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1. Calculation of lineage correlations in times to fate 
To calculate lineage correlations in intermitotic and apoptosis times (IMT and AT, respectively) 
from the single cell lineage tracing data, all mother-daughter, sister-sister and cousin-cousin 
pairs were first identified, allowing for the possibility that unrelated cells from different clones 
may be born in the same time frame. Following previous work1, unique pairs were then 
identified for each relationship such that no cell was counted twice in the calculation of the 
correlation coefficients. Finally, statistical significance of the correlations and 95% confidence 
intervals were computed using the “cor.test” function in R, which uses the t-test to calculate 
statistical significance. Note that a set of unique pairs can be found in many different ways 
depending on the particular choice of cells for defining mother-daughter or cousin pairs; the 
correlations were similar within the 95% confidence intervals for any of the choices. The 
correlations among the lineages before and after drug treatment are shown in Fig. 1. For cells 
that straddle the cisplatin dosing event, sisters have an IMT correlation 𝜌	~	0.66 from 52 pairs, 
P-val = 5.7 × 10+,, 95% CI [0.44, 0.79] as shown in Supplementary Figure  1a. Correlation in 
IMT of cousins among straddling cells is 𝜌	~	0.28 from 37 pairs, P-val = 0.03, 95% CI [0.08, 0.5], 
as shown in Supplementary Figure  1b. 
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2. Cell fate is correlated in related cells 
To test the impact of cell state prior to cisplatin treatment on the response of HCT116 cells to 
cisplatin, we calculated how frequently related cells shared the same fate by lineage 
relationship and compared these frequencies to unrelated cells. We first considered only death 
or survival as a cell fate (Supplementary Figure  2a). Since 62.5% of cells died in response to 
cisplatin treatment, then 53% of cells should share the same fate if the response of each cell 
was an independent event as the probability of both cells dying is ~39% (0.625 * 0.625) and the 
probability of both cells surviving is ~14% (0.375 * 0.375). Indeed, unrelated cells shared the 
same fate 52% of the time (N = 12,495 cell pairs). In contrast, sister cells shared the same fate 
over 80% of the time and the correlation in cell fate decayed with lineage distance. Cells 
separated by 4 divisions, or 3rd cousins, shared the same fate in similar proportions to 
unrelated cells (Supplementary Figure  2a).  
 
We next included cell division as one of the outcomes following cisplatin treatment. Following 
cisplatin treatment cells can divide, die, do neither or do both (Supplementary Figure  2b). 
Again, we found that related cells share the same fate much more frequently than expected for 
independent events and the correlation in cell fate decayed with lineage distance 
(Supplementary Figure  2c). 
 
3. Cell cycle stage does not affect p53 dynamics or cell death in response to cisplatin  
The efficacy of many chemotherapy drugs varies with cell cycle stage2. To determine if the rate 
of p53 accumulation and cell fate is linked to cell cycle stage, we engineered a system to 
measure cell cycle stage, p53 dynamics, and cell fate in live cells. We used HCT116 p53-VKI 
human colon cancer cells, a previously established clonal cell line in which one allele of TP53 is 
tagged with the Venus fluorescent protein3. To track cell cycle phase, we expressed Cerulean 
fused with the N-terminal domain of human geminin (Cer-hGem). Cer-hGem is degraded by the 
anaphase-promoting complex (APC) during M-phase and G1 when APC activity is high. APC 
inactivation upon S-Phase entry triggers accumulation of Cer-hGem which remains high until 
the next M-phase(Supplementary Figure  3a)4. The Cer-hGem reporter had no measurable 
effect on cell cycle length (Supplementary Figure  3b). 
 
We imaged untreated cells for 24 hours to identify their cell cycle stage. We then treated cells 
with cisplatin and imaged an additional 72 hours (Supplementary Figure  3c) as most cell death 
occurs within this time3. Cell cycle stage was slightly synchronized at the initial stages of the 
experiment (Supplementary Figure  3c), likely due to the synchronizing effects of media 
changes and cell plating. After cisplatin treatment, cells slowed their rate of progression 
through the cell cycle, consistent with cell cycle arrest. A subset of cells degraded Cer-hGem 
without undergoing mitosis (Mitosis Skip, Supplementary Figure 3c) as shown previously5. 
Approximately 50% of cells underwent apoptosis (Supplementary Figure  3c). 
 
We compared p53 dynamics and cell fate between cells that were in G1 or S/G2 at the time of 
cisplatin treatment.  We found no connection between cell cycle stage at the time of treatment 
and either cell death or onset of p53 accumulation (Supplementary Figure  3d,e). It is possible 
that cisplatin acts slowly to damage DNA and that this delay masks our ability to observe a 



 4 

connection between cell cycle stage and cell fate. However, the cell cycle stage of cells at later 
time points also had no effect on cell death or p53 onset (Supplementary Figure  3f,h). These 
data suggest that the variation observed in p53 dynamics and cell death in response to cisplatin 
is not due to variation in cell cycle stage at the time of or during treatment. In contrast, we did 
observe a correlation between the cell cycle stage at the time of cisplatin addition and the 
probability that a cell will divide after treatment (Supplementary Figure  3j). For example, 
although only 34% of cells were in G1 when cisplatin was added, these G1 cells accounted for 
83% of the cells that did not die or divide following cisplatin treatment (Supplementary Figure  
3j).  
 
4. Comparison of model fits to IMT and AT distribution data 
The most common two and three parameter functions that have previously been used to 
describe cell division and apoptosis time distributions — Exponentially Modified Gaussian 
(EMG), gamma, and shifted gamma – were tested against our single cell data. The functional 
forms of the probability density functions (pdf) are given by 
 

EMG: 𝑓(𝑡; 𝜇, 𝜎, 𝜆) = 9
:
	𝑒

<
=	>+:?@:A@9B

=C𝐸𝑟𝑓𝑐 G+?@A@9B
=

B√:
I,  

 
where Erfc is the complementary error function. The EMG is a convolution of a Gaussian density 
with mean 𝜇 and variance 𝜎:, and an exponential with parameter 𝜆. The mean of the EMG is 
given by 𝜇 + 1/𝜆 and the variance is 𝜎: + 1/𝜆:. 
 

Gamma: 𝑓(𝑡; 𝑏, 𝑔) =
GNOI
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N
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T	U(V)
,  

 
where 𝛤 is the gamma function. The mean of the gamma distribution is given by 𝑏𝑔 and the 
variance by 𝑔𝑏:. 
 

Shifted gamma: 𝑓(𝑡; 𝑏, 𝑔, 𝑢) =
GNQYO I

PQR
	SGQ

NQY
O I

T	U(V)
,  

 
where 𝛤 is the gamma function. The mean of the shifted gamma distribution is 𝑏𝑔 + 𝑢 and the 
variance is 𝑔𝑏:. 
 
All nonlinear model fitting and model selection calculations (using the Akaike Information 
Criterion, AIC6) were performed using the “NonlinearModelFit” function in Mathematica. The 
Exponentially Modified Gaussian (EMG) function describes the data before cisplatin dosing 
significantly better than any other model (Supplementary Table 1). The best fitting EMG 
parameters are 𝜇 = 28.57, 𝜎 = 2.45, 𝜆 = 0.27. The closest competitor, the Gamma function, 
has an AIC larger than the AIC for EMG by 6.5, implying that the Gamma function is only 
𝑒+[.\/: = 0.038 times (3.8%) as likely to best explain the data as the EMG function6. 
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Supplementary Table 1: Comparison of model fits to experimental data of the inter-mitotic time (IMT) distribution before 
cisplatin treatment. EMG is the Exponentially Modified Gaussian function. 

Function Number of parameters AIC                                 BIC 
EMG 3 -66.79                        -66.47 
Gamma 2 -60.29                        -60.05 
Shifted gamma 3  -56.13                        -55.80 
 
Similarly, the EMG function describes the IMT distribution of cells that straddle the cisplatin 
dosing event significantly better than the other functions (Supplementary Table 2). The best 
fitting EMG parameters for the straddling cells are 𝜇 = 29.26, 𝜎 = 3.5, 𝜆 = 0.093. The next 
best model was the shifted gamma, which was only 6 % as likely to best explain the IMT data as 
the EMG function. 
 
Supplementary Table 2: Comparison of model fits to experimental data on the inter-mitotic time (IMT) distribution of cells 
that straddle the cisplatin dosing event. 

Function Number of parameters AIC                                  BIC 
EMG 3 -74.91                           -74.59 
Shifted gamma 3 -69.28                           -68.96 
Gamma 2 -60.17                           -59.90 
 
Finally, the same analysis showed that the EMG also best describes the time to death 
distribution data of cells existing purely after cisplatin treatment (Supplementary Table 3). The 
best fitting EMG parameters for this case are 𝜇 = 45.836, 𝜎 = 27.9, 𝜆 = 0.209. The next best 
model was the Gamma, which was only 8.9% as likely to best explain the time to death data as 
the EMG function. 
 
Supplementary Table 3: Comparison of model fits to experimental data on the time to death distribution after cisplatin 
administration.  

Function Number of parameters AIC                                   BIC 
EMG 3 -66.82                           -67.03 
Gamma 2 -62.56                           -62.72 
Shifted gamma 3 -59.94                           -60.16  
   
 
 
5. Statistical algorithm to infer unbiased IMT and AT distributions 
 
Basic introduction to survival and competing risks analysis 
Survival analysis is a statistical technique for analyzing time to event data, and competing risks 
occur when there are multiple events that are mutually exclusive—the occurrence of one event 
precludes the occurrence of any of the other events. This technique is usually framed in terms 
of hazard functions, which describe the instantaneous rates of occurrence of various events and 
are central to the development of our statistical algorithm.  
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Let T be a non-negative random variable denoting the time until occurrence of an event, and 𝑡 
be an instantiation of 𝑇. Let the probability density function (pdf) of 𝑇 be 𝑓(𝑡) and the 
cumulative distribution function (cdf) be	𝐹(𝑡), such that  
 
 𝐹(𝑡) = Pr(𝑇 ≤ 𝑡) = ∫ 𝑓(𝑠)𝑑𝑠.?

g  (1) 
 
The survival function 𝑆(𝑡) is the complement of the cdf, and denotes the probability that the 
event has not occurred by time t: 
 
 𝑆(𝑡) = Pr(𝑇 > 𝑡) = 1 − 𝐹(𝑡). (2)  
 
 
The hazard function for the event is a measure of the risk that the event will occur at any point 
in time, given the event has not happened up to that time. Formally, the hazard function is 
defined as  
 
 ℎ(𝑡) = lim

o?→g

qr(?	s	t	u	?@o?	|	tw?)
o?

 . (3) 

 
The expression in Supplementary Equation  (3) can easily be shown to simplify to  
 
 ℎ(𝑡) = x(?)

y(?)
. (4) 

 
The hazard function is therefore simply a ratio of the pdf and survival functions, as given in 
Supplementary Equation  (4). It can be interpreted as a rate of occurrence of the event. For a 
Poisson process with rate 𝜆 and an exponentially distributed waiting time distribution given by 
𝑓(𝑡) = 𝜆	𝑒+9?, the hazard function is a constant and given simply by ℎ(𝑡) = 𝜆; this therefore 
represents the simplest hazard function. When the waiting time distributions are no longer 
exponential, as with the cellular IMT and AT distributions, the hazard functions become time-
dependent. 
 
Since – 𝑓(𝑡) is the derivative of 𝑆(𝑡), Supplementary Equation  (4) can be rewritten as 
 
 ℎ(𝑡) = − {

{?
log	 𝑆(𝑡).  (5) 

 
This provides the following equation connecting just the survival and hazard functions: 
 

 𝑆(𝑡) = 𝑒+∫ ~(�){�N
� . (6) 

 
In the case of multiple competing (say k) risks, the above equations can be generalized in a 
straightforward manner. The total hazard function is defined as the sum of cause-specific 
hazard functions ℎ�(𝑡), 
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 ℎ?�?��(𝑡) = ∑ ℎ�(𝑡)� ,  (7) 
 
and the all-cause survival function is given by  
 

 𝑆?�?��(𝑡) = 𝑒+∫ ~N�N��(�){�
N
� .  (8) 

 
The all-cause survival function in Supplementary Equation  (8) gives the probability of none of 
the k events having occurred until time 𝑡 and provides the basic equation for the competing 
risks analysis to be used later in the estimation of parameters of the IMT and AT distributions. 
 
Basic introduction to copulas 
Copulas (Latin for “link” or “bond”), as the name suggests, are functions that “join together” 
one-dimensional distribution functions to form multivariate distribution functions7. A more 
mathematical intuition for these functions can be obtained as follows: consider a pair of 
random variables 𝑋 and 𝑌, which could represent, for example, the times to division of two 
sister cells. Note that these random variables need not be independent, and indeed in the case 
of division times of sister cells, are highly correlated. Denote the cumulative distribution 
functions (cdf) of 𝑋 and 𝑌 by 𝐹(𝑥) and 𝐺(𝑦), respectively, and a joint distribution 𝐻(𝑥, 𝑦) =
Pr	(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦). For any pair of real numbers (𝑥, 𝑦), three numbers can be associated with 
the pair: 𝐹(𝑥), 𝐺(𝑦) and 𝐻(𝑥, 𝑦). Since all three numbers lie in the interval [0,1], each pair 
(𝑥, 𝑦) maps to a point (𝐹(𝑥), 𝐺(𝑦)) in the unit square [0,1] × [0,1]. This ordered pair in turn 
corresponds to a number 𝐻(𝑥, 𝑦) in [0,1]. The correspondence that assigns the value of the 
joint distribution function to each ordered pair of values of the individual distribution functions 
𝐹(𝑥) and 𝐺(𝑦) is a function called a copula. This observation is embodied in Sklar’s Theorem, 
which states that for a given joint distribution function 𝐻(𝑥, 𝑦) with marginals 𝐹(𝑥) and 𝐺(𝑦), 
there exists a copula 𝐶 such that for all real (𝑥, 𝑦) 
 
 𝐻(𝑥, 𝑦) = 𝐶(𝐹(𝑥), 𝐺(𝑦)). (9) 
 
Conversely, if 𝐶 is a copula and 𝐹 and 𝐺 are distribution functions, then the function 𝐻 defined 
by Sklar’s theorem in Supplementary Equation  (9) is a joint distribution function with 𝐹 and 𝐺 
as marginals. The likelihood framework developed later relies on this converse statement of 
Sklar’s theorem. Functionally, the power of copulas becomes evident by rewriting 
Supplementary Equation  (9) in terms of density functions (denoted by small letters) instead of 
the cdfs (denoted by capital letters):  
 
  ℎ(𝑥, 𝑦) = 𝑐>𝐹(𝑥), 𝐺(𝑦)C	𝑓(𝑥)𝑔(𝑦). (10) 
 
The copula density on the right hand side of Supplementary Equation  (10) captures the 
correlations among the random variables	𝑋 and 𝑌, thereby separating the dependence 
structure from the univariate marginals. Supplementary Equation  (10) will form the core 
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component of modeling the correlations among sister cells in the statistical algorithm 
developed later in this section.   
 
How are copula functions created? There are a number of ways, including geometric methods, 
to construct copulas7. The easiest method, however, is by inverting Sklar’s Theorem in 
Supplementary Equation  (9) and using known multivariate distributions. Noting that 
(𝐹(𝑥), 𝐺(𝑦)) lies in the unit square [0,1] × [0,1], we have from Supplementary Equation  (9): 
 
  𝐶(𝑢, 𝑣) = 𝐻>𝐹+�(𝑢), 𝐺+�(𝑣)C, (11) 
 
where  (𝑢, 𝑣) lie in the unit square [0,1] × [0,1]. For example, by choosing 𝐹 and 𝐺 to be the 
standard univariate normal distribution 𝜙, and 𝐻 to be the standard bivariate normal 𝑁� (with 
Pearson correlation coefficient 𝜌), we obtain what is known as the Gaussian copula, given by 
𝐶������(𝑢, 𝑣) = 𝑁�(𝜙+�(𝑢), 𝜙+�(𝑣)). Note that using the Gaussian copula along with standard 
univariate normal margins in Supplementary Equation  (9) would again provide the standard 
bivariate normal distribution. 
 
Algorithm based on competing risks analysis and copulas to infer unbiased IMT and AT 
distributions  
To infer the underlying (unobserved or “hidden”) IMT and AT distributions that can generate 
the experimentally observed distributions, it is necessary to model the stochastic competition 
of cellular fates and the high sister correlations in IMT and AT. High sister correlations can lead 
to an inaccurate inference of the distribution parameters if unaccounted for, especially when 
IMT data is limited due to a large extent of drug-induced apoptosis. While it is challenging to 
model correlated data and this usually neglected for simplicity, recent work in the context of 
DNA methylation has highlighted the improvement in inference that can be achieved by 
incorporating correlations8. We therefore incorporated sister correlations into our algorithm, 
neglecting higher order lineage correlations since we found them to be smaller than sister-
sister correlations. Since the Exponentially Modified Gaussian (EMG) does not have a 
multivariate version, copulas provide a flexible technique for modeling bivariate EMG 
distributions with arbitrary correlations7. While copula functions have been used extensively in 
finance9, there exists surprisingly  few applications in biological problems. Our work highlights 
the power of copulas, and should motivate more widespread use in biological contexts 
especially in the growing field of genomics and epigenetics where modeling correlated data is 
often important8. The copula framework was used in conjunction with the competing risks 
analysis method to develop a statistical algorithm to simultaneously infer unbiased estimates of 
the inter-mitotic time (IMT) and apoptosis time (AT) distributions of HCT116 colon cancer cells 
while accounting for the experimentally observed sister correlations. Note that this method is 
completely general and can be used in the analysis of any cell line with arbitrary IMT and AT 
distributions, treated with drugs at any concentration. The steps of the method are explained in 
detail below: 
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(a) A likelihood model was first developed to describe the data before drug dosing, where 
no cell death was observed. The single cell dataset comprises snapshots at every 30 
minute interval, recording the fate and lineage relationship of every cell. This data was 
partitioned into i pairs of sister cells that divided before cisplatin addition, and using 
Supplementary Equation  (10) each sister pair was ascribed a joint probability density of 
division given by 
  
 𝑓�	>𝑡�� , 𝑡:� ; 𝛉����� C = 𝑐¡ G𝐹>𝑡�� ; 𝛉����� C, 𝐹>𝑡:� ; 𝛉����� CI 	𝑓>𝑡�� ; 𝛉����� C	𝑓(𝑡:� ; 𝛉����� ).	 (12) 
 
Here i denotes the sister-pair, 𝑡��  and 𝑡:�  denote the division times for the two sisters in 
pair i respectively (in other words, 𝑡��  and 𝑡:�  represent the ages of the cells at times of 
division), 𝛉�����  represents the parameter vector of the function f, and F denotes the 
cumulative distribution for the density function f. Throughout this work f is chosen to be 
the EMG function based on evidence from the data (see Supplementary section 4), but 
any arbitrary density function can be used instead, if deemed appropriate. The subscript 
on 𝛉�����  denotes “division”, and the superscript means “before-drug”. The function cz is 
the copula density for modeling the sister-sister correlation in the data. The subscript z 
in cz refers to a single parameter in the copula which can be related to some measure of 
correlation in the data7. For elliptic copulas like the Gaussian copula, this parameter can 
be the Pearson correlation. For other copula families, however, measures of linear 
correlation cannot be used and other measures of dependence like Kendall’s Tau or 
Spearman’s rank correlation are required7. The final likelihood function for the entire 
data set (before drug dosing) then becomes 
 
 𝐿>𝛉����� , 𝑧¤𝒕) = ∏ 𝑓�	>𝑡�� , 𝑡:� ; 𝛉����� C� , (13) 
 
where the product is over all sister pairs. Since the likelihood function involves the 
copula, the R package ‘copula’10 was used in the entire analysis. This likelihood function 
was maximized using the “MLE” command in R to obtain the maximum likelihood 
parameter estimate of 𝛉�����  and z. The parameter errors were obtained from the 
variance-covariance matrix derived from the Hessian matrix. Since the EMG function has 
three parameters, the before-drug scenario involved inferring four parameters in total. 
Note that the inference of the copula parameter z (Pearson correlation of the division 
time of sisters) serves as a validation of the modeling of correlations — with 80 pairs of 
sister cells in the pre-cisplatin scenario, the inferred value of z is expected to be almost 
identical to the Pearson correlation measured directly from the data.     
 

(b)  After addition of cisplatin, multiple fates were observed (cell division and death; the 
possibility of survival will be dealt with in the next section). Therefore the likelihood 
function to describe the data post cisplatin was a combination of the copula (modeling 
the correlations among times to fates of sisters) and the competing risks framework. 
Under this scenario, the data is described as a set of 𝑖 sister pairs, where the sisters 
could either have been born before the time of cisplatin administration (𝑇{) reaching 
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their fate after 𝑇{  (straddling cells), or they could have been born after 𝑇{. Since the 
functional form of the distribution of inter-division times and apoptosis after drug 
dosing was found to be best described by the EMG (see Supplementary Tables 2 and 3), 
𝑓(𝑡; 𝜽) represents the EMG function as with the before-drug scenario. The after drug 
IMT and time to death density functions are defined as 𝑓(𝑡; 𝛉���© ª ) and 𝑓(𝑡; 𝛉���© ª ), 
respectively. The superscript denotes “after-drug”. The corresponding hazard functions 
for division and death after drug dosing are denoted ℎ(𝑡; 𝛉���© ª ) and ℎ(𝑡; 𝛉���© ª ) 
respectively, and can be derived from the density functions via Supplementary Equation  
(4).  
 
The hazard function for either of the two cells of sister pair number 𝑖 that straddles the 
dosing event will be the hazard for division before drug dosing, and the sum of division 
and death hazards after drug dosing. This was mathematically implemented by defining 
a piece-wise function: 
 
                ℎ�?«�{{�S,� 	(𝑡) = ℎ>𝑡; 𝛉����� C,		                                𝑡 < 𝑇{ − 𝑇T�«?~�  

                                                               = ℎ>𝑡; 𝛉���© ª C + ℎ>𝑡; 𝛉���© ª C,	         𝑡 ≥ 𝑇{ − 𝑇T�«?~�  (14) 
 

Note that 𝑡 in Supplementary Equation  (14) denotes the time since the individual cell 
was born, not the absolute time from the start of the experiment. In other words, 𝑡 
denotes the age of the individual cell in Supplementary Equation  (14), and can be 
expressed as 𝑡 = 𝑇 − 𝑇T�«?~� , with 𝑇 denoting the absolute time since the start of the 
experiment and 𝑇T�«?~�  denoting the absolute time when the 𝑖th sister pair was born. 𝑇{  
represents the absolute time when the drug was added. With the hazard function thus 
defined, a straddling cell’s probability to survive till an age 𝑡 can be computed using 
Supplementary Equation  (8) and Supplementary Equation  (14), and is given by the 
following survival function: 
 

 𝑆�(𝑡) = exp	(−	(∫ ℎ�?«�{{�S�t±+tO²³N´
²

g (𝑠)𝑑𝑠	 +	∫ ℎ�?«�{{�S�?
t±+tO²³N´

² (𝑠)𝑑𝑠)) (15) 

 
Note that this expression for the survival function is the same for both sisters in pair 
number 𝑖, since their hazards are identical. Noting that the cumulative distributions of 
the two sisters are given by 1 − 𝑆�>𝑡��C and 1 − 𝑆�>𝑡:� C respectively (see Supplementary 
Equation  (2)), and that the density functions for division are given by the products of 
survival and hazard functions, the joint density for observing both straddling sister cells 
of pair number 𝑖 to divide is given by 
 
 𝑓�	>𝑡�� , 𝑡:� C = 𝑐¡ G1 − 𝑆�>𝑡��C, 1 − 𝑆�>𝑡:� CI		𝑆�>𝑡��C	ℎ>𝑡�� ; 𝛉���© ª C		𝑆�>𝑡:� C	ℎ>𝑡:� ; 𝛉���© ª C. (16) 
 
Supplementary Equation  (16) is the analogue of Supplementary Equation  (12) for cells 
that straddle the drug dosing event at time 𝑇{  and both eventually divide. Note that 
𝑓�	>𝑡�� , 𝑡:� C is parametrized by 𝛉����� , 𝛉���© ª  and 𝛉���© ª  – we dropped the parameters on the 
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left hand side of Supplementary Equation  (16) simply for notational convenience. To 
reduce the number of parameters that need to be simultaneously inferred, we fixed the 
values of 𝛉�����  to those obtained from maximum likelihood estimation from the pre-
cisplatin dataset, and inferred only the six parameters 𝛉���© ª  and 𝛉���© ª  from the post-
cisplatin dataset. We also fixed the value of z to that calculated directly from the data 
(separate values of z for cell division and death). The next section discusses a seventh 
parameter – the probability of a cell being in a state of cell cycle arrest, which was also 
inferred along with the six mentioned here. 
 
Sister cells that straddle or are born after 𝑇{  are more likely to die due to the effect of 
cisplatin. Hence along with Supplementary Equation  (16), similar equations were 
developed for all the other possibilities, including discordant fates among the sister 
cells. The only modifications necessary for such cases is changing the hazard functions 
on the right hand side of Supplementary Equation  (16) to the appropriate hazard 
functions that describe the eventual fate of the sister cells. For cells that were born after 
𝑇{, the total hazard function is ℎ>𝑡; 𝛉���© ª C + ℎ>𝑡; 𝛉���© ª C, and the corresponding survival 
function can be obtained from Supplementary Equation  (8). Finally, the total likelihood 
of the post-cisplatin data analogous to Supplementary Equation  (13) is a product of the 
joint density given in Supplementary Equation  (16) and all such joint densities 
describing all possible combinations of fates, over all 𝑖 sister pairs of cells. For sister 
pairs with discordant cell fates, we used the simplifying condition of no correlations 
between the sisters and set the copula term to 1, denoting independence. 
 

Modeling the probability of surviving treatment 
Several cells survive until the end of the lineage-tracing experiment. These cells may simply 
have been censored (they would have divided or died had more time been allowed to elapse), 
or they may have been under cell cycle arrest due to the action of cisplatin. The older a 
surviving cell was at the end of the experiment, the more likely it is that the cell was maintained 
in an arrested state. Conversely, the younger a cell was when the experiment was ended, the 
more likely it is that that particular cell was not given enough time to undergo a fate. This 
physically intuitive observation was incorporated into the likelihood framework discussed 
above using a variable 𝑞, which denotes the probability of a surviving cell in the dataset to have 
been in a state of cell cycle arrest11.  Therefore, for a sister pair that straddled 𝑇{  and both cells 
eventually divided, the joint density given in Supplementary Equation  (16) was multiplied by 
the factor (1 − 𝑞):, denoting that neither cell was under cell cycle arrest. For a cell that 
survived till the end of the experiment, its density function would be given by 𝑞 + (1 −
𝑞)𝑆�>𝑡��C	: the cell could have been arrested or not arrested; if not arrested with probability 
(1 − 𝑞), then 𝑆�>𝑡��C	quantifies the probability that the cell survived at least till age 𝑡��  given the 
competing risk scenario. The appropriate function of 𝑞 was multiplied with each of the 𝑖 pair of 
sisters, and the final complete likelihood constructed. This final likelihood could not be 
maximized using standard maximization techniques, and a Metropolis Hastings MCMC 
algorithm was used to generate posterior distributions of all the seven parameters to be 
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inferred — three each from 𝜽{�¶
�x? and 𝜽{�S

�x?, and the probability of arrest 𝑞. The MCMC results 
are presented later.    
 
Modeling delayed response of cells after drug administration 
Previous work has suggested that certain drugs may take time to act on cells after being added 
to the in vitro medium11. This delay in drug action could in principle affect the estimation of the 
parameters from the last sections. To account for this possible effect, we introduced a new 
parameter (to be inferred from the data via the likelihood algorithm), 𝑇{S��·. Physically, the 
introduction of this term delays the moment when the hazard of a cell switches from just 
division to division and death. Mathematically, 𝑇{S��· adds a delay to the time when the hazard 
function switches in Supplementary Equation  (14). As a result, the piece-wise function is 
changed to 
 
                     ℎ�?«�{{�S,� 	(𝑡) = ℎ>𝑡; 𝛉����� C,		                                𝑡 < 𝑇{ + 𝑇{S��· − 𝑇T�«?~�  
                                             = ℎ>𝑡; 𝛉���© ª C + ℎ>𝑡; 𝛉���© ª C,	         𝑡 ≥ 𝑇{ + 𝑇{S��· − 𝑇T�«?~�        (17)  
 
Similarly, the limits of integration in Supplementary Equation  (15) are also changed from 𝑇{ −
𝑇T�«?~�  to 𝑇{ + 𝑇{S��· − 𝑇T�«?~� . This additional term 𝑇{S��· therefore effectively models the 
delay in action of the drug.  
  
Accounting for sister correlations improves parameter estimation of the IMT distribution 
Before using our full computational algorithm of the copulas combined with competing risks to 
analyze the data, we tested the improvement of parameter inference that can be achieved by 
accounting for correlations among sister cells. To this end, we used two complementary 
methods:  
 
Method (1): In this approach, we assumed that the true underlying IMT distribution is 
represented by a dataset comprising only one cell per lineage, which ensures that there are no 
correlations in this dataset. Therefore, parameters of the distribution inferred from this 
uncorrelated dataset will represent the ‘true’ underlying parameters. Correlated datasets of 
similar size (obtained by analyzing sister pairs) can then be used to test the usefulness of our 
copula-based inference approach – our approach based on the correlated data should provide 
inferred parameters closer to the ‘true’ parameters as compared to inference using the 
standard method of non-linear least squares (NLS). Specifically, by randomly choosing one cell 
division time from each lineage in the experimental dataset, we obtained 41 inter-mitotic times 
and inferred the parameters of this IMT distribution (‘true’ parameters). To obtain a correlated 
dataset of similar size, we randomly chose 20 sister pairs out of the 80 sister pairs in our full 
dataset. We then used NLS as well as our copula-based approach to infer parameters from the 
correlated dataset. We compared the closeness of each of the inferred parameters 𝑖 (𝑖 =
𝜇, 𝜎, 𝜆) to the ‘true’ parameters using the square of a simple distance metric  
 
𝐷¹ºy,� = 𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟	𝑓𝑟𝑜𝑚	𝑁𝐿𝑆� − 𝑡𝑟𝑢𝑒	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟�	; 	𝐷À�Á���,� =
𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟	𝑓𝑟𝑜𝑚	𝑐𝑜𝑝𝑢𝑙𝑎	𝑚𝑒𝑡ℎ𝑜𝑑� − 𝑡𝑟𝑢𝑒	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟�.  
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Since the 41 independent samples and the 20 sister pairs can be chosen in many ways, we 
performed this entire analysis 1,000 times, each time drawing a different random set of data 
and computing the closeness of the parameter inferences to the ‘true’ values. We found that 
our copula-approach consistently outperformed the NLS approach, doing better 64.3% of the 
time for 𝜇, 56.3% of the time for 𝜎, and 61.1% of the time for	𝜆. These values did not change 
when we increased the sampling from 1,000 to 1,500 and 2,000 times, ruling out the possibility 
that the higher frequency of improved parameter estimates occurred by chance.   
 
While the above analysis highlights the improvement achieved by our method, it provides an 
under-estimate of the improvement that could potentially be reached. This fact arises because 
the ‘true’ parameters, inferred from a dataset of just 41 samples, do not perfectly represent the 
real underlying distribution due to the small sample size, and different realizations of drawing 
41 independent division times produce slightly different distributions. This leads to an 
increased chance of the NLS method having better performance than our copula method in 
specific instances. Therefore, while this method provides a way of demonstrating the 
importance of determining correlations directly from the data, we investigated a second 
method in which the truth is unequivocally known. 
 
Method 2: In this method, we used simulations to generate correlated random number pairs 
(representing sister cells) from an underlying distribution. Hence by construction we know the 
underlying true distribution. We chose an EMG distribution with the same parameters that 
described our pre-cisplatin IMT data (𝜇 = 28.576, 𝜎 = 2.453,	𝜆 = 0.274). We then used the NLS 
method as well as our copula method to infer the distribution parameters from this correlated 
dataset. As with Method 1, we calculated the distance of parameter estimates from both NLS 
and copula methods to the true parameter values (𝐷¹ºy,�  and 𝐷À�Á���,�, respectively) which 
were used to generate the data. This procedure was repeated ~1,000 times. When we used 80 
simulated sister pairs, a number chosen to match our experimental data, we found that our 
method was closer to the truth 61.8% of the time for 𝜇, 71.1% of the time for 𝜎, and 66.9% of 
the time for	𝜆. We repeated the entire analysis for 100 simulated sister pairs and found that our 
method does better 62.4% of the time for 𝜇, 71.4% of the time for 𝜎, and 67.3% of the time 
for	𝜆. In addition, since in this method we have precise knowledge of the true underlying 
parameters, we also checked the magnitude of improvement in parameter estimation achieved 
by our copula method over the NLS method. To do this, we defined an improvement metric 
𝐷�	(𝑖 = 𝜇, 𝜎, 𝜆) given by 𝐷� = |𝐷¹ºy,�| − |𝐷À�Á���,�| 𝑡𝑟𝑢𝑒	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟�⁄  for each of the three 
parameters, whenever |𝐷¹ºy,�| > |𝐷À�Á���,�|. This metric provides a measure of how close the 
copula inference is to the true parameters compared to the NLS inference. While we found that 
there was only ~	1% median improvement for 𝜇, the improvement in estimation of the other 
two parameters was very large: ~	14.6% median, 23.4% 3rd quartile improvement for 𝜎 and 
~	12% median, 26% 3rd quartile improvement for 𝜆 (see Supplementary Figure  4 for the 
distributions of 𝐷�).  
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Results from the statistical algorithm — maximum likelihood and MCMC simulations  
We will now discuss results from the application of the statistical algorithm described in the 
previous sections to single cell lineage tracing data of HCT116 cells. Results of the maximum 
likelihood analysis on pre-cisplatin data are presented in Supplementary Table 4, and results 
from the MCMC analysis of the post-cisplatin data are shown in Supplementary Table 5. Finally, 
results from analysis of the post-cisplatin data with time delay in drug action are displayed in 
Supplementary Table 6.  
 
Supplementary Table 4: Inferred parameters for the pre-cisplatin cell division events using Maximum Likelihood. 𝝁, 𝝈, 𝝀 
correspond to the parameters of the IMT distribution and 𝒛 is the copula parameter (i.e. the Pearson correlation for a 
Gaussian copula). 

                 Parameter                                Maximum Likelihood 
               estimate 

Standard deviation 
 

𝝁                28.6              0.5 
𝝈                  2.4              0.3 
𝝀                  0.27              0.04 
𝒛                  0.71              0.05 

 
 

Supplementary Table 5: Inferred parameters of IMT and AT distributions post-cisplatin using MCMC simulations. 

          Parameter Mean of posterior 
     distribution 

Standard deviation of 
posterior distribution  

        𝝁 (division) 27.7 0.8 
        𝝈 (division)   1.5 0.7 
        𝝀 (division)   0.014 0.001 
        𝝁 (death) 58 7 
        𝝈 (death) 29 3 
        𝝀 (death)   0.5 0.4 
        𝒒   0.27 0.02 
 
 
 

Supplementary Table 6: Inferred parameters of IMT and AT distributions post-cisplatin for the model with a time delay in 
drug action. Results were obtained using MCMC simulations and are almost identical to those in Supplementary Table 5, 
indicating that 𝑻𝒅𝒆𝒍𝒂𝒚 has a negligible effect. 

          Parameter Mean of posterior 
     distribution 

Standard deviation of 
posterior distribution  

        𝝁 (division) 27.6 0.8 
        𝝈 (division)   1.4 0.8 
        𝝀 (division)   0.012 0.001 
        𝝁 (death) 58 7 
        𝝈 (death) 29 4 
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        𝝀 (death)   0.5 0.4 
        𝒒   0.27 0.02 

𝑻𝒅𝒆𝒍𝒂𝒚																												   0.1 0.1 
 
6. Age-dependent birth-death process model 

 
Basic model with no circadian coupling  
To validate the results of the inference procedure and explore the mechanistic origins of the 
observed correlations among cellular lineages, a computational model based on birth-death 
processes was developed to mimic the single cell lineage tracing experiments. Cellular 
proliferation was modeled such that a cell divides or dies based on probabilistic rules. In 
particular, each cell division results in exactly two daughters being born and death removes one 
cell from the population. We used a version of this model that keeps track of the age of every 
single extant cell12. The probability per unit time of division or death depends on the cell’s age 
in a manner that reproduces the correct, non-exponential functional form (EMG in this case) of 
these distributions. In brief, a kinetic Monte Carlo simulation was performed where the 
acceptance probability of any event (division or death) for a cisplatin treated cell depends on 
the exponential factor exp	[− Gℎ>𝑡; 𝛉���© ª C + ℎ>𝑡; 𝛉���© ª CI ∆𝑡], where 𝑡 is the age of the cell, 

ℎ>𝑡; 𝛉���© ª C and ℎ>𝑡; 𝛉���© ª C are the hazard functions discussed in Supplementary section 5, and ∆𝑡 
is the time step for the simulations. Once an event is destined to occur, the choice between 
division or death for that cell is generated based on the ratio ℎ>𝑡; 𝛉���© ª C/ Gℎ>𝑡; 𝛉���© ª C +

ℎ>𝑡; 𝛉���© ª CI. For cellular events before addition of the drug, only the hazard function ℎ>𝑡; 𝛉����� C 
was used. Details of the general simulation procedure are given in 12. The time step ∆𝑡 was 
chosen such that it was much smaller than the average times of the IMT and time to death 
distributions. Throughout this work ∆𝑡 = 0.1 frames (= 3	minutes) was used.  
 
In addition, the birth-death process simulations described above were implemented on a 
directed graph, such that the vertices or nodes of the graph represent individual cells and edges 
represent mother-daughter relationships. Growing the cellular population on a graph allows for 
tracking of lineage relationships between every cell in the population, extant or dead. The 
absolute time of birth, time of fate, and type of fate (division or death) were recorded as vertex 
attributes. Initial conditions for all simulations were 30 ancestor cells (similar to the HCT116 
single cell dataset), whose ages were randomly chosen from a uniform distribution on the 
interval [0,𝑀], where 𝑀 is the average of the IMT distribution before cisplatin administration 
(parameters given in Supplementary Table 4). The progeny of these 30 ancestor cells were 
tracked over time starting from 𝑇 = 0. All simulations were performed using the R package 
“igraph”13.  
 
Similar to the single cell lineage tracking experiment data, the initial 30 ancestor cells were first 
allowed to proliferate to ~250 − 290 cells (~3 generations) in the absence of drug. The 
absence of drug was modeled by setting 𝛉����� , the EMG parameters for division in the absence 
of cisplatin, from Supplementary Table 4. After proliferating to ~250 cells, the parameters 



 16 

were changed and set using the results in Supplementary Table 5 to reflect addition of cisplatin, 
and further proliferation was simulated. Division times before and after drug addition were 
calculated from the recorded vertex attributes, allowing computation of the histograms and 
correlations shown in the main text. 
 
Modeling cell fate dependence on stochastic protein production/degradation 
To investigate the dependence of cell fate on stochastically fluctuating levels of one or multiple 
proteins, we developed a computational model where, in addition to the basic single cell 
lineage generating mechanism (described above), we simulated protein production with rate 
𝑘ÓrÔ� and degradation with rate 𝑘��Õ within each single cell over time. To this end we used the 
standard approach of generating a uniformly distributed random number between 0 and 1 for 
each cell at each time step and comparing it with the quantities [Protein]𝑘��Õ∆𝑡	and 
[Protein]𝑘��Õ∆𝑡 + 𝑘ÓrÔ�∆𝑡 to decide which reaction will occur, if any. We developed two 
models: one in which the concentration of one protein (Protein X) controls the cell division 
probability, and one in which the concentrations of two proteins (Protein X and Protein Y) 
control the cell division probability. The concentrations of the proteins in a mother cell at the 
time of division are kept identical to the concentrations inherited by the two daughters. These 
inherited concentrations are then coupled to the hazard functions of the cells to control cell 
fate probabilities. Since the goal of these models was to investigate whether the cousin-mother 
inequality could be recapitulated, using data from our pre-cisplatin study, we modeled only 
division and neglected cell death. Finally, for both these models, we studied different mixing 
properties of the proteins: for the case when the protein is ‘mixing’, i.e. when it loses memory 
of its level over time scales that are shorter than a single cell division time, we chose the 
production/degradation parameters 𝑘ÓrÔ� = 2.5	frame	+�  and 𝑘��Õ = 0.05	frame+�. This 
choice allows for large fluctuations in the protein levels over time. For the case when the 
protein is ‘non-mixing’ and loses memory over time scales much larger than a single cell’s 
lifetime, the parameters were chosen to be 𝑘ÓrÔ� = 0.05	frame+� and 𝑘��Õ = 0.005	frame+�. 
This choice ensured that the protein level a cell was born with hardly changes by the time that 
cell divides. The mathematical details of the two models are as follows: 
 
Protein X model: As the Protein X concentration at the time at which the mother divides 
increases, the parameter 𝜇 for the two daughters’ hazard functions also increases, thereby 
enhancing the probability of longer division times for the two daughter cells. If the Protein X 
concentration in the mother decreases, there is an increased probability of shorter divisions for 
the daughters. Mathematically, this was achieved by setting  𝜇 = 𝜇g + 0.65	[Protein	X] − 25 
for every cell, where [Protein	X] represents the Protein X concentration in a cell at the time it 
was born. The concentration of Protein X in the 30 ancestor cells were randomly chosen from 
[10,50] (arbitrary units). This parametrization allowed us to maintain the correct magnitude of 
the sister correlations as observed in our pre-cisplatin dataset. The remainder of the 
parameters of the model were kept the same as inferred for the pre-cisplatin case 
(Supplementary Table 4): 𝜇g = 28.5, 𝜎 = 2.4, 𝜆 = 0.27, while 𝑘ÓrÔ� and 𝑘��Õ were chosen as 
described above.  
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Protein X and Protein Y model: To allow the division probability of each cell to depend on the 
levels of two proteins, we generated stochastic simulations of two independent proteins X and 
Y.  When the ratio of their levels X/Y increases beyond 1, the daughters are more likely to divide 
more slowly while they are more likely to divide faster if the ratio of the protein levels is smaller 
than 1. This effect was achieved by coupling the hazard functions of each cell to the protein 
levels:  𝜇 = 𝜇g + 14.0	([Protein	X] [Protein	Y]⁄ − 1) when both X and Y are non-mixing; 𝜇 =
𝜇g + 6.0	([Protein	X] [Protein	Y]⁄ − 1) when X is mixing and Y is non-mixing; 𝜇 = 𝜇g +
20.0	([Protein	X] [Protein	Y]⁄ − 1) when both X and Y are mixing. As with the Protein X only 
case, these parametrizations were chosen so as to reproduce the experimentally observed 
sister correlations. The remainder of the parameters of the model were kept the same as 
inferred for the pre-cisplatin case (Supplementary Table 4): 𝜇g = 28.5, 𝜎 = 2.4, 𝜆 = 0.27, while 
𝑘ÓrÔ� and 𝑘��Õ were chosen as described above. 
 
Modeling circadian gating of the cell cycle  
The circadian clock was ascribed a period of 24 hours (48 frames) as found in experiments using 
the HCT116 cell line14. The phase of the clock 𝛷 in the model was determined by the absolute 
time:	𝛷 = :Ý

Þ,
	𝑇 (for convenience, all units of time used in the equations are frames, not hours). 

To model gating of the cell cycle by the circadian clock, the probability for division of a cell was 
chosen based on the clock phase at which the cell was born — cells born at certain phases of 
the clock would have a higher probability of dividing at lower ages than cells born at other 
phases of the clock. Mathematically, this was achieved by making the parameter 𝜇 of the EMG 
a sinusoidal function of the clock phase at cell birth. As mentioned in Supplementary section 4, 
the mean of the EMG is given by 𝜇 + 1/𝜆, while the variance is given by 𝜎: + 1/𝜆:. Therefore, 
by changing 𝜇, the mean of the IMT distribution and hence the hazard of division can be 
changed without affecting the variance. The following general structure for 𝜇 was used to 
introduce gating of the cell cycle for any individual cell:  
 
                     	𝜇 = 𝜇g + 𝐴	sin	(𝛷),                      (18) 
 
where 𝛷 is the clock phase at time of birth of that particular cell. Sister cells are born at the 
same clock phase (for simulations relaxing this assumption, see below), cousins at similar 
phases, and mother-daughter pairs at potentially very different phases, depending on the 
length of the cell cycle compared to the clock period. For the simulations incorporating 
circadian gating, an extra vertex attribute recording 𝛷 for each cell was added. The crucial 
aspect to note regarding the two free parameters 𝜇g and 𝐴 in Supplementary Equation (  (18), is 
that they need to be chosen in a way that reproduces the IMT distributions defined by 𝛉�����  (for 
the pre-cisplatin division events) and 𝛉���© ª  (for the post-cisplatin division events). Note that the 
EMG distributions, whose parameters 𝛉�����  and 𝛉���© ª  were inferred using the statistical 
algorithm in Supplementary section 5, represent the true underlying (though unobserved in the 
case of 𝛉���© ª  ) distributions from which the observed division and death data must have been 
generated. Therefore, in order to recapitulate the distributions of the observed data in the 
experiment, the model must use as underlying distributions EMG functions with 𝛉�����  and 𝛉���© ª  
as parameters. Therefore 𝜇g and 𝐴 in Supplementary Equation (  (18) must be chosen in a way 
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that the pre-competition IMT distribution is similar to the distributions parameterized by 𝛉�����  
and 𝛉���© ª . Furthermore, not all combinations of parameters 𝜇g and 𝐴 that recapitulate the 
underlying distributions can recapitulate the observed correlations in the division times. Hence 
this poses an additional constraint on the choice of parameterization of Supplementary 
Equation (  (18). In order to satisfy both these constraints simultaneously, the following 
parameterization was used in all simulations incorporating gating of the cell-cycle: 
𝛉���,á�rá©��©â��  → (𝜇� = 28.7 + 4.8 sin>𝛷�C , 𝜎 = 2.2, 𝜆 = 0.85) for the pre-cisplatin scenario and 
𝛉���,á�rá©��©â© ª → (𝜇� = 31.0 + 13.0 sin(𝛷�) , 𝜎 = 0.01, 𝜆 = 0.02) for the post-cisplatin scenario. 
The superscript 𝑖 denotes the sister pair number, as in Supplementary section 5. Therefore, for 
the pre-cisplatin scenario, the circadian model to describe IMT distributions and correlations in 
IMT has four free parameters 𝜇g, 𝐴, 𝜎, 𝜆. Since the EMG function describing the IMT distribution 
requires 3 parameters for complete characterization, our model requires only one extra free 
parameter to also explain the entire IMT correlation structure pre-cisplatin. Note that there 
may exist other choices of parameter values for 𝜇g, 𝐴, 𝜎, 𝜆 that explain the data equally well — 
the choice given above is only meant to serve as an example of how a minimal model with 
circadian gating can explain the single cell lineage tracing data. The number of free parameters 
for the post-cisplatin scenario is discussed below. Finally, note that the definition of the clock 
phase based on the absolute time implies that all cells have their circadian clocks synchronized. 
This is a simplifying assumption and usually not true in bulk populations of cells. However, this 
assumption does not affect the experimental observations this model aims to explain – 
correlations within lineages of single cells. This point is explained in more detail with supporting 
simulations below. 
 
The simulations using the circadian gating model were started with an initial condition of 30 
cells with randomly drawn ages between 0 and the mean of the inferred IMT distribution 
(parameters in Supplementary Table 4). The initial absolute time was set to 𝑇 = 0 and as 
before, the time step ∆𝑡 was chosen to be ∆𝑡 = 0.1 frames (= 3	minutes). The lineages of each 
of the 30 original cells were then followed over time. 
 
Varying the periods of the oscillator gating of the cell cycle 
Besides a 24hour circadian period for the oscillator gating of the cell cycle, a number of other 
periods were tested for their ability to reproduce the cousin-mother inequality observed in the 
pre-cisplatin HCT116 lineage data. The parameters 𝜎 = 2.2	, 𝜆 = 0.85 were kept unchanged 
across all of these simulations. Only the parameters 𝜇g and	𝐴 were tuned to reproduce the 
correct sister correlations and the IMT distributions observed in the data. Supplementary Table 
7 provides all parameter values that were used to generate Fig. 6 and Supplementary Figure  
10. Parameters for the period 24 hours (48 frames) are given in the preceding paragraph. 
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Supplementary Table 7: Parameters used in simulations with varying time periods of the oscillator gating the cell cycle. The 
parameters were chosen to reproduce the sister correlations and IMT distribution observed in the pre-cisplatin data. Note 
that 1 frame = 0.5 hours.   

          Time Period 
            (frames) 

𝝁𝟎 𝑨  

                𝟕                        31.0 4.0 
        						𝟏𝟐                        30.0 4.2 
        						𝟏𝟒                        32.0 5.0 
        						𝟐𝟏                        31.0 4.2 
        						𝟐𝟒                         31.0 4.2 
        						𝟐𝟖                         32.7 5.5 
              𝟑𝟕                        28.7 4.8 

					𝟕𝟐																												                        31.0 4.2 
              96                        30.5 4.0 
 
 
Gating of apoptosis by the circadian clock 
Gating of apoptosis was incorporated in a manner similar to Supplementary Equation  (  (18), 
with an identical underlying principle — cells born at certain phases of the circadian clock are 
more likely to die at lower ages as compared to other cells. With gating of two pathways 
(division and death), an additional phase difference between the two gated pathways must be 
considered. This phase difference was accounted for by using the variable 𝛥𝜑 in the following 
manner for defining 𝜇 of the time to death distribution:  
        
                 𝜇 = 𝜇g + 𝐴 sin(𝛷 + 𝛥𝜑)                      (19) 
 
Similar constraints as with Supplementary Equation  (  (18) need to be satisfied by the two free 
parameters 𝜇g and 𝐴 in Supplementary Equation  (19). The parameterization chosen was 
𝛉���,á�rá©��©â© ª → (𝜇� = 57 + 30.0 sin>𝛷� + 𝛥𝜑C , 𝜎 = 20.2, 𝜆 = 0.62). For the post-cisplatin 
scenario, therefore, there were eight free parameters required to describe all correlations in 
IMT and AT as well as the full IMT and AT distributions: a set of four parameters 𝜇g, 𝐴, 𝜎, 𝜆 
representing 𝛉���,á�rá©��©â© ª , and another set of four 𝜇g, 𝐴, 𝜎, 𝜆 representing 𝛉���,á�rá©��©â© ª . Note 
that since three parameters each were required to characterize the post-cisplatin IMT and AT 
distributions, only two additional parameters were required by our model to capture the entire 
correlation structures in post-cisplatin IMT and AT.   Finally, various values of 𝛥𝜑 between 0 
and 2𝜋 were explored, and 𝛥𝜑	~	0 was found to best explain the data, suggesting that gating 
of cell cycle and cell death pathways must occur approximately in phase. These parameters for 
the time to death distribution along with the parameters for the IMT distribution (given above) 
together explain all experimentally observed IMT and AT distributions as well as the 
correlations before and after cisplatin treatment.  
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Random phase change of the circadian clock during cell division 
The model for circadian gating described above makes the simplifying assumption that the 
circadian clocks of all cells in the population are synchronized. This assumption is usually not 
true in a bulk population where the individual clocks are poorly synchronized, unless treated 
with dexamethasone or serum shocked15. The single cell lineage tracing experiment analyzed in 
this work was performed under standard cell culture conditions, and hence the cells would not 
be expected to show synchronicity at the bulk level. However, when the oscillations of circadian 
proteins in progeny emerging from a single cell are tracked, the phase of the clocks in the two 
daughters after division faithfully start close to the phase value where the mother cell ended15–

17. Hence, over a few generations (which is the duration of the entire experiment studied here), 
the cells within one particular lineage would have circadian clocks that are synchronized to a 
high degree. Since the model developed here aims to explain correlations between family 
members within a lineage, the simplifying assumption of synchronized clocks is a very good 
approximation. Having said that, small phase shifts have been noticed at the time of division, 
presumably due to stochastic distribution of circadian proteins from mother to daughter 
cells15,17.  To ensure that these small phase shifts do not qualitatively change any of this work’s 
results, simulations were performed including random phase shifts in the clock phase at birth of 
daughter cells (Supplementary Figure  8). This therefore ensures that the two daughters at the 
time of birth have slightly different clock phases. The random phase shift was chosen uniformly 
between [0, 𝑃]. All results shown in the main text remained almost quantitatively the same 
even with 𝑃 as high as 𝜋 6ï , as shown in Supplementary Figure  8. Only with 𝑃 ≥ 𝜋

2ï  do the 
correlations among sisters and cousins show a noticeable decrease.  
 
Random circadian phases for different cellular lineages 
As discussed above, the results of the simulations shown in the main text were derived under 
the assumption that all cells across different lineages had synchronized circadian clocks. This 
assumption was made purely for the sake of simplicity of the model and for reducing 
computing time and memory requirements as we needed to keep track of the phases of each 
lineage separately over time. This assumption was not meant to be physically realistic, but 
captured the minimal requirement that sisters have similar circadian phases. Since different 
lineages are independent in birth-death models such as the one we use in this study, our results 
would not change if we assumed different phases across lineages.    
 
To demonstrate the validity of our results shown in the main text regarding the lineage 
correlation, in particular the cousin-mother inequality, even in the absence of this assumption, 
we developed a modified model: we chose the circadian phase of the 30 starting cells randomly 
from a uniform distribution, [0, 2𝜋]. As a result, the phases of cells across lineages are no longer 
synchronized at any later time (Supplementary Figure  9a). We found that our original results 
for the lineage correlations still hold in this modified version of the model (Supplementary 
Figure  9b), proving that as long as the sister cells have similar circadian phases, the 
experimentally observed correlation structures can be quantitatively reproduced by our model. 
Note that in this modified model, the cells within a lineage still have synchronized circadian 
clocks, but we showed in the previous subsection that adding small amounts of randomness in 
the passing of phase from mother to daughter does not change our results. 
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Modeling correlated cell fates of sisters 
In addition to the correlation structures in times to fate, very high similarities between the 
eventual fates of the sister and cousin cells were also observed (Supplementary Figure  2a). To 
check whether these results could also be accounted for in the birth-death simulation 
framework, the circadian gating model was updated based on our experimental observation 
that p53 dynamics of sisters is correlated and associated with cellular fate (Fig. 2e,f). Two 
additions were made to the simulation procedure: (1) In the step where the decision to 
undergo an event (either division or death) for every extant cell is made depending on 
comparisons of independent uniform random numbers between 0 and 1 with the exponential 
factors exp	[− Gℎ>𝑡; 𝛉���© ª C + ℎ>𝑡; 𝛉���© ª CI ∆𝑡], correlated random numbers were introduced for 
the sisters. Sister cells among the extant cells were identified in each time step and correlated 
uniform random numbers between 0 and 1 were generated from a bivariate Gaussian copula, 
using the “copula” package in R. Independent random numbers were generated for all the 
other non-sister cells. (2) A similar method for generating correlated uniform random numbers 
for sisters was used for the fate-determining step. Once an event is destined to occur, the 
choice between division or death was generated based on comparisons of uniform random 
numbers to the ratios ℎ>𝑡; 𝛉���© ª C/ Gℎ>𝑡; 𝛉���© ª C + ℎ>𝑡; 𝛉���© ª CI for each cell destined to a fate at 
that time step. Instead of using independent random numbers, correlated random numbers 
were generated for the sisters. In both the steps, the same value of correlation was used, 
thereby adding only one extra free parameter overall. A Pearson correlation of 0.95 was used 
for the random numbers to generate Supplementary Figure  13. The similarity in fates 
(Supplementary Figure  13a) was calculated from the simulations as follows: We kept track of 
the number of cells 𝑁Sð? that were extant in the simulation at the time the hazard functions 
were switched to mimic cisplatin addition. Among these 𝑁Sð? cells, 𝑁��� and 𝑁À��� were the 
number of sisters and cousins, respectively. We then tracked the fates (division or death) of 
these 𝑁Sð?  cells after cisplatin addition. 𝑁{�¶ cells divided and 𝑁{�S cells died, from among the 
𝑁Sð? cells. We then counted how many of the 𝑁{�¶ cells that divided, were sister and cousin 
pairs, defined as 𝑁���,{�¶ and 𝑁À���,{�¶ respectively. Similarly, we defined 𝑁���,{�S and 𝑁À���,{�S 
from the 𝑁{�S cells that died. The probability of sisters sharing the same fate after cisplatin 
treatment was then found as 𝑃��� = (𝑁���,{�¶ + 𝑁���,{�S) 𝑁���⁄ ,  and similarly the probability of 
cousins sharing the same fate was  𝑃À��� = (𝑁À���,{�¶ + 𝑁À���,{�S) 𝑁À���⁄ . The probability of 
two random cell pairs exhibiting the same fate was calculated as 𝑃«�ñ{ = 	 (𝑁{�¶ 𝑁Sð?⁄ ): +
(𝑁{�S 𝑁Sð?⁄ ):. We found that in our simulations 𝑃«�ñ{  was always approximately 50%, while 
𝑃��� and 𝑃À��� were higher, as shown in Supplementary Figure  13a.       
 
 
7. Supplemental experimental methods 

 
Live cell microscopy for cell cycle analysis 
To track cell cycle stage we incorporated a Cerulean-hGem lentiviral reporter into HCT116 p53-
VKI cells. Approximately 10,000 cells were plated to poly-D-lysine coated glass bottom dishes 
(MatTek corporation) in McCoy’s media with 10% FBS. Cells were grown for 48 hours prior to 
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imaging to allow cells to attach. Prior to imaging, media was replaced with RPMI without 
phenol red or riboflavin and supplemented with 5% FBS (clear RPMI) to minimize background 
fluorescence. Cells were imaged every 30 minutes for 24 hours to identify cell cycle stage, then 
media was replaced with premixed clear RPMI-media + 12.5 µM cisplatin and cells were imaged 
for an additional 72 hours without media replacement. 
 
 
 
Data analysis 
Cells were tracked with custom ImageJ scripts using the phase channel. Custom Matlab 
(Mathworks) scripts were used to subtract the background from images using the rolling ball 
algorithm (Sternberg 1983) and acquire single cell trajectories of p53-Venus and Cerulean-
hGem levels. Code available upon request. Cell-cycle stage was determined by visual inspection 
of Cer-hGem levels. 
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SUPPLEMENTARY FIGURES 
 

 
 
 
 
Supplementary Figure 1: Lineage correlations in IMT of cells that straddle the cisplatin dosing 
event. (a) Correlation in sisters and (b) correlation among cousins. The Pearson correlation (𝜌) 
in each case is mentioned on top of each panel. 
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Supplementary Figure 2: Cell fate correlations between cells within a lineage. (a) Percentage of 
related cell pairs that share the same fate (death or survival only). The dashed line is the 
percentage of unrelated cells that share the same fate (52%) *** P < .001 error bars. See 
Methods section for error bars and calculation of significance (b) Four different cell fates are 
possible after cisplatin treatment as cells can either divide or die, do both or do neither. (c) 
Percentage of cell pairs by relationship that had the same cell fate after cisplatin treatment. The 
probability of any two cells sharing the same fate is shown for comparison. 
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Supplementary Figure 3: Cell cycle stage does not alter p53 dynamics or cell fate in response to 
cisplatin. (a) Representative traces of p53 Venus and Cer-hGem in single cells. Cell cycle stage is 
at the top of the graph and was determined by Cer-hGem levels and the timing of the previous 
cell division. 1 represents G1. (b) Cell cycle length was measured using time-lapse microscopy in 
HCT116 p53 VKI cells with and without the cell cycle reporter Cer-hGem. N > 200 cells for each 
cell line. (c) Percentage of apoptotic, G1, S/G2 cells and cells that underwent a mitosis skip at 
each time point after 12.5 𝜇𝑀 cisplatin. N = 341 cells. (d-e) Cells separated by their cell cycle 
stage at the time of cisplatin addition. Neither the percentage of apoptotic cells (d) nor p53 
onset (e) differ between cells in G1 and cells in S/G2. (f) The percentage of apoptotic cells for 
cells in G1 or S/G2 phases during each time point after cisplatin treatment. (g) The time of p53 

0
10
20

30
40

50

60

70

80
90

100

%
 o

f C
el

ls

Cisplatin

G1

Apoptotic

S/G2

Mitosis Skip

0 12 24 36 48 60 72 84 96
Hours

60

50

40

30

20

10

0

H
ou

rs

G1  S/G2

p53 Onset
100
90
80
70
60
50
40
30
20
10
0

%
A

po
pt

ot
ic

 C
el

ls

a.

p5
3-

Ve
nu

s 
(A

.U
.)

Hours

Cell-Cycle Stage

1.0

3.0

2.0

2.5

1.5

0 25 50 75 100

80

20

40

60

0

1S/G2 1S/G2 1 S/G2

1.0

3.0

2.0

2.5

1.5

1S/G2

0 25 50 75 100

S/G2 1 S/G2 Apop.
80

20

40

60

0

0 10 20 30 40 5060 70 80 90100
Hours

G1
S/G260

50

40

30

20

10
0

%
 Ap

op
to

tic
Ce

lls

70
60

50

40

30

20

10
0

O
ns

et
 (H

ou
rs

)

G1
S/G2

0 10 20 30 40 5060 70 80 90100

70

Hours

nit
alp

si
C

nit
alp

si
C

c. e.

f. g. h.

Fig. S3

Log
10 hG

em
-EC

FP (A
.U

.)

i.

20
17.5
15

12.5
10
7.5
5

2.5
0

H
ou

rs

HCT116 p53VKI
HCT116 p53VKI

Cell-Cycle
Length

N.S.

d.

b.

Fate of Cell % of Cells % Fate G1 % Fate S/G2 
Division 38% 24% 76% 
Death 19% 67% 33% 

Division->Death 34% 15% 85% 
No Division, No Death 9% 83% 17% 

Total 100% 34% 66% 
 

N.S.

G1  S/G2



 26 

onset for cells in G1 or S/G2 phase during each time point after cisplatin treatment. (h) The 
time of death (y-axis) for different the p53 onset time (x-axis). Note that time of death here is 
defined from the moment cisplatin was added. R (pearson’s correlation coefficient) (i) The 
percentage of cells in each cell-cycle stage that had one of the four fates outlined in 
Supplementary Figure  2C. Error bars in (b) and (e) represent the standard error of the mean. A 
t-test was used to test for significance. 
 
 
 
 
 
 
 

 
 
Supplementary Figure 4: Accounting for sister correlations improves the inference of the 
underlying IMT distribution. (a)-(c) Percentage improvement in the inferred parameters 𝜇, 𝜎 
and 𝜆 after accounting for sister correlations via the copula framework. The metrics 𝐷�	(𝑖 =
𝜇, 𝜎, 𝜆) are defined as 𝐷� = |𝐷¹ºy,�| − |𝐷À�Á���,�| 𝑡𝑟𝑢𝑒	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟�⁄  for each of the three 
parameters, whenever |𝐷¹ºy,�| > |𝐷À�Á���,�|. For more details, see Supplementary section 5.  
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Supplementary Figure 5: The copula formulation captures the bivariate sister IMT distribution. 
(a)-(d) Contour plots of the bivariate density obtained from four independent sets of simulated 
data with 80 sister pairs, a number chosen to match the number of sisters in the experimental 
data. In the simulated datasets, the univariate margins were chosen to be the inferred EMG 
distribution as given in Supplementary Table 4, and the Pearson correlation was set to the 
inferred value given in Supplementary Table 4.    
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Supplementary Figure 6: The measured (experimentally observed) IMT and AT distributions do 
not represent the true underlying distributions. Histograms in (a), (b) represent output 
distributions resulting from using the experimentally observed IMT and AT distributions (solid 
lines) as inputs to our birth-death process model simulations. Stochastic competition between 
cell division and death skews the output distributions (histograms), such that they are biased 
and no longer match the observed distributions (solid lines). This observation highlights the 
importance of inferring the correct hidden IMT and AT distributions using our computational 
algorithm detailed in Supplementary section 5. 
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Supplementary Figure 7: The cousin-mother inequality cannot be explained by a stochastic 
protein production degradation model in which cell fate is controlled by two proteins, X and Y. 
(a)-(c) Lineage correlations obtained from simulations of stochastic protein production and 
degradation combined with the single cell birth-death process. (a) Both proteins X and Y are 
mixing, thereby losing memory of the initial protein levels a mother passes on to the daughter 
cells; (b) neither X nor Y are mixing, and hence retain memory of the initial protein levels a cell 
is born with; (c) only protein X is mixing. As can be seen in the three panels, the cousin-mother 
inequality cannot be recapitulated in any case. In addition, in (b) and (c), the mother-daughter 
correlations become very large, inconsistent with our experimental observations. All boxplots 
represent the 1st, 2nd and 3rd quartiles of the lineage correlations generated from 30 simulation 
runs.      
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Supplementary Figure 8: Random phase shifts of the circadian clock between sisters at time of 
birth do not affect the post-cisplatin correlation structures. (a-b) Correlations in IMT and AT, 
respectively, show no noticeable change when random phase shifts between [0, 𝜋 6⁄ ] are 
added to the sister circadian clocks at birth, compared to the results in Fig. 5b,d of the main 
text. (c-d) Lineage correlations decreased only when very large phase shifts between [0, 𝜋 2⁄ ] 
were added. Details of the simulation procedure are given in Supplementary section 6. All 
boxplots represent the 1st, 2nd and 3rd quartiles of the lineage correlations generated from 30 
simulation runs.    
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Supplementary Figure 9: Circadian phases of cells across lineages do not have to be 
synchronized to recapitulate the observed correlation structure. (a) Distribution of the phase of 
the circadian clock across different lineages. Cells in different lineages have randomly different 
phases in this model, but cells within a given lineage are synchronized. (b) Lineage correlations 
generated by the model in (a) recapitulate the experimental data. The boxplot represents the 
1st, 2nd and 3rd quartiles of the lineage correlations generated from 30 simulation runs. 
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Supplementary Figure 10: The cousin-mother inequality can be reproduced only for certain 
values of the oscillator time period. (a)-(e) Lineage correlations obtained from simulations in 
which the time period of the oscillator was varied. Only certain multiples of approximately 12 
hour time periods were able to recapitulate the data, for example 12 and 48 hours (24 hours as 
well; these results are shown in Fig. 5f), but not 36 hours. Parameters used for generating these 
plots are given in Supplementary section 6. All boxplots represent the 1st, 2nd and 3rd quartiles 
of the lineage correlations generated from 30 simulation runs.  
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Supplementary Figure 11: Gating of only the cell cycle cannot explain post-cisplatin correlation 
structures. (a-b) Lineage correlations in the post-cisplatin scenario, when only circadian gating 
of the cell cycle, and not cell death, was simulated. The input IMT distribution for the 
simulations with circadian gating was given by 𝛉���,á�rá©��©â© ª  (see Supplementary section 6).  The 
input AT distribution was given by the inferred parameters for death from Supplementary Table 
5. These parameter choices reproduce the experimentally observed IMT and AT distributions, 
but not the lineage correlation structures, showing the importance of gating the death 
pathways. All boxplots represent the 1st, 2nd and 3rd quartiles of the lineage correlations 
generated from 25 simulation runs. 
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Supplementary Figure 12: The circadian gating model recapitulates the experimentally 
observed IMT and AT distributions in the post-cisplatin scenario. (a) The observed IMT and (b) 
AT distributions are reproduced by the theory. The histograms represent the post-competition 
output of our circadian gating simulations. Solid lines represent the observed experimental 
data. IMT and AT input distributions for the simulation are parameterized by 𝛉���,á�rá©��©â© ª   and 
𝛉���,á�rá©��©â© ª  respectively (see Supplementary section 6 for details). Note that 1 frame = 0.5 
hours. 
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Supplementary Figure 13: The circadian gating model recapitulates similarities in cell fates 
after cisplatin treatment. (a) Similarities in cell fates among sisters and cousins as generated by 
our simulations. (b-c) The theory simultaneously recapitulates all the IMT and AT correlations as 
well. For details of the simulation procedure and parameters, see Supplementary section 6. All 
boxplots represent the 1st, 2nd and 3rd quartiles generated from 30 simulation runs.   
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Supplementary Figure 14: Lineages of cells tracked through the entire experiment. Plots of cell 
lineages used for analysis. The cell dendrogram is pictured to the left of each plot, the length of 
each line corresponds to the time that the cell lasted before it divided, died or the experiment 
ended. p53-Venus trajectories corresponding to each cell in the dendrogram are plotted to the 
right. Red traces represent apoptotic cells, blue traces are for surviving cells. Yellow stars 
represent divisions and the dashed line corresponds to when cisplatin was added. 
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Supplementary Figure 15: Lineages of cells tracked for a part of experiment. Plots of cell 
lineages used for analysis. Since some cells could not be tracked from the beginning to the end 
of the experiment these cells were tracked starting at a later time point. The cell dendrogram is 
pictured to the left of each plot, the length of each line corresponds to the time that the cell 
lasted before it divided, died or the experiment ended. p53-Venus trajectories corresponding to 
each cell in the dendrogram are plotted to the right. Red traces represent apoptotic cells, blue 
traces are for surviving cells. Yellow stars represent divisions and the dashed line corresponds 
to when cisplatin was added. 
 


