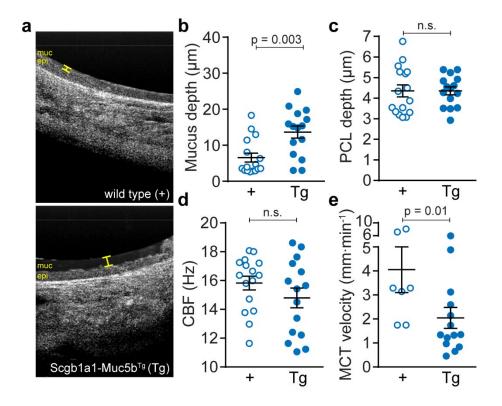
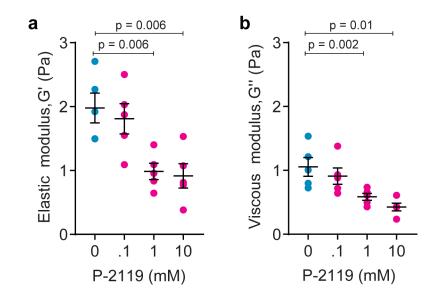

Muc5b overexpression causes mucociliary dysfunction and enhances lung fibrosis in mice

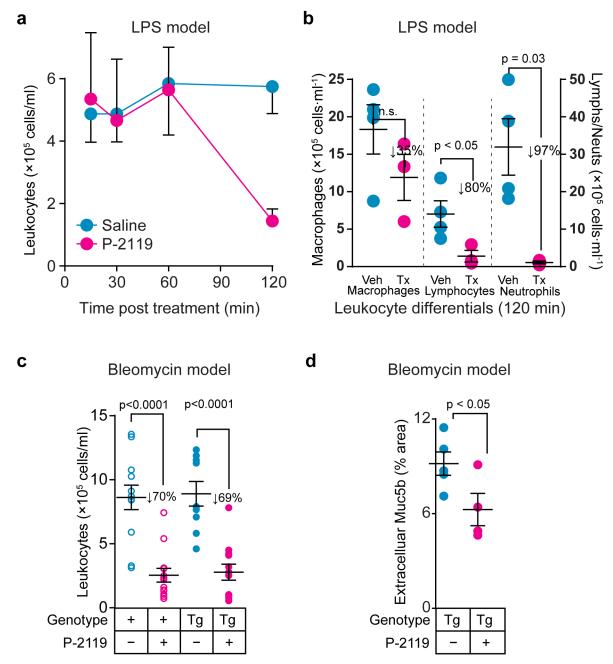
Hancock et al.


Supplementary Information

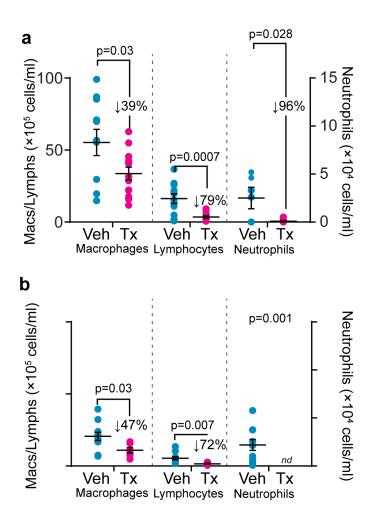
Supplementary Figures 1-8


Supplementary Table 1

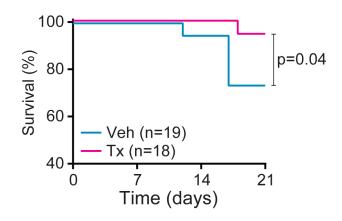
Supplementary Figure 1. Transgenic models for Muc5b overproduction. (a) A full length (34 kb) fragment of the mouse Muc5b gene was inserted into a transgenic targeting vector containing 3.7 kb of the human surfactant protein C (SFTPC) promoter and an internal ribosomal entry sequence (IRES)monomeric Cherry (mCherry) red fluorescent protein. (b) Mice possessing this SFTPC-Muc5b transgene (SFTPC-Muc5b^{Tg} mice), overproduce Muc5b in the lungs. Western blot analysis of Muc5b extracted from lysates of SFTPC-Muc5b^{Tg} mice and wild type littermate control. (c-f) Comparison of Muc5b expression and localization in Muc5b mutant animals. (c) Immunohistochemistry performed using rabbitanti-Muc5b antisera (1:20,000) shows Muc5b localization to bronchial airways in wt mice, with extension of Muc5b to distal bronchioles in Scgb1a1-Muc5b^{Tg} mice, and to distal bronchioles and type 2 alveolar epithelia in SFTPC-Muc5b^{Tg} mice. Muc5b immunolabeling was absent in *Muc5b^{-/-}* lung tissues. Arrows, bronchoalveolar duct junctions. Arrowheads, Muc5b expressing type 2 cells. Scale bar, 50 µm. (d) Compared to wt (n = 12), Muc5b mRNA levels in lung lysates were 50-fold higher in Scgb1a1-Muc5b^{Tg} (n = 6) mice and 150-fold higher in SFTPC-Muc5b^{Tg} mice (n = 3). (e,f) Muc5b levels were assessed in lung lavage fluid by dot blot ELISA (e). Compared to wt (n = 6) levels in lung lavage fluid (f), Muc5b protein levels were not significantly increased in Scgb1a1-Muc5b^{Tg} mice (n = 6), and were >40-fold higher in SFTPC-Muc5bTg mice (n = 3). In e.f. circles depict Scgb1a1-Muc5bTg mice and their wild type littermates, and triangles depict SFTPC-Muc5bTg mice and their wild type littermates.

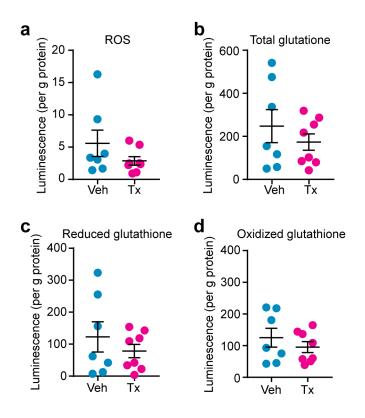


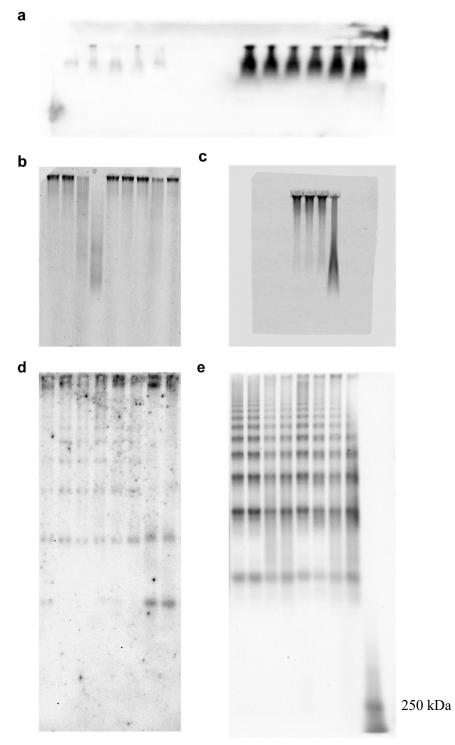
Supplementary Figure 2. Muc5b overexpression in Scgb1a1-Muc5b^{Tg} mice is associated with impaired mucociliary transport. (a) Representative excised Scgb1a1-Muc5b^{Tg} mice tracheas were assessed by μ OCT in comparison to tracheas of wild type (+) littermate controls. (b-e). Quantitative metrics from image analysis reveal increased mucus layer depth (b) without significant alteration of periciliary layer (PCL) depth (c) in Tg mice compared to + controls. Functional analysis demonstrated no significant effect on ciliary beat frequency (d) and diminished mucociliary transport rates (e) in Muc5b-overexpressing mice. Data are means \pm sem analyzed by Mann-Whitney test.



Supplementary Figure 3. Mucolytic treatment reduces elastic and viscous properties of mucus. The solid and liquid biophysical properties of viscoelastic mucus were assessed by cone-plate rheometry to determine elastic storage (G') and viscous loss (G'') moduli. (a,b) In 5% mucus, the storage modulus was 3-fold greater than the viscous modulus at baseline (0 mM P-2119). With 10 mM P-2119 both elastic modulus (a) and viscous modulus (b) decreased significantly. '*', p < 0.05 between 0 and 10 mM treated


samples by t-test.


Supplementary Figure 4. Acute endogenous clearance of inflammatory cell populations in the lungs of P-2119 treated mice. (a,b) Wild type C57BL/6J mice were challenged IT with 20 μ g of LPS (*E. coli* 055:B5) was administered in a 50 μ l volume of saline. Mice were then treated with P-2119 or vehicle 48 h post LPS challenge. (a) Timecourse of leukocyte elimination in lung lavage fluid in LPS challenged mice following treatment with P-2119 aerosol (red) or saline (blue). (b) Leukocyte differentials in LPS challenged mice 120 min post treatment with P-2119. Lymphocyte and neutrophil numbers decreased significantly. (c,d) In bleomycin challenged SFTPC-Muc5b^{Tg} mice, total cells in lung lavage fluid (c) and extracellular Muc5b in distal airspaces (d) were significantly lower in P-2119 treated mice compared to vehicle treated animals. Data are means \pm sem (n =3-4 mice per timepoint and treatment group). Statistical significance was determined using a t test (with Welch's correction for neutrophil numbers).


Supplementary Figure 5. P-2119 treatment reduces persistent lung injury. (a-c)Inflammatory cell types were enumerated in lung lavage from SFTPC-Muc5bTg mice subjected to a 3 wk (a) or 10 wk (b) bleomycin challenge and 2 wk P-2119 treatment (Tx) or saline vehicle (Veh) intervention protocol. Macrophages, lymphocytes, and neutrophils were significantly lower in in P-2119 treated mice. Data are means \pm sem (n = 16 Veh and 17 Tx mice). Data were analyzed by Mann-Whitney tests.

Supplementary Figure 6. P-2119 treatment results in improved survival. SFTPC-Muc5bTg mice were subjected to a 3 wk bleomycin challenge with a 2 wk P-2119 intervention protocol, with P-2119 or saline vehicle treatment starting 7 d post bleomycin challenge and ending 24 h prior to tissue harvest. Survival was improved in P-2119 treated SFTPC-Muc5b^{Tg} mice. Kaplan-Meier survival results were analyzed for significant difference by χ^2 analysis.

Supplementary Figure 7. P-2119 treatment of mice treated with bleomycin (3 week model) does not affect redox balance. (a) Reactive oxygen species (ROS) were assessed using ROS-GLO chemiluminescence assay in neat lung lavage obtained from mice exposed to saline vehicle (Veh) or P-2119 treatment (Tx). (b-d) A GSH-GLO chemiluminescence assay was used to assess total (b), reduced (c), and oxidized (d) glutathione. Data are means \pm sem (n =7-8 mice per treatment group). Significance was assessed using a Mann-Whitney test.

Supplementary Figure 8. Original immunoblots. Images from Supplementary Figure 1b (a), Figure 3c (b), Figure 3d (c), Figure 3h (d), and Figure 3i (e). Secreted MUC5B/Muc5b monomers are >1 MDa. Rightmost lane in panel e is molecular weight ladder. In a-d, Molecular weight ladders were run to the end of gels and not transferred during vacuum blotting.

	Day 14 (1 week intervention)				Day 21 (2 weeks intervention)			
Cytokine	Untreated (n = 8)	Treated (n = 9)	Treated Fold Δ	р	Untreated (n = 16)	Treated (n = 16)	Treated Fold Δ	р
IFN-γ	0.0 ± 0.0	0.0 ± 0.0	1.2	n.s.	0.2 ± 0.1	0.2 ± 0.0	-1.3	n.s.
IL-1b	0.4 ± 0.1	0.2 ± 0.0	-1.5	n.s.	2.1 ± 0.9	1.2 ± 0.5	-1.8	n.s.
IL-2	0.4 ± 0.1	0.5 ± 0.1	1.2	n.s.	2.5 ± 1.1	1.4 ± 0.2	-1.8	n.s.
IL-4	0.2 ± 0.0	0.2 ± 0.0	1.4	n.s.	0.9 ± 0.3	0.3 ± 0.1	-2.9	n.s.
IL-5	1.6 ± 0.4	1.6 ± 0.2	1.0	n.s.	8.5 ± 2.5	10.2 ± 3.5	1.2	n.s.
IL-6 (x10 ³)	0.1 ± 4.7	$.05\pm.02$	-1.9	n.s.	4.6 ± 2.3	2.6 ± 1.3	-1.7	n.s.
IL-9	2.1 ± 0.2	2.4 ± 0.2	1.1	n.s.	4.0 ± 1.5	2.4 ± 0.4	-1.7	n.s.
IL-10	0.7 ± 0.1	0.6 ± 0.1	-1.1	n.s.	9.0 ± 4.2	3.0 ± 0.6	-3.0	n.s.
IL-12p70	16.4 ± 2.7	23.3 ± 1.8	1.4	n.s.	135.8 ± 59.5	71.4 ± 23.6	-1.9	n.s.
IL-15	5.0 ± 0.3	6.6 ± 0.6	1.3	0.03	11.3 ± 1.5	10.1 ± 1.3	-1.1	n.s.
IL-17A	0.6 ± 0.1	0.8 ± 0.1	1.2	n.s.	1.3 ± 0.2	1.2 ± 0.1	-1.1	n.s.
IL-30	2.0 ± 0.3	2.0 ± 0.3	1.0	n.s.	4.8 ± 1.5	3.0 ± 0.4	-1.6	n.s.
IL-33	2.8 ± 0.3	2.4 ± 0.3	-1.2	n.s.	3.8 ± 0.3	4.6 ± 0.5	1.2	n.s.
IP-10	12.0 ± 3.4	7.9 ± 2.1	-1.5	n.s.	24.5 ± 6.0	42.6 ± 15.6	1.7	n.s.
КС	15.2 ± 2.6	11.0 ± 2.1	-1.4	n.s.	24.6 ± 6.4	20.4 ± 3.3	-1.2	n.s.
MCP-1	5.9 ± 1.5	4.7 ± 0.6	-1.3	n.s.	65.5 ± 25.8	74.5 ± 27.8	1.1	n.s.
MIP-1a	2.6 ± 0.8	2.3 ± 0.3	-1.2	n.s.	2.1 ± 0.2	2.3 ± 0.3	1.1	n.s.
MIP-2	14.6 ± 6.0	9.9 ± 5.1	-1.5	n.s.	7.6 ± 0.9	6.3 ± 0.5	-1.2	n.s.
TNF	20.5 ± 11.1	11.8 ± 5.9	-1.7	n.s.	7.8 ± 0.8	7.6 ± 1.1	1.0	n.s.

Supplementary Table 1. Cytokine and chemokine levels bleomycin challenged mice.

P-2119 treatment of SFTPC-Muc5bTg mice treated with bleomycin (2.0 U/kg on day 0, and studied on day 14 for 1 week intervention model and day 21 for 2 week intervention models) does not affect chemokine and cytokine levels. Chemokines and cytokines in lung lavage fluid were assessed using a Mesoscale 19-plex electrochemiluminescence assay from mice exposed to saline (untreated) or P-2119 treatment (treated). Data are means \pm sem in pg/ml of each analyte. Statistical significance was assessed using two-tailed Mann-Whitney tests with (significance cut-off, p < 0.05).