK producing the full length proteins FliS ₁ and FlaA ₁	this study
S3127	Δ <i>fliS</i> ₁ (Sputcn32_2581)	markerless deletion of the <i>fliS</i> ¹ gene	this study
S4394	<i>fliS₁</i> -FLAG	markerless insertion of the <i>fliS</i> ₁ gene with a c-terminal FLAG-tag	this study
S3791	<i>ΔflaB₁; flaA</i> ₁-S129N- N134T	markerless insertion of amino-acid-swapped <i>flaA</i> 1 gene into Δ <i>flaA</i> 1 and deletion of polar major flagellin gene	this study
S3792	<i>ΔflaA₁; flaB₁</i> -N129T- T134N	markerless insertion of amino-acid-swapped $flaB_1$ gene into $\Delta flaB_1$	this study

Shewanella oneidensis

S565	MR-1	wild type	7	
S1021	ΛflaA (SO 3238)	markerless deletion of polar minor flagellin	8	
	<u> </u>	gene		
S1020	∆ <i>flaB</i> (SO_3237)	markerless deletion of polar major flagellin	8	
		gene	0	
\$1858	fla∆_T121C	markerless insertion of cysteine-labeled flaA	this study	
34000	11aA-11210	gene into ∆ <i>flaA</i>	tins study	
Q1057	flaB_S17/C	markerless insertion of cysteine-labeled flaB	this study	
04007		gene into Δ <i>flaB</i>	uns study	

Supplementary Table 2: Plasmids

Name	Insert	Purpose	Reference
pNPTS138-R6KT	<i>mob</i> RP4+ <i>ori</i> -R6K <i>sacB</i> β-galactosidase fragment alpha Km ^r	suicide plasmid for in-frame deletions or integrations	9
pNPTS138-R6KT- flag-clusterI-KO	∆ <i>flaAB₁</i> (Sputcn32_ 2585-2586)	in-frame deletion fragment	5
pNPTS138-R6KT- flag-clusterII-KO	∆ <i>flaAB</i> ₂ (Sputcn32_ 3455-3456)	in-frame deletion fragment	5
pNPTS138-R6KT- <i>flaA₁</i> -KO-ext	∆ <i>flaA₁</i> (Sputcn32_2586)	in-frame deletion fragment	6
pNPTS138-R6KT- <i>flaB₁</i> -KO-ext	∆ <i>flaB</i> ₁ (Sputcn32_2585)	in-frame deletion fragment	6
pNPTS138-R6KT- <i>flaA₁</i> -S169C	<i>flaA₁</i> -S169C (Sputcn32_2586)	in-frame insertion fragment; serine 169 substituted with cysteine	this study
pNPTS138-R6KT- <i>flaA₁</i> -T174C	<i>flaA₁</i> -T174C (Sputcn32_2586)	in-frame insertion fragment; threonine 174 substituted with cysteine	6
pNPTS138-R6KT- <i>flaB₁</i> -T166C	<i>flaB₁</i> -T166C (Sputcn32_2585)	in-frame insertion fragment, threonine 166 substituted with cysteine	6

pNPTS138-R6KT-	flaB ₁ -S174C	in-frame insertion fragment; serine	6
pNPTS138-R6KT- flaB ₁ -KO - flaA ₁ - T174C (positions swapped)	ΔflaB₁ (Sputcn32_2585) - flaA₁-T174C (Sputcn32_2586)	in-frame insertion fragment; $\Delta flaB_1$ replaces $flaA_1$ and $flaA_1$ replaces $flaB_1$; threonine 174 of $flaA_1$ substituted with cysteine	this study
pNPTS138-R6KT- <i>flaB₁</i> -T166C - <i>flaA₁</i> -KO (positions swapped)	flaB₁-T166C (Sputcn32_2585) - ∆flaA₁ (Sputcn32_2586)	in-frame insertion fragment; $flaB_1$ replaces $flaA_1$ and $\Delta flaA_1$ replaces $flaB_1$; threonine 166 of $flaB_1$ substituted with cysteine	this study
pNPTS138-R6KT- <i>flaB₁</i> -KO - <i>flaA₁</i> (positions swapped)	∆ <i>flaB</i> ₁ (Sputcn32_2585) - flaA₁ (Sputcn32_2586)	in-frame insertion fragment; $\Delta f laB_1$ replaces flaA ₁ and flaA ₁ replaces flaB ₁	this study
pNPTS138-R6KT- <i>flaB₁</i> (positions swapped)	<i>flaB₁</i> -T166C (Sputcn32_2585)	in-frame insertion fragment; <i>flaB</i> ¹ replaces deletion fragment of <i>flaA</i> ¹	this study
pNPTS138-R6KT- <i>flaB₁</i> -T166C (positions swapped)	<i>flaB</i> ₁-T166C (Sputcn32_2585)	in-frame insertion fragment; <i>flaB</i> ¹ replaces deletion fragment of <i>flaA</i> ¹ ; threonine 166 of <i>flaB</i> ¹ substituted with cysteine	this study
puc57-KAN- <i>flaA₁</i> (<i>E. coli</i> optimized)	flaA₁ (E. coli optimized)	synthetic <i>flaA</i> ¹ of <i>Shewanella</i> <i>putrefaciens</i> CN-32 codon optimized for <i>Escherichia coli</i> K-12 to prevent recombination with the native <i>flaA</i> ¹	this study
puc57-KAN- <i>flaB₁</i> (<i>E. coli</i> optimized)	flaB₁ (E. coli optimized)	synthetic <i>flaB</i> ¹ of <i>Shewanella</i> <i>putrefaciens</i> CN-32 codon optimized for <i>Escherichia coli</i> K-12 to prevent recombination with the native <i>flaB</i> ¹	this study
pNPTS138-R6KT- double- <i>flaA₁</i> - for <i>ΔflaA</i> ₁	<i>flaA₁</i> -T174C; <i>flaA₁</i> -T174C (<i>E. coli</i> optimized)	in-frame insertion fragment; $flaA_1$ and an additional <i>E. coli</i> optimized $flaA_1$ replace the deletion fragment of $flaA_1$; threonine 174 of both $flaA_1$ genes substituted with cysteine	this study
pNPTS138-R6KT- double- <i>flaA₁</i> - for <i>ΔflaAB</i> ₁	flaA₁-T174C; flaA₁-T174C (<i>E. coli</i> optimized); ΔflaB₁	in-frame insertion fragment; $flaA_1$ and an additional <i>E. coli</i> optimized $flaA_1$ and deletion of $flaB_1$ replace the deletion fragment of $flaAB_1$; threonine 174 of both $flaA_1$ genes substituted with cysteine	this study
pNPTS138-R6KT- double- <i>flaB</i> ₁ - for Δ <i>flaB</i> ₁ <i>flaA</i> ₁ (position swapped)	flaB₁-T166C; flaB₁-T166C (<i>E. coli</i> optimized) (positions swapped)	in-frame insertion fragment; $flaB_1$ and an additional <i>E. coli</i> optimized $flaB_1$ replace the position swapped deletion fragment of $flaB_1$; threonine 166 of both $flaB_1$ genes substituted with cysteine	this study
pNPTS138-R6KT- double- <i>flaA₁</i> - for <i>ΔflaA₁</i>	flaB₁-T166C; flaB₁-T166C (<i>E. coli</i> optimized); ΔflaA₁ (positions swapped)	in-frame insertion fragment; $flaB_1$ and an additional <i>E. coli</i> optimized $flaB_1$ and deletion of $flaA_1$ (position swapped) replace the deletion fragment of $flaAB_1$; threonine 166 of both $flaB_1$ genes substituted with cysteine	this study

pNPTS138-R6KT- <i>rpoN</i> -KO	Δ <i>rpoN</i> (Sputcn32_0715)	in-frame deletion fragment	this study
pNPTS138-R6KT- <i>fliA₁</i> -KO	Δ <i>fliA₁</i> (Sputcn32_2559)	in-frame deletion fragment	this study
pNPTS138-R6KT- <i>flrA</i> ₁-KO	<i>ΔflrA₁</i> (Sputcn32_2580)	in-frame deletion fragment	this study
pNPTS138-R6KT- flrBC-KO	Δ <i>flrBC</i> (Sputcn32_2578-79)	in-frame deletion fragment	this study
pNPTS138-R6KT- maf1-KO	Δ <i>maf1</i> (Sputcn32_2630)	in-frame deletion fragment	this study
pNPTS138-R6KT- pseG-KO	Δ <i>pseG</i> (Sputcn32_2626)	in-frame deletion fragment	this study
pNPTS138-R6KT- fliS₁-KO	Δ <i>fliS</i> ₁ (Sputcn32_2581)	in-frame deletion fragment	this study
pNPTS138-R6KT- <i>fliS₁</i> -FLAG	fliS₁-FLAG (Sputcn32 2581)	in-frame insertion fragment; c-terminal FLAG-tagged version of <i>fliS</i> 1	this study
pNPTS138-R6KT- <i>flaA</i> 1-S129N-N134T	<i>flaA</i> ₁ -S129N-N134T (Sputcn32_2586)	in-frame insertion fragment; amino acid swap with <i>flaB</i> 1	this study
pNPTS138-R6KT- <i>flaB</i> ₁-N129T-T134N	<i>flaB</i> ₁ -N129T-T134N (Sputcn32 2581)	in-frame insertion fragment; amino acid swap with <i>flaA</i> 1	this study
рВТОК	pBBR1-MCS2 backbone (pBBR origin, Km ^r); TetR, Promoter and multiple cloning site of pASK-IBA3plus and <i>E. coli</i> rrnB1 T1 and lambda phage T0 terminator	overproduction plasmid inducible with anhydrotetracycline	10
pBTOK-RBS- <i>fliS₁-</i> RBS- <i>flaA₁</i> -T174C	RBS- <i>fliS₁</i> - (Sputcn32_2581) - RBS- <i>flaA</i> ₁-T174C (Sputcn32_2586)	overproduction of wild-type <i>fliS</i> ¹ and cysteine-labeled <i>flaA</i> ¹ , both with the ribosome binding site sequence AGGAGG; threonine 174 of <i>flaA</i> ¹ substituted with cysteine	this study

Supplementary Table 3: Oligonucleotides

#	Name	Sequence 5'-3'	Purpose
B 31	BamHI-flagL-	AGG ATC CTG ACA CTG TAT TTA	
0.51	fwd	TGG CGC AGG	
B 32	OI flag rev	CAG TAG ACC GTG AAC ACC TAA	construction of in-frame
D 32	OL-llage-lev	CAT ATT AAT TCT CCA G	deletion vector
B 33	OI flag fwd	GGT GTT CAC GGT CTA CTG CGT	pNPTS138-R6KT-
Б 55	OL-HayL-Iwu	TAA TCT AGC TC	R6KT-flag-clusterII-KO
P 24	PspOMI-flagL-	TGT CGG GCC CGT CGC CGT CGC	
D 34	rev	ATT TTC GC	
B 35	Check-flagL-fwd	GTA TTA GCT TCG ATC GGG ATT GG	abook primor for fla AP.
B 36	Check-flagL-rev	GTT ACC CTT TGG CGC ATC GG	
P /5	EcoPI flogP fud	A GAA TTC GAA GTT AAA GTG TCT	
D 43	ECONI-IIAGE-IWU	GGG AAA CCC	construction of in-frame
P 46	OL flogB roy	TCA CCT CTT AAC TGT AAT AGC	deletion vector
D 40	OL-nayP-lev	CAT AGT ATT TTC CTC	

B 47	OL-flagP-fwd	ATT AC AGT GA	A GTT I AGG	AAG GA	AGG	TGA	GAC		pNPTS138-R6KT-
B 48	PspOMI-flagP-	т ста	GGG C	CC T.	AA G	CC TO	CT G	ГΤ	R6KT-flag-clusterI-KO
	rev	TTC AT	C AAA	AGC	С				
B 49	Check-flagP-fwd	AAT TT	T GAT	GCG	ACT	ACC	CCC	G	check primer for flaAB
B 50	Check-flagP-rev	TAT CT	A GAC	CTG	ACC	CCA	TGC	С	
MJK 26	OL_flaA1_KO_	GTG AC	A GCG	CAA	TAG	CCA	TAG		
	ext_rv	TAT TT	T CCT	CTT	СТА	AG			
MJK 27	OL_flaA1_KO_	TAT GG	C TAT	TGC	GCT	GTC	ACT		construction of in-frame
	ext_fw	ACT GG	G ATA	ATT	TAC	~	~		deletion vector
FR 299	EcoRV_flaA1_	GAA 'I''I'	C GTG	GAT	CCA	GA'I'	GAA		PNPISI38-ROKI-
	KO_IW	CAA CC			CAC				
FR 302	KO rv	TCG CA	C CTT	CAG	AAA	UA1 TTT	GCA		
	OL flaB1 KO	AGG CC	A CTT	GGG	CCA	TGA	TCG		
MJK 28	ext rv	TTT CC	T CTG	TA	0 011	1 011	100		
	_ OL_flaB1_KO	GAT CA	T GGC	CCA	AGT	GGC	CTT		construction of in-frame
MJK 29	ext_fw	ATC AC	T GCT	GTA	ATA	G			deletion vector
	EcoRV_flaB1_	GAA TT	C GTG	GAT	CCA	GAT	ATA		pNPTS138-R6KT-
FR 295	KO_fw	ACC AA	C GTG	CAG	CGT	TAG	G		<i>flaB</i> ₁-KO-ext
FR 208	EcoRV_flaB1_	CAA GC	T TCT	CTG	CAG	GAT	CAG		
117 200	KO_rv	CTA AT	G CCA	ACG	CTT	CTT	С		
MJK 76	FlaA1-S169C-R	CCA TT	A AAC	ACC	CCG	CAT	TAT		construction of in-frame
		TGG TA	СС						insertion vector
MJK 77	FlaA1-S169C-F	ATG CG	G GGT	GTT	TAA	TGG	TTA		pNPTS138-R6KT-
		GTA CA	T TAA	A CG	መ እ እ	CCA	ጥጥአ		naA1-5109C
MJK 78	FlaA1-T174C-R	AAC TO	A AAC	CAT	ТАТ	TGG	IIA		insertion vector
		TGG TT	A GTT	GTT	TAA	CGA	TTG		pNPTS138-R6KT-
MJK 79	FlaA1-T174C-F	CAA CT	T CAG	GTG	GTC	G	-		flaA ₁ -T174C
		CTG AT	G CAC	AGG	TTT	TTG	ACA		construction of in-frame
IVIJK OZ	FIAD 1-1 100C-R	CAG AA	A TCG						insertion vector
MJK 83	FlaB1-T166C-F	CAA AA	A CCT	GTG	CAT	CAG	CAT		pNPTS138-R6KT-
		TAA AA	G TTG	G					<i>flaB</i> ₁-T166C
MJK 86	FlaB1-S174C-R	ATA TC	T AAA	CAA	CCA	ACT	TTT		construction of in-frame
		AAT GC	r gan	GC	3 0 3				
MJK 87	FlaB1-S174C-F	AGT TG	G TTG C TCC	1.1.1	AGA	TAT	TAA		pnP13130-R0R1- flaB1_S1740
		GCA GT	G ATA	AGG	CCA	СТТ	GGG		
MJK 186	A1us-oeB1ko-R	CCA TA	g tat	TTT	CCT	CTT	CTA		
		AGT AT	C TTG	С					
		CCA AG	T GGC	CTT	ATC	ACT	GCT		construction of in-frame
MJK 187	A1ds-oeB1ko-F	GTA AT	T TAC	TAA	GCA	GAA	CAT		insertion vectors
		ATC AA	T ACA	GGA	CGT	TGC			pNPTS138-R6KT-
MJK 188	B1us-oeA1-R	ΤΑΑ ΤΑ	G CCA	TGA	TCG	TTT	CCT		flaB-KO - flaA ₁
		CTG TA	T ACC						(positions swapped) and
MJK 189	A1-oeB1us-F	GGA AA	C GAT	CAT	GGC	TAT	TAC		PNPIS138-R6KT-
		AGT TA	n TAC		UGT'	GAC	CULA		(nositions swanned)
MJK 190	A1-oeB1ds-R	GTG AC	A GCC	ATT C	ATC	CCA	GTA		(positions swapped)
		ACT GG	. 300 G ата	ОТА	GAA	AGC	AAG		
MJK 191	B1ds-oeA1-F	AGG TG	A GAC	AGT	G				

MJK 180	A1us-oeB1_R	TAA TG CTT CI	G CCA A AGT	TAG ATC	TAT TTG	TTT C	CCT		
M.IK 181	B1-oeA1us F	GGA AA	A TAC	TAT	GGC	CAT	TAC		
	BT 00/1100_1	AGT AA	A CAC	TAA	CG				
MJK 182	B1-oeA1ds_R	GCT TA	G TAA	ATT	ACA	GCA	GTG		construction of in frame
		AIA AG	С ССА Т СТА	. כ ביייי	ͲϪϹ	ጥልል	GCA		insertion vector
MJK 183	dsA1-oeB1 F	GAA CA	T ATC	AAT	ACA	GGA	CGT		pNPTS138-R6KT-
		TGC							flaB₁-T166C - flaA₁-KO
		CCA GI	A GTG	ACA	GCG	CAA	TAG		(positions swapped)
MJK 184	usB1-oeA1ko_R	CCA TG	A TCG	TTT	CCT	CTG	TAT		
		ACC	a	080	3.00	100	000		
M IK 185	Blds-oeAlko E	דאד דפ מידמ מידמ	с сст а саа	ACC	ACT	ACT	GGG TGA		
MOIX 100	BI03-00AINO_I	GAC AG	T GAT	AGG	1110	1100	1 0/1		
		GTG TI	T ACT	GTA	ATG	GCC	ATA		
WJR 200		GTA TI	T TCC	TCT	TCT	AAG	TAT	С	construction of in-frame
MJK 259	FlaB F	ATG GC	C ATT	ACA	GTA	AAC	ACT		insertion vectors
	-	AAC G		ШСЛ	መአአ	CCC	CAC		pNPTS138-R6KT- <i>flaB</i> ₁
MJK 260	FlaB_R	TTG	G CAG	IGA	IAA	GGC	CAC		(positions swapped) and
		CAA GI	G GCC	TTA	TCA	CTG	CTG		pNPTS138-R6KT-
MJK 261	OL_FIAB_PS_F	TAA TI	T AC						flaB ₁ -1166C (positions swapped)
MJK 262	Eco_FlaB_PS_	GCC AA	G CTT	CTC	TGC	AGG	ATT		swapped)
	R	TGC AC	C TTC	AGC	GAT	CTG	GG		
M.IK 270	OL FIAA-A R	TCG AA	С ТТС Т ТАТ	CCC	AGT	AGT	GAA		
MOR 270		AGC GC		000	1101	1101	0110		construction of in-frame
		TTC GA	т тст	TAG	AAG	AGG	AAG		
MJK 271	OL_A-FlaA_F	CAA AI	A TGG	CTA	TTA	CGG	TTA		double-flaA ₁ - for Δ flaA ₁
		ACA CG	A ATG	TAA	CAT	С	חת ג		and pNPTS138-R6KT-
MJK 272	OL_A-HOM_R	TAG CC	C AGA	AGC	GAC	AGC	G		double- <i>flaA</i> 1 - for
		TTT AC	T AAG	CAG	AAC	ATA	TCA		∆flaAB₁
MJK 273	OL_HOM-A_F	ATA CA	g gac	G					
		ATT TG	C TTC	CTC	TTC	TAA	GAA		
MJK 274	OL_FlaB-B_R	TCG AA	T TAC	AGC	AGT	GAT	AAG		construction of in-frame
		TTC GA	T TGA T TCT	TAG	AAG	AGG	AAG		nNPTS138-R6KT-
MJK 275	OL_B-FlaB_F	CAA AI	A TGG	CAA	TTA	CCG	TGA		double- <i>flaB</i> ^{1} - for $\Delta flaB$ ^{1}
		ATA CA	A ACG	TTA	С				and pNPTS138-R6KT-
		GAT AT	G TTC	TGC	TTA	GTA	AAT		double- <i>flaB</i> ₁ - for
MJK 276	OL_B-HOM_K	TAT AA	a aga c	CTC	AA'I'	GCC	AC'I'		ΔπαΑΒ ₁
MJK 277	check inBsth R	GCG AI	C CTA	CCT	TCA	ATG	CAG		
	check outBsth		~ ~			~ -			check primer for double
MJK 278	R	AGT AG	g caa	AAG	CAA	CGT	CCT	G	tlagellin constructs (flaA ₁
MJK 279	check_inAsth_R	CGT TG	T TTG	TGC	CTA	CGC	ΤG		anu/ui liadij
FR 44	Nhel_rpoN_KO_	GTA GC	T AGC	GAA	GAA	CGC	GAA		
	fw	GAA GA	A CTG	G	0.55		mor		construction of in-frame
FR 45	OL_rpoN_KO_	TAC CG	А ААС С ТСА	TCG	CTT	TCA	TGT		aeletion vector
				- U					

FR 46	OL_rpoN_KO_	CAT	GAA	AGC	GAG	TTT	ATA	GCC		
111 10	fw	TAC	TAT	GGA	TAT	CGG				pNPTS138-R6KT-
FR 47	PspOMI_rpoN_	TCC	GGG	CCC	CGT	TAC	СТА	TAC		rpoN-KO
	KO_rv	CTG	TGC	TCC						
FR 76	check_rpoN_fw	СТА	TGC	ATC	TTC	GCG	CCC	G		check primer for <i>rpoN</i>
FR 77	check_rpoN_rv	CGC	TTT	CAT	GTT	ACC	GCT	GAT	С	, ,
B 262	EcoRI-fliA1-KO-	CGA	ATT	CCG	TGC	TTT	CAG	TGA		
-	fwd	GAT	GCG		~~~~			~ ~ ~		
B 263	OL-fliA1-KO-rev	GAG	CTT	AGC	GGC	TTTT C	A'1''1'	CAC		construction of in-frame
		D D D T C G		GCC	CCT		CTTC	AAC		
B 264	OL-fliA1-KO-fwd	CAC	TGG	ACA	TAA	ANG	CIC	ANG		fliA₁-KO
	PspOMI-fliA1-	TCC	GGG	CCC	CAA	CTA	AAT	GCT		
B 265	KO-rev	GAG	CCT	GCT	С					
D 066	Check-fliA1-KO-				<u>с</u> шл					
B 200	fwd	GCA	CCC	AAG	GTA	TGG	TGG	AAC		check primer for fliA
B 267	Check-fliA1-KO-	TGC	AAG	TTC	TCT	AAA	TAA	ATC		
D 201	rev	ATC	AGC							
FR 68	Nhel_flrA1_KO_	GTA	GCT	AGC	AGT	AAT	AGT	TTG		
	new_fw	AAC	ATG	GAT	GAA	GG		~~~		
FR 69	OL_flrA1_new_	AAG	AC'I'	A'I''I'	CAT	CTG	.111.	GCA		construction of in-frame
	$\int \int dr \Delta f dr$	CCA	AAC	AGT	AGG		CTTC	ጥጥጥ		
FR 70	fw	TGC	АТТ	TTTT	AGT	ТАТ	ATT	ттт Атт	G	flrA-KO
	PspOMI flrA1	TCC	GGG	CCC	CAG	ATA	ACC	GCT	-	
FR 71	KO_rv	GCA	GAT	GTG						
ED 24	Check-flrA1-KO-	GCT	AAC	TTG	AAT	AAT	GAT	GTG		
FK 34	fwd_new	AAA	GC							check primer for flrA
FR 35	Check-flrA1-KO-	CCG	GAG	ጥጥል	AAG	GAG	таа	ТGG	С	
1100	rev_new	000	0110			0110		100	Ŭ	
FR 134	Nhel-flrBC1-KO-	GTA	GCT	AGC	CGC	ACT	TGT	ACC		
		GTC	GCT	TC	A C A	CCT	CCT	አመሮ		
FR 135		CGA	GAT	ATG	GGG	GCI	CGI	AIG		construction of in-frame
	OI -flrBC1-KO-	TCG	CAT	ACG	AGC	TGT	TTG	СТА		deletion vector
FR 136	fwd	GTG	TGC	TTA	AAT	GTC		0111		pNPTS138-R6KT-
	PspOMI-flrBC1-	TCC	GGG	CCC	GGA	ACA	TGC	ATG		flrBC-KO
FR 137	KO-rev	GTC	TGG	CAA	С					
FR 138	Check-flrBC1-	GCA	GAT	TGC	САА	CGC	AAG	GAT	С	
11010	KO-fwd	0011	0111	100	01111	000	1010	0111	C	check primer for <i>flrBC</i>
FR 139	Check-flrBC1-							~~ 1		
		CTA	CGT	GTG	TTG	CAA	GAG	CGA	G	
	KO-rev	CTA	CGT	GTG	TTG	CAA	GAG	CGA	G	
MK 98	KO-rev EcoRV_KO_Maf	CTA GAA	CGT TTC	GTG GTG	TTG GAT	CAA CCA	GAG GAT	GTC	G	
MK 98	KO-rev EcoRV_KO_Maf 1_US_fw	CTA GAA GGA	CGT TTC GGC	GTG GTG CAG	GAT GAT	CAA CCA AGT	GAG GAT TG	GTC	G	
MK 98 MK 99	KO-rev EcoRV_KO_Maf 1_US_fw OL_KO_Maf1_ US_rv	CTA GAA GGA AAA GCA	CGT TTC GGC GTG TAT	GTG GTG CAG GTG TTT	TTG GAT TTT GGG CCT	CAA CCA AGT TTT C	GAG GAT TG GTA	GTC GTT	G	construction of in-frame
МК 98 МК 99	KO-rev EcoRV_KO_Maf 1_US_fw OL_KO_Maf1_ US_rv OL_KO_Maf1	CTA GAA GGA AAA GCA ACT	CGT TTC GGC GTG TAT ACA	GTG GTG CAG GTG TTT AAC	TTG GAT TTT GGG CCT CCC	CAA CCA AGT TTT C ACC	GAG GAT TG GTA ACT	GTC GTT TTA	G	construction of in-frame deletion vector pNPTS138-R6KT-
МК 98 МК 99 МК 100	KO-rev EcoRV_KO_Maf 1_US_fw OL_KO_Maf1_ US_rv OL_KO_Maf1_ DS_fw	CTA GAA GGA AAA GCA ACT GCC	CGT TTC GGC GTG TAT ACA CTA	GTG GTG CAG GTG TTT AAC ATA	TTG GAT TTT GGG CCT CCC TTG	CAA CCA AGT TTT C ACC	GAG GAT TG GTA ACT	GTC GTT TTA	G	construction of in-frame deletion vector pNPTS138-R6KT- <i>maf1</i> -KO
МК 98 МК 99 МК 100	KO-rev EcoRV_KO_Maf 1_US_fw OL_KO_Maf1_ US_rv OL_KO_Maf1_ DS_fw	CTA GAA GGA AAA GCA ACT GCC GCC	CGT TTC GGC GTG TAT ACA CTA AAG	GTG CAG GTG TTT AAC ATA CTT	GAT TTT GGG CCT CCC TTG CTC	CAA CCA AGT TTT C ACC TGC	GAG GAT TG GTA ACT AGG	GTC GTT TTA AT	G	construction of in-frame deletion vector pNPTS138-R6KT- <i>maf1</i> -KO
МК 98 МК 99 МК 100 SH 555	KO-rev EcoRV_KO_Maf 1_US_fw OL_KO_Maf1_ US_rv OL_KO_Maf1_ DS_fw Maf1 dwn rev	CTA GAA GGA AAA GCA ACT GCC GCC CTA	CGT TTC GGC GTG TAT ACA CTA AAG CGA	GTG CAG GTG TTT AAC ATA CTT ACA	GAT TTT GGG CCT CCC TTG CTC CCG	CAA AGT TTT C ACC TGC GCA	GAG GAT TG GTA ACT AGG CC	GTC GTT TTA AT	G ITG	construction of in-frame deletion vector pNPTS138-R6KT- <i>maf1</i> -KO

SH 557	Maf1 check dwn	TAA	AGG	TGC	TGG	CAC	ATA	GAG G	for <i>maf-1</i>
	EcoRV_KO_	GAA	TTC	GTG	GAT	CCA	GAT	GAT	
IVIA 94	PseG_US_fw	ACT	GAC	GTT	GCC	TTT	ATA	ТС	
MK 95	OL_KO_PseG_	TTT	AAC	TTT	CGG	CCA	ATT	TCA	construction of in-frame
	US_rv	TAA	CTT	TCC	TTG				deletion vector
MK 96	OL_KO_PseG_	GAA	ATT	GGC	CGA	AAG	TTA	AAT	pNPTS138-R6KT-
		CAT	GCA	GGT	AAT	CAC	CAM	C 7 7	pseg-ku
MK 102	ECORV_RU_ PseG_DS_rv		TCA	ГСІ СТА	TCA	ACA	CCG	GAA	
	chk KO PseG	1110	1011	0111	1011	11011		<u> </u>	
MK 97	fw	CCA	ACA	СТА	AAC	CCG	AGT	TTC	
011 5 40	De a Orak a alu fau	TGT	ACA	TCC	ATA	ATG	CAC	TCG	check primer for pseG
SH 548	Pseg check tw	TCC							
	Xhal-nC	AAT	GAA	TAG	TTC	GAC	AAA	AAT	
MJK 145	RBS flis F	AGG	AGG	GCA	AAT	ATG	AGA	GGA	
		TCG	CTG	CAA	TCA	TAT	CG		
MJK 146	OL_fliS_to_flaA	CAT	ATT	TGC	CCT	CCT	TCC	TAA	construction of
	1_R	A'I''I'	ACC	'I'I'A	ACT	CGC	GTC	GG	overproduction vector
	OL_flaA1_to_	GGA	AGG	AGG	GCA	AA'I'	ATG	GCT	pBTOK-RBS- <i>fliS</i> ₁-RBS-
MJK 147	fliS_F	A.L.T.	ACA	G.II.	AAT	ACC	AAC	GTG	<i>flaA</i> ₁-T174C
		GGA	GTC		CCT	CAG	СТА	ΔΨG	
MJK 148	Bsp-	AAA	TTA	TCC	CAG	TAG	TGA	CAG	
	nC_flaA1_R	CGC		100	0110	1110	1 011	0110	
		GTA	GCT	AGC	TGG	GTC	GCA	AGC	
FR 116	INNEL_TIIS1_TW	AAT	TTT	ATT	GC				
FR 117	OL fliS1 KO rv	GAG	AGG	ATC	GGC	GAG	TTA	AGG	construction of in-frame
111111		TAA	TTT	AGG	ACG				deletion
FR 118	OL fliS1 KO fw	CTT	AAC	TCG	CCG	ATC	CTC	TCA	vectorpNPTS138-R6KT-
		TAA	A'I'A	CCT	ACC	CILC	700	7 7 7	fiiS1-KO
FR 119		GGG	DDG DDG	CCC	IIG	CIG	ACC	AAA	
	1 V	GCT	TAG	 	GAT	TAG	CAC	ͲͲႺ	
FR 140	check_fliS1_fw	TAG	G		0111	1110	0110	110	check primer
	ala a la fliO4 ma	CTG	AAG	ATA	TGT	CCA	GTA	TTG	for <i>fliS</i> ₁
FR 141	cneck_filS1_rv	AAG	С						
M IK 141	EcoRV_fliS_C_	GAA	TTC	GTG	GAT	CCA	GAT	AGT	
	F	ATC	TTC	AAG	GAC	AGC	TTG	ACC	
	OL -STP	AAT	ATC	ATG	ATC	TTT	ATA	ATC	
MJK 142	FLAG_fliS_R	GCC	ATC	ATG	ATC	TTT	ATA	ATC	construction of in-frame
		ACT	CGC ATTA	GTC	GGA ATC	ATG	AGA	GG TTC	insertion vector
	OL +STP FLA			AAG	ATC	ATG	ATA	лід Ата	pNPTS138-R6KT-
MJK 143	G flis F	AAT	AAG	GTA	ATT	TAG	GAC	GGG	<i>fliS</i> ₁-FLAG
	••	TCA	AGG	G		_			
	EcoRV_fliS_KI_	CAA	GCT	TCT	CTG	CAG	GAT	CAA	
MJK 144	R	ACA	ATA	ATA	TCG	GTT	GCC	ACG C	
M IK 1/0	Check_fliS1-	GTC	AAC	TTT	TAC	TCG	ATG	TGC	
1011 143	Flag-F	TGG							check primer for flis
MJK 150	Check_fliS1-	TCT	TCA	ATT	TGT	CCA	AGC	ACA	
	Flag-R	TTG	G						
MJK 1	OL_flaA1_S129	AGT CTC	AGT	ACC a a m	AAA GG	AGC	GGT	ATT	construction of in-frame
	IN_INIO41_IV	GIC	ACC	771	GG				

	OL_flaA1_S129	GAC AAT ACC GCT TTT GGT ACT	pNPTS138-R6KT-
IVIJK Z	N_N134T_fw	ACT AAA CTG ATG AC	<i>flaA</i> 1.S129N-N134T
МКЗ	OL_flaB1_N129	AGT ATT ACC AAA GGC CGT ACT	construction of in-frame
WOR 5	S_T134N_rv	TGT ACC GAT TGC	insertion vector
MIKA	OL_flaB1_N129	ACA AGT ACG GCC TTT GGT AAT	pNPTS138-R6KT-
101517 4	S_T134N_fw	ACT AAA TTA CTT GAT GG	<i>flaB</i> ₁.N129T-T134N
MJK 5	flaA1_qPCR_fw	GTT GGT ACC AAT AAT GCG GGG AG	aPT DCP amplifying
MIKE	flaA1 aPCP ry	CTA AAC GGT TTT GTT TAG CAC	QRI-PCR amplifying
WJK 0		CTA ACG	(Sputen32, 2586)
		Product length: 151 bp; efficiency: 1.98	(0)000102_2000)
M IK 13	flaB1_neu_qPC	CTG CGA TTG ATG CTG CAA TTA	
WOR 15	R_fw	AAA CC	qRT-PCR amplifying
M IK 14	flaB1_neu_qPC	GCA ATA CTT GGT TCT TGG TCA	DNA fragments of <i>flaB</i> 1
	R_rv	TTT GC	(Sputcn32_2585)
		Product length: 189 bp; efficiency: 2.00	
FR 233	gyrA_qPCR_fw	CAG AAT CGC CTG AGC TTG TTG C	qRT-PCR amplifying
FR 234	gyrA_qPCR_rv	GAG CAA GGT TGG GAA TTA GGC C	DNA fragments of gyrA
		Product length: 144 bp; efficiency: 2.01	(Sputcn32_2070)

Supplementary Table 4: Summary of screw formation, helix parameter and qPCR data and statistics

Screw formation 0% Ficoll (Fig. 4)				
	Mea	surements		
Sample	Screw count	Regular count	Screw (%)	Ν
Wild type	12	287	4.01	299
FlaB-only	153	152	50.16	305
FlaAAB	5	292	1.68	297
	S	tatistics*		
Combination	t	df	<i>P</i> -value	Test
Wild type vs. FlaB-only	NA	NA	2.32E-26	Fisher's exact test
Wild type vs. FlaAAB	NA	NA	0.139	Fisher's exact test
FlaB-only vs. FlaAAB	NA	NA	2.93E-32	Fisher's exact test

Screw formation 15% Ficoll (Fig. 4)				
	Measurements			
Sample	Screw count	Regular count	Screw (%)	Ν
Wild type	150	147	50.51	297
FlaB-only	270	40	87.10	310
FlaAAB	78	243	24.30	321
	S	tatistics*		
Combination	t	df	<i>P</i> -value	Test
Wild type vs. FlaB-only	NA	NA	3.09E-05	Fisher's exact test
Wild type vs. FlaAAB	NA	NA	4.43E-06	Fisher's exact test
FlaB-only vs. FlaAAB	NA	NA	9.74E-19	Fisher's exact test

Screw formation 0 vs. 15% Ficoll (Fig. 4)				
	Si	tatistics*		
Combination	t	df	<i>P</i> -value	Test
Wild type vs. Wild type	NA	NA	2.53E-26	Fisher's exact test
FlaB-only vs. FlaB-only	NA	NA	1.99E-05	Fisher's exact test
FlaAAB vs. FlaAAB	NA	NA	3.57E-15	Fisher's exact test

Helix parameters: Arc length (Supplementary Fig. 6)				
	Mea	surements		
Sample	Average (µm)	Median (µm)	SD (µm)	Ν
Wild type	6.67	6.66	0.75	50
FlaAAB	6.71	6.82	0.66	50
FlaB-only	5.75	5.71	0.77	50
FlaA-only	6.45	6.35	1.68	50
FlaBA	5.71	5.52	1.29	50
FlaBBA	6.67	6.54	1.41	50
	St	atistics*		
Combination	t	df	<i>P</i> -value	Test
Wild type vs. FlaAAB	0.30	98.00	0.763	t-test
Wild type vs. FlaB-only	-5.96	98.00	3.95E-08	t-test
Wild type vs. FlaA-only	-0.82	67.81	0.417	Welch's t-test
Wild type vs. FlaBA	-4.48	78.56	2.49E-05	Welch's t-test
Wild type vs. FlaBBA	0.00	74.53	1.000	Welch's t-test
FlaAAB vs. FlaB-only	6.63	98.00	1.88E-09	t-test
FlaAAB vs. FlaA-only	1.00	63.68	0.321	Welch's t-test
FlaAAB vs. FlaBA	4.83	72.68	7.48E-06	Welch's t-test
FlaAAB vs. FlaBBA	0.19	69.21	0.848	Welch's t-test
FlaB-only vs. FlaA-only	2.66	68.85	0.010	Welch's t-test
FlaB-only vs. FlaBA	0.19	79.95	0.849	Welch's t-test
FlaB-only vs. FlaBBA	3.98	75.83	1.55E-04	Welch's t-test
FlaA-only vs. FlaBA	2.46	98.00	0.016	t-test
FlaA-only vs. FlaBBA	0.68	98.00	0.496	t-test
FlaBA vs. FlaBBA	3.50	98.00	0.001	t-test

Helix parameters: Axis length (Supplementary Fig. 6)				
	Mea	surements		
Sample	Average (µm)	Median (µm)	SD (µm)	Ν
Wild type	4.71	4.68	0.43	50
FlaAAB	4.82	4.97	0.48	50
FlaB-only	3.96	3.90	0.51	50
FlaA-only	4.72	4.54	1.16	50
FlaBA	4.28	4.22	0.99	50
FlaBBA	4.80	4.72	1.05	50

Statistics*				
Combination	t	df	<i>P</i> -value	Test
Wild type vs. FlaAAB	1.12	98.00	0.265	t-test
Wild type vs. FlaB-only	-7.95	98.00	3.18E-12	t-test
Wild type vs. FlaA-only	0.00	62.32	0.997	Welch's t-test
Wild type vs. FlaBA	-2.82	66.83	0.006	Welch's t-test
Wild type vs. FlaBBA	0.55	64.97	0.584	Welch's t-test
FlaAAB vs. FlaB-only	8.59	98.00	1.35E-13	t-test
FlaAAB vs. FlaA-only	0.57	65.55	0.568	Welch's t-test
FlaAAB vs. FlaBA	3.43	70.97	0.001	Welch's t-test
FlaAAB vs. FlaBBA	0.09	68.75	0.932	Welch's t-test
FlaB-only vs. FlaA-only	4.19	67.07	8.38E-05	Welch's t-test
FlaB-only vs. FlaBA	-2.00	72.87	0.049	Welch's t-test
FlaB-only vs. FlaBBA	5.06	70.51	3.17E-06	Welch's t-test
FlaA-only vs. FlaBA	2.01	98.00	0.047	t-test
FlaA-only vs. FlaBBA	0.40	98.00	0.692	t-test
FlaBA vs. FlaBBA	2.54	98.00	0.013	t-test

Helix parameters: Diameter (Supplementary Fig. 6)				
	Mea	surements		
Sample	Average (µm)	Median (µm)	SD (µm)	Ν
Wild type	0.57	0.58	0.05	50
FlaAAB	0.51	0.51	0.05	50
FlaB-only	0.60	0.60	0.05	50
FlaA-only	0.35	0.35	0.03	50
FlaBA	0.33	0.33	0.03	50
FlaBBA	0.37	0.37	0.03	50
	St	atistics*		
Combination	t	df	<i>P</i> -value	Test
Wild type vs. FlaAAB	-6.11	98.00	2.04E-08	t-test
Wild type vs. FlaB-only	2.44	98.00	0.017	t-test
Wild type vs. FlaA-only	-25.42	83.81	3.78E-41	Welch's t-test
Wild type vs. FlaBA	-28.18	76.30	4.45E-42	Welch's t-test
Wild type vs. FlaBBA	-22.60	83.98	1.86E-37	Welch's t-test
FlaAAB vs. FlaB-only	-8.86	98.00	3.55E-14	t-test
FlaAAB vs. FlaA-only	20.57	90.75	6.13E-36	Welch's t-test
FlaAAB vs. FlaBA	23.53	83.29	1.49E-38	Welch's t-test
FlaAAB vs. FlaBBA	17.47	90.90	8.27E-31	Welch's t-test
FlaB-only vs. FlaA-only	-29.05	85.77	3.65E-46	Welch's t-test
FlaB-only vs. FlaBA	32.10	78.15	9.18E-47	Welch's t-test
FlaB-only vs. FlaBBA	-26.16	85.94	1.08E-42	Welch's t-test
FlaA-only vs. FlaBA	2.27	98.00	0.025	t-test
FlaA-only vs. FlaBBA	3.63	98.00	4.52E-04	t-test
FlaBA vs. FlaBBA	6.17	98.00	1.55E-08	t-test

Helix parameters: Pitch (Su	Helix parameters: Pitch (Supplementary Fig. 6)			
	Mea	surements		
Sample	Average (µm)	Median (µm)	SD (µm)	Ν
Wild type	1.75	1.73	0.10	50
FlaAAB	1.66	1.67	0.09	50
FlaB-only	1.80	1.79	0.07	50
FlaA-only	1.18	1.18	0.04	50
FlaBA	1.18	1.17	0.05	50
FlaBBA	1.21	1.21	0.05	50
	St	atistics*		
Combination	t	df	<i>P</i> -value	Test
Wild type vs. FlaAAB	-4.31	98.00	3.91E-05	t-test
Wild type vs. FlaB-only	2.87	88.35	0.005	Welch's t-test
Wild type vs. FlaA-only	-37.47	65.98	3.42E-46	Welch's t-test
Wild type vs. FlaBA	-35.66	75.81	3.96E-49	Welch's t-test
Wild type vs. FlaBBA	-33.57	76.65	1.38E-47	Welch's t-test
FlaAAB vs. FlaB-only	-8.08	98.00	1.71E-12	t-test
FlaAAB vs. FlaA-only	34.48	68.92	3.37E-45	Welch's t-test
FlaAAB vs. FlaBA	32.58	79.83	7.16E-48	Welch's t-test
FlaAAB vs. FlaBBA	30.35	80.72	6.59E-46	Welch's t-test
FlaB-only vs. FlaA-only	-53.53	79.93	2.27E-64	Welch's t-test
FlaB-only vs. FlaBA	49.33	98.00	5.25E-71	t-test
FlaB-only vs. FlaBBA	-46.52	98.00	1.29E-68	t-test
FlaA-only vs. FlaBA	-0.08	98.00	0.939	t-test
FlaA-only vs. FlaBBA	3.26	98.00	0.002	t-test
FlaBA vs. FlaBBA	2.85	98.00	0.005	t-test

Helix parameters: flagellar stub length (Supplementary Fig. 5)				
Measurements				
Sample	Average (µm)	Median (µm)	SD (µm)	Ν
FlaA	0.94	0.91	0.29	50
FlaAA	1.53	1.53	0.43	50
FlaB	0.39	0.39	0.08	50
FlaBB	0.54	0.51	0.13	50
	St	atistics*		
Combination	t	df	<i>P</i> -value	Test
FlaA vs. FlaAA	7.95	85.57	7.01E-12	Welch's t-test
FlaA vs. FlaB	12.72	56.76	2.92E-18	Welch's t-test
FlaA vs. FlaBB	-8.75	68.38	9.08E-13	Welch's t-test
FlaAA vs. FlaB	18.09	52.50	3.26E-24	Welch's t-test
FlaAA vs. FlaBB	15.30	57.98	5.04E-22	Welch's t-test
FlaB vs. FlaBB	6.75	81.97	1.98E-09	Welch's t-test

qRT-PCR: Relative transcription level (RTL) flagellins (Supplementary Fig. 7)					
	Mea	surements			
Sample	Sample Average (RTL) Median (RTL) SD (RTL) N				
flaA	1.07	1.04	0.12	3	
flaB	1.87	1.96	0.25	3	
	Statistics*				
Combination	t	df	<i>P</i> -value	Test	
flaA vs. flaB	-4.12	4.00	0.015	t-test	

* The color code indicates significant differences: **blue shading** = significant; **yellow shading** = not significant (Bonferroni corrected; *P*-value threshold = 0.05 divided by the number of tests).

Supplementary Table 5: Sequences of the synthetic flaA and flaB genes

Synthetic gene	flaA _{ECopt}			
Native gene	flaA (Sputcn32_2586)			
Modifications	The sequence was codon-optimized for Escherichia coli K-12 to prevent			
	recombination with the native flagellin gene(s).			
	Threonine 174 was substituted by cysteine for fluorescent labeling.			
Sequence	ATG GCT ATT ACG GTT AAC ACG AAT GTA ACA TCT ATG AAA GCT CAA			
synthetic gene	AAG AAC CTT AAC ACT AGC TCA AGC GGG CTG GCC ACT TCC ATG GAG			
(5'-3')	CGT TTA TCC AGT GGC CTG CGC ATT AAC AGT GCC AAA GAC GAC GCA			
	GCT GGC TTG GCT ATC TCC AAT CGC CTG AAC TCA CAA GTG CGC GGG			
	TTG GAT GTG GGC ATG CGC AAC GCT AAT GAC GCA ATC TCT ATC GCG			
	CAA ATC GCG GAA GGT GCC ATG CAG GAG CAA ACC AAC ATG CTG CAA			
	CGC ATG CGT GAT CTG ACC GTG CAG GCG GAA AAT GGT GCG AAC TCG			
	ACC GAT GAC CTG GAC GCA ATC CAA AAG GAA ATC GAT CAG TTA GCT			
	GAA GAG ATC ACA GCC ATT GGC GAT AGT ACC GCA TTC GGC AAT ACT			
	AAA CTT ATG ACT GGG AAT TTT TCT GCC GGC AAG ACC TTT CAA GTT			
	GGG CAC CAA GAA GGT GAA GAC ATT ACC ATC AGC GTA GGC ACA AAC			
	AAC GCC GGC AGC TTA ATG GTC AGT TGT CTT ACA ATC GCC ACA AGT			
	AGE GGG EGI IEG ACE GEA IIG GEG GEE AIE GAI GEI GEA AIE AAG			
	CTC CCC TAT AND ATO ACO AND TCC CCA ANT ACO CAG CCA AND CTC			
	COT GAG GCA ANG TOO COT ATO OTG GAT GTT GAT TTT GOG ANG GAG			
	ACC TCA GTA ATG ACG AAA AAT CAG GTT TTG CAA CAG ACC GGA AGT			
	GCT ATG TTA GCC CAA GCC AAT CAG TTA CCC CAG GTG GCG CTG TCG			
	CTT CTG GGC TAA			
Sequence	ATG GCT ATT ACA GTT AAT ACC AAC GTG ACT TCG ATG AAG GCA CAG			
native gene	AAA AAT TTA AAT ACG TCT AGT AGT GGT TTA GCA ACC TCT ATG GAA			
(5'-3')	CGT TTA TCA AGT GGC CTG CGC ATC AAT AGC GCC AAA GAC GAC GCC			
	GCT GGT TTA GCC ATT TCA AAT CGT CTA AAC AGT CAG GTA CGT GGT			
	TTA GAT GTG GGA ATG CGC AAT GCT AAT GAT GCG ATC TCC ATT GCC			
	CAG ATC GCT GAA GGT GCA ATG CAA GAG CAG ACT AAC ATG CTG CAA			
	CGT ATG CGT GAT TTG ACT GTA CAA GCT GAA AAC GGT GCA AAT AGC			
	ACC GAT GAC TTA GAT GCA ATA CAA AAA GAG ATC GAT CAA TTA GCT			
	GAA GAG ATT ACT GCC ATT GGT GAC AGT ACC GCT TTT GGT AAT ACT			
	AAA CTG ATG ACA GGG AAT TTT TCT GCG GGA AAA ACC TTC CAA GTA			
	GGG CAC CAA GAA GGT GAA GAT ATC ACT ATT TCC GTT GGT ACC AAT			
	AAI GUG GGG AGI IIA AIG GII AGT ACA TTA AUG ATT GUA ACT TUA			
	AAT ATT GAT AAC CAA CGT GCA GCG TTA GGT GCT AAA CAA AAC CGT			

	AAT	ATT	GAT	AAC	CAA	CGT	GCA	GCG	TTA	GGT	GCT	AAA	CAA	AAC	CGT
	TTA	GCC	TAT	AAC	ATC	AGT	AAC	AGT	GCT	AAC	ACT	CAA	GCA	AAC	GTT
	GCC	GAT	GCT	AAG	AGC	CGT	ATT	GTC	GAT	GTC	GAT	TTT	GCT	AAA	GAA
	ACA	TCA	GTA	ATG	ACG	AAA	AAC	CAA	GTA	TTA	CAA	CAA	ACG	GGT	TCT
	GCA	ATG	TTA	GCG	CAG	GCT	AAC	CAA	TTG	CCT	CAA	GTT	GCG	CTG	TCA
	CTA	CTG	GGA	TAA											
Synthetic gene	flaB⊧	copt													
Native gene	flaB	(Sput	cn32	2585)										
Modifications	The	The sequence was codon-optimized for <i>Escherichia coli</i> K-12 to prevent													
	reco	, mbina	ation v	vith th	ie nat	ive fla	qellin	qene	e(s).				•		
	Thre	Threonine 166 was substituted by cysteine for fluorescent labeling.													
Sequence	ATG	GCA	ATT	ACC	GTG	AAT	ACA	AAC	GTT	ACC	TCC	CTT	AAG	GCC	CAA
synthetic gene	AAG	AAC	TTG	AAC	ACT	TCG	GCC	AGC	GGG	TTG	GCC	ACA	TCA	ATG	GAA
(5'-3')	CGC	CTG	TCT	TCT	GGC	CTT	CGT	ATT	AAC	GGC	GCT	AAG	GAT	GAC	GCC
()	GCA	GGG	TTA	GCA	ATC	TCC	AAC	CGC	TTG	AAT	TCG	CAA	GTG	CGC	GGA
	CTG	GAC	GTC	GGC	ATG	CGT	AAC	GCG	AAC	GAC	GCG	ATT	TCA	ATT	GCA
	CAA	ATT	TCA	GAA	GGC	GCA	ATG	CAA	GAG	CAA	ACA	AAT	ATG	CTG	CAA
	CGC	ATG	CGT	GAC	CTG	ACG	GTA	CAG	GCC	GAG	AAT	GGG	GCG	AAT	AGT
	TCA	GAC	GAT	CTT	ACC	TCC	ATT	CAA	AAA	GAA	ATT	GAC	CAA	TTA	GCG
	CTG	GAG	ATC	ACG	GCC	ATC	GGG	ACA	AAC	ACC	GCA	TTT	GGG	ACA	ACT
	AAG	TTG	CTT	GAT	GGC	ACC	TTT	TCG	GCG	GGC	AAA	ACT	TTT	CAG	GTC
	GGA	CAT	CAA	TCG	GGT	GAG	GAC	ATC	ACG	ATC	TCT	GTA	TCG	AAG	ACG
	TGT	GCG	TCT	GCA	TTG	AAG	GTA	GGA	TCG	CTG	GAC	ATC	AAG	GGT	TCG
	GCT	CGC	GCC	ТСА	GCC	TTG	GCA	GCA	ATC	GAC	GCT	GCT	ATC	AAA	ACG
	ATT	GAT	AGT	CAA	CGC	GCT	GAC	TTG	GGG	GCT	AAG	CAA	AAC	CGC	TTG
	GCG	TAC	AAC	ATT	TCC	AAC	TCA	GCT	AAC	ACA	CAG	GCA	AAC	ATC	TCT
	GAC	GCC	AAA	TCC	CGT	ATC	GTA	GAT	GTA	GAT	ТТТ	GCT	AAG	GAA	ACT
	AGC	CAG	ATG	ACA	AAG	AAT	CAG	GTT	TTG	CAG	CAA	ACG	GGT	TCC	GCC
	ATG	TTG	GCA	CAG	GCG	AAT	CAG	TTG	CCT	CAA	GTG	GCA	TTG	AGT	CTT
	TTA	TAA													
Sequence	ATG	GCC	ATT	ACA	GTA	AAC	ACT	AAC	GTA	ACA	TCT	TTA	AAA	GCA	CAG
native gene	AAA	AAC	СТА	AAT	ACT	TCA	GCG	AGC	GGT	TTG	GCC	ACT	TCC	ATG	GAA
(5'-3')	CGT	TTA	TCC	AGT	GGT	CTG	CGT	ATT	AAC	GGT	GCA	AAG	GAC	GAT	GCG
(0,0)	GCA	GGT	TTA	GCA	ATT	TCT	AAC	CGC	TTA	AAT	AGC	CAA	GTC	CGT	GGC
	TTA	GAT	GTG	GGT	ATG	CGT	AAC	GCT	AAC	GAT	GCT	ATC	TCT	ATC	GCC
	CAA	ATT	TCT	GAA	GGT	GCG	ATG	CAA	GAA	CAA	ACT	AAC	ATG	CTG	CAA
	CGT	ATG	CGT	GAC	TTA	ACC	GTC	CAA	GCA	GAA	AAC	GGT	GCT	AAT	AGT
	TCA	GAT	GAC	TTA	ACG	TCA	ATA	CAA	AAA	GAG	ATC	GAT	CAG	TTA	GCA
	TTA	GAA	ATC	ACA	GCA	ATC	GGT	ACA	AAT	ACG	GCC	TTT	GGT	ACT	ACT
	AAA	TTA	CTT	GAT	GGC	ACT	TTC	TCT	GCT	GGT	AAG	ACT	TTC	CAA	GTA
	GGG	CAC	CAA	TCA	GGT	GAA	GAT	ATT	ACG	ATT	TCT	GTG	TCA	AAA	ACC
	ACT	GCA	TCA	GCA	TTA	AAA	GTT	GGT	AGT	TTA	GAT	ATT	AAA	GGC	TCT
	GCT	CGA	GCC	TCT	GCA	CTG	GCT	GCG	ATT	GAT	GCT	GCA	ATT	AAA	ACC
	ATT	GAT	AGT	CAG	CGT	GCG	GAT	CTA	GGT	GCT	AAG	CAA	AAC	CGC	TTA
	GCC	TAT	AAC	ATC	AGT	AAT	AGT	GCT	AAC	ACT	CAG	GCC	AAC	ATT	TCT
	GAT	GCT	AAG	AGT	CGT	ATT	GTG	GAT	GTG	GAT	TTT	GCG	AAA	GAA	ACA
	TCG	CAA	ATG	ACC	AAG	AAC	CAA	GTA	TTG	CAA	CAA	ACG	GGT	TCT	GCT
	ATG	TTA	GCC	CAA	GCT	AAC	CAA	TTA	CCT	CAA	GTG	GCC	TTA	TCA	CTG
	CTG	TAA													

Flagellin type	9	FlaB	FlaA				
Parameter	Description	Stretched	Coiled	Stretched			
R	Helical radius	0.315 µm	0.42 µm	0.175 µm			
Р	Helical pitch	1.91 µm	1.43 µm	1.18 µm			
L _c	Contour length		6.5 µm				
А	Bending rigidity	ending rigidity 3.5 pN µm ²					
С	Twisting rigidity		3.5 pN µm²				
K	Stretching stiffness	10000 pN μm ⁻¹					
γ_{\perp}	Friction coefficient, normal to flagellum	2.85 η	2.80 η	3.25 η			
γ_{\parallel}	Friction coefficient, parallel to flagellum	1.61 η	1.57 η	1.86 η			
γr	Rotational friction coefficient		0.0012 η				
η	Viscosity	1 mPa s (water at 20 °C)					
h ₀	Segment length	0.125 µm					

Supplementary References

- 1. Sun, L. *et al.* Two residues predominantly dictate functional difference in motility between *Shewanella oneidensis* flagellins FIaA and FIaB. *J. Biol. Chem.* **289**, 14547-14559 (2014).
- Miller, V. L. & Mekalanos, J. J. A novel suicide vector and its use in construction of insertion mutations: Osmoregulation of outer membrane proteins and virulence determinants in *Vibrio cholerae* requires toxR. *J. Bacteriol.* **170**, 2575–2583 (1988).
- 3. W. Metcalf, University of Illinois, Urbana-Champaign
- 4. Fredrickson, J. K. *et al.* Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. *Geochim. Cosmochim. Acta.* **62**, 3239–3257 (1998).
- Bubendorfer, S., Koltai, M., Rossmann, F., Sourjik, V. & Thormann, K. M. Secondary bacterial flagellar system improves bacterial spreading by increasing the directional persistence of swimming. *Proc. Natl. Acad. Sci. USA* **111**, 11485–11490 (2014).
- 6. Kühn, M. J., Schmidt, F. K., Eckhardt, B. & Thormann, K. M. Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps. *Proc. Natl. Acad. Sci. USA* **114**, 6340–6345 (2017).
- 7. Venkateswaran, K. *et al.* Polyphasic taxonomy of the genus *Shewanella* and description of *Shewanella oneidensis* sp. nov. *Int. J. Syst. Evol. Microbiol.* **49**, 705–724 (1999).
- 8. Bubendorfer, S. *et al.* Analyzing the modification of the *Shewanella oneidensis* MR-1 flagellar filament. *PLoS ONE* **8**, e73444 (2013).
- 9. Lassak, J., Henche, A. L., Binnenkade, L. & Thormann, K. M. ArcS, the cognate sensor kinase in an atypical arc system of *Shewanella oneidensis* MR-1. *Appl. Environ. Microbiol.* **76**, 3263– 3274 (2010).
- 10. Rossmann, F. *et al.* The role of FlhF and HubP as polar landmark proteins in *Shewanella putrefaciens* CN-32. *Mol. Microbiol.* **98**, 727–742 (2015).