
Reviewers' Comments:  
 
Reviewer #1:  
Remarks to the Author:  
Review of JIa et al.  
Nature Communications  
 
Jia et al. examine intratumoral heterogeneity by performing WES, transcriptome profiling, and TCR 
profiling in different parts of tumors in NSCLC patients. They find that the immune 
microenvironment is compartmentalized. They claim that while local TMB is associated with local T 
cell clonal expansion, it did not predict local anti-tumor cytotoxicity. There are major issues with 
this paper.  
 
Comments:  
 
1. There are serious logical problems with the interpretation of that data. The authors state many 
times that there is evidence that challenge the association between TMB and anti-tumor response. 
In fact, it is well known that tmb is a predictive marker of immunotherapy response, although this 
is a general association, not an absolute rule. TMB is not necessarily a marker of anti-tumor 
response or cytotoxicity in the absence of immunotherapy treatment. This is exactly because 
immune checkpoints are operative. These concepts are blurred throughout the paper and make 
the logic and premise of the entire manuscript faulty. The authors should strive to be clear on 
what they mean and refine their interpretations.  
 
2. “It also calls into question whether total mutation burden or neoantigen load is decisive for 
predicting immune “readiness” for immunotherapy.”  
 
It is unclear what the authors mean here. What is immune “readiness”? this statement is quite 
misleading. The studies on TMB and MSI clearly show that TMB predicts with IO agent response. 
The authors should temper their statements as its unlikely their small 15 patient study would have 
much power to call into question phase III studies and the cumulative data from thousands of 
patients. Language is important here and the authors should be more mindful.  
 
3. Did the authors perform orthogonal validation sequencing? If so, this needs to be presented.  
 
4. It si not clear how the authors selected the regions to be sampled? Were the sites examined 
previously by a pathologist to ensure that necrosis and fibrosis was accounted for?  
 
If so, the authors need to show this data for transparency. Otherwise, it is unclear what they are 
sequencing.  
 
5. Fig 1B-D. The x axis is unreadable. Authors need to show this data somewhere so its directly 
readable. The authors need to make the spatial relationships between these data clear in terms of 
tumor location.  
 
6. inflamed signatures and the lack of correlation with TMB in the untreated setting has already 
been explored by others, such as Spranger et al. PNAS (PMID: 27837020). The finding that 
spontaneous immune activity does not correlate with TMB is thus not novel. Furthermore, it is 
already known that immune enriched microenvironments only loosely correlate with response to 
immune checkpoint inhibitors. This paper adds nothing novel on this front.  
7. There are issues with the machine learning work. It seems that the authors have selected 
specific genes to include. How did the authors control for bias here for input variable selection?  
8. the authors have not controlled for local immune checkpoint expression or immune suppressive 
immune subsets (ie. MDSC + others) that may prevent neoantigens from being targeted. The 
analysis of association they performed did not account for comfounders.  



9. The authors did not validate their immune map with pathologic assessment but relied on only 
gene expression level data. Furthermore, they have no idea which cellular compartment these 
genes come from. The immune map analysis is at best preliminary. Flow destroys the spatial 
information that could be gained.  
10. It s well know that immune recognition may be ininfluenced by mutational clonality. When 
clonality is taken into consideration (ie. clonal vs subclonal mutation burden), does immune 
activity correlate with higher burden? Fig 3 begins to address this but does not parse out this 
important analysis.  
 
 
 
Reviewer #2:  
Remarks to the Author:  
General comments  
 
The manuscript by Jia et al. describes a study on the spatial heterogeneity of the genetic and 
immune profiles in NSCLC. The authors analyzed multiple biopsy samples from 15 patients and 
identified immune heterogeneity within patients. Furthermore, the results indicate that the 
mutational burden was not associated with immune cytotoxicity.  
 
While intratumoral genetic heterogeneity has been well studied, the heterogeneity of the tumor 
immunity has not been comprehensively characterized. Thus, the findings of the study are of 
potential interest to a wider audience. However, there are several issues that need to be 
addressed. First, the figures and the figure labels are very small and extremely hard to read. One 
has to zoom in 400% in order to read the labels. All figures should be redone and enlarged. 
Second, the method section is too brief and buried in the supplementary material. It is difficult to 
evaluate the study given insufficient information (see also specific comments). Third, the raw data 
was not deposited in an appropriate database and hence, the results of the analyses cannot be 
reproduced. It is an imperative to deposit data in a public repository. Notably, there are publicly 
available repositories that can be used to deposit data and access the data –also with restrictions 
due to privacy limitations. For example, data deposited in GDC/dbGAP have a controlled access 
and clearly specified procedures to access the data. And fourth, many of the statements are either 
not correct or even speculative and the authors should rewrite the manuscript and carefully 
describe the findings.  
 
Specific comments  
 
The use of the word “compartmentalized” in the title and throughout the manuscript is not optimal, 
as it would refer at clearly separate/identifiable areas or structures of the tumors. “Spatial 
heterogeneity” would be more appropriate to describe the molecular and immunological diversity.  
 
Different ecological measures of diversity, including the Shannon’s entropy, inverse Simpson and 
complementary Simpson indices, can be applied to describe T cell repertoires. However, there is 
no “Shannon clonality index” as reported in the manuscript. Shannon entropy-based clonality 
index is more appropriate. Both indices should be described in the methods section.  
 
L. 157-164: The lack of thorough explanation in the Methods section hampers the evaluation of 
some of the analyses performed. For instance, it is not clear how the “immune map” was built. 
From caption Figure 2 caption it seems that MDS was used. If so, the immune map would be far 
from being robust (as claimed at L. 178), as the location of each sample in the immune map would 
depend on the set of samples considered in the MDS analysis.  
 
L. 208-209: Please clarify how the “distinct phenotypic nature of different mutations may directly 
modify the immune response”.  
 



L. 216-218: The authors refer to immunologically hot tumors, but it is not clear from the figure 
how were these tumors defined. Furthermore, the data is not sufficient to state that cells are 
executing anti-tumor immunity or pro-tumor suppression. It would be better to name the cell 
types.  
 
L. 218-222: Can the correlation of the immune-cell NES be biased due to tumor purity?  
 
Figures  
 
Figure 1:  
What are the shaded area and the line in Figures 1E-F?  
The “Machine Learning” panel of Figure 1A seems to have been copied and pasted from Hackl et 
al. (Nature Reviews Genetics, 2016), with obvious copyright issues.  
Replace in Figure 1A “foci” with “loci”.  
Figure 1C: predicted neoantigens should be filtered for expressed ones (using RNA-seq data). A 
figure with the neoantigen burden (as 1E and 1F) would be helpful.  
 
Figure 2:  
Instead of dichotomizing the cytolytic activity into two classes, it would be better to plot it as 
continuous variable, like for gene expression levels.  
 
Figure 3:  
Figure 3A which variable was plotted (NES?).. The legend should also explain what are the shaded 
area and the line of Figure 3C.  
 
 
 
Reviewer #3:  
Remarks to the Author:  
NCOMMS-17-33520  
 
The authors analyzed different regions of lung cancer for somatic mutations, TCR-beta repertoire 
and immune signature by DNA-seq and RNA-seq. By standard techniques (NetMHC), they 
predicted neoepitopes and tried to correlate neoepitopes with T cell clonal expansion and a 
signature of immune cytotoxicity. They found significant heterogeneity in different tumor regions, 
T cell expansion was associated with mutation burden but not with an immune cytotoxicity 
signature. These data contrast some prominently published papers, in which the immune 
cytotoxicity signature was correlated with decreased predicted neoepitopes. These earlier studies 
were performed with whole tumor tissue and, therefore, the current manuscript is important, since 
it demonstrates that tumor heterogeneity, at least of tumors with high mutational burden, 
introduces a complexity, which when ignored can lead to substantial false-positive results.  
 
A general critique on the current and all related studies, of which almost weekly appear new ones, 
is neoepitope prediction. None of these studies in human cancer demonstrated that a predicted 
neoepitope is indeed a neoepitope. Current algorithms predict the peptide-MHC binding affinity 
(but unlikely for all MHC I alleles) but cannot accurately predict proteasomal processing and not at 
all post-proteasomal trimming and whether sufficient peptide-MHC complexes reach the cell 
surface. With vaccinia virus as model, it was shown that only a minor fraction of HLA-A2 predicted 
epitopes were actually immunogenic in HLA-A2 transgenic mice (Assarsson et al. J Immunol 2007, 
178:7890–7901). No reason to assume that it is different for cancer neoantigens. Thus, it is 
unclear how large the number of wrongly predicted neoepitopes is. A cut-off of IC50 of 500 nM is 
quite low, unclear whether such epitopes can elicit a T cell response in the cancer context. How do 
the results look like, if cut-off is 50 or 5 nM?  
 
That the T cells in the lung tumors are neoepitope-specific is possible but speculative and relies on 



data from few melanoma patients treated successfully with TILs.  
 
The terms tumor immunity, immunogenic or antigenic are poorly speculative. Immunity means 
“protection” but the T cells do not prevent tumor progression. “Reactivity” seems a more 
appropriate term (Nat Rev Cancer 12: 307-313, 2012). The authors have no indication that the 
expanded T cells ever were functional.  
 
It is not possible for this reviewer to go in detail through this vast amount of omics data and judge 
the bioinformatics. However, all conclusions of the current manuscript depend not only on accurate 
prediction of neoepitopes (see above) but also on accurate determination of the HLA class I 
haplotype. It seems that Optitype is not 100% accurate (Journal of Human Genetics (2017) 62, 
397–405).  
 
For better judging the data, a Table with all mutations, predicted IC50 and RNAseq reads would be 
helpful.  
 
Fig 1B-D are not understandable.  
Figure labels are too small.  
Lines 123-138: Lavin et al., 2017, Cell 169, 750–765 might be relevant to be cited.  
Suppl Fig S3 should be labeled.  
Reading the manuscript was difficult, since some Suppl Tables were wrongly labeled, e.g. Suppl 
Table 5 was missing.  
 
In conclusion, bearing the above critiques in mind, the manuscript is interesting, because it puts 
into question current popular views and illustrates the problem with this type of analysis.  
 



Response to Reviewers’ comments:  

We sincerely thank all three reviewers for their insightful and constructive 
suggestions. To address reviewer concerns and strengthen our study, we have now 
performed additional analyses and made the following modifications: 1) we assessed 
the clonality of somatic mutations, clonal versus subclonal, and found that clonal 
somatic mutations are also loosely associated with an inflamed immune signature. 
This is similar to what we observed for the total somatic mutational burden; 2) we 
calculated the purity of tumor cells in our tumor samples and found that ssGSEA-
estimated immune cell infiltration is independent of tumor cell purity, suggesting the 
ssGSEA score is not significantly biased in the sampling; 3) we re-analyzed HLA 
typing using the HLA-VBSeq tool, which produced identical results as our previous 
analysis using the Optitype algorithm; 4) we elaborated our method section, including 
clarifications and detailed descriptions for our key bioinformatics analyses, to 
enhance our data clarity. Based on these new results and general comments related to 
data interpretation from the reviewers, we have thoroughly revised the manuscript.  

 

In addition, we would like to clarify two of the major conclusions of our manuscript. 
First, our analysis indeed challenges the idea that the tumor mutational burden (TMB) 
or its associated neoantigen load is the best biomarker to predict local anti-tumor 
immune responses. Instead, we believe that the nature, or immunological “quality”, of 
mutations is as or more important than sheer quantity of mutations. This idea is 
supported by a recently published “antigen fitness” model1,2 from other groups that 
had previously advocated for the importance of TMB. These studies utilize new 
patient cohorts or revisit previously attained clinical data to conclude that the 
antigenicity of mutations has superior predictive value than mutational abundance. 
We do not have evidence, and indeed have not claimed, that TMB is a failed 
biomarker for checkpoint blockade prognosis. However, it must be acknowledged that 
new results from our lab and others indicates that tumor antigenicity has better 
association with anti-PD1 and anti-CTLA4 efficacy compared to TMB. 

 

The second critical issue we would like to address here is that our study heavily 
emphasizes immune microenvironmental heterogeneity within individual tumors. Our 
discovery that immune reactions are spatially heterogeneous within the TME does 
challenge the value of biomarkers obtained from single locus biopsy. Indeed, the 
unexpectedly high immune heterogeneity we demonstrate here may directly reflect 
the limitations of biomarkers currently used for immunotherapy prognostic prediction. 

 

To reflect these changes and to clear our message, we changed the title of this 
manuscript to “Local Mutational Diversity Drives Intratumoral Immune 



Heterogeneity in Non-Small Cell Lung Cancer”. Please find enclosed a point-by-point 
response to all issues raised by the reviewers. Any changes to the revised manuscript 
including those specifically addressing reviewer concerns have been highlighted in 
the manuscript file.  

 

 



RESPONSES TO REVIEWERS  

  

We would like to express our sincere thanks to all three reviewers for their critical and 
constructive comments. To address reviewer concerns we have performed substantial 
additional analyses, which we feel have helped us clarify important issues and 
significantly improve the manuscript. Below we respond point-by-point to each of the 
reviewer comments.  

 

Responses to Reviewer #1  

  

1. There are serious logical problems with the interpretation of that data. The authors 
state many times that there is evidence that challenge the association between TMB 
and anti-tumor response. In fact, it is well known that TMB is a predictive marker of 
immunotherapy response, although this is a general association, not an absolute rule. 
TMB is not necessarily a marker of anti-tumor response or cytotoxicity in the absence 
of immunotherapy treatment. This is exactly because immune checkpoints are 
operative. These concepts are blurred throughout the paper and make the logic and 
premise of the entire manuscript faulty. The authors should strive to be clear on what 
they mean and refine their interpretations. 
 

We thank the reviewer for pointing out that our manuscript’s message needs 
clarification. We are indeed challenging the idea that TMB directly associates with 
intrinsic anti-tumor responses. We do not have evidence that contradicts the 
established clinical association between TMB and the efficacy of checkpoint blockade 
immunotherapy. However, the predictive value of TMB has been challenged by two 
recent reports1,2, including one from previous advocates of the importance of TMB3. 
In these studies of melanoma4 and pancreatic cancer1 patient cohorts not undergoing 
immunotherapy, TMB failed to predict immune responses or prognosis. Moreover, 
when three clinical trials (two with anti-CTLA4 against melanoma4,5 and one with 
anti-PD1 against NSCLC3) were revisited, the general consensus was that neoantigen 
quality, which represents the antigenicity of mutations, has superior predictive value 
compared to neoantigen quantity (TMB)2. Based on these recent studies, it is 
reasonable to conclude that, although TMB is currently the best predictive marker of 
checkpoint blockade responses, its prognostic value is not optimal. Our conclusions 
agree with those of others1,2,4-7 to emphasize that : a) the nature or quality of 
mutations is a critical determinant of immunogenicity; b) an ideal biomarker to 
describe intratumoral immune responses depends on more sophisticated analyses, 
which include TMB as one parameter.  

 



To clarify this message, we have revised our manuscript thoroughly such that it now 
specifically focuses on our finding that the TMB is not directly related to the local 
anti-tumor response in the absence of immunotherapy. We also wrote an additional 
paragraph to discuss the recent “antigen fitness” model, which provides further 
contextual support for our conclusions.  

 

2. “It also calls into question whether total mutation burden or neoantigen load is 
decisive for predicting immune “readiness” for immunotherapy.” It is unclear what 
the authors mean here. What is immune “readiness”? this statement is quite 
misleading. The studies on TMB and MSI clearly show that TMB predicts with IO 
agent response. The authors should temper their statements as its unlikely their small 
15 patient study would have much power to call into question phase III studies and 
the cumulative data from thousands of patients. Language is important here and the 
authors should be more mindful.  

 

We changed “readiness” to “suitability” for immunotherapy. Moreover, we have 
elaborated on our views, in the context of recent progress made in this field, about the 
predictive value of TMB for local immune reactivity and checkpoint blockade 
efficacy as described above. We agree that currently TMB is still the best biomarker 
for IO reagent response. However, it should be noted that only ~50% of NCCLC 
patients with high TMB receive benefit from such immunotherapy8. Therefore, it 
remains an urgent need to improve upon this biomarker and the first step to do so is to 
understand the limitations of TMB and single locus biopsy; we feel that this insight is 
one of the main values of our manuscript. Although it is unaffordable to perform 
comprehensive immunogenomics analysis on thousands of patient samples, we agree 
that our cohort size is small and we need to use more precise language to present our 
data and interpretations; we have attempted to improve in this regard throughout the 
revised manuscript. 

 

3. Did the authors perform orthogonal validation sequencing? If so, this needs to be 
presented. 

 

We have not performed orthogonal validation sequencing for this project. Our 
sequencing data were generated according to the standard operating procedures of the 
clinical diagnosis lab Geneplus Corp, which also provides sequencing services in 
genetic screening and molecular diagnosis for patients. The sequencing accuracy and 
reproducibility of GenePlus have been approved by China’s Food and Drug 
Administration and inspected and certified by the National Health Commission of 



China annually. The service certifications for Geneplus in cancer-related diagnosis 
can be found at http://www.geneplus.org.cn/trans/toAboutUs. 

 

4. It is not clear how the authors selected the regions to be sampled? Were the sites 
examined previously by a pathologist to ensure that necrosis and fibrosis was 
accounted for? If so, the authors need to show this data for transparency. Otherwise, it 
is unclear what they are sequencing. 

 

In this study, all sampled biopsies were obtained in situ during tumor resection. 
Biopsies were taken from regions as far apart as possible by the surgeon inside the 
invasive marginal tissue. All tissues were reviewed by two independent pathologists 
in the Southwest Hospital to make sure the majority of sample was tumor tissue. We 
now include a description of this procedure in the revised Materials and Methods 
section.  

 

In addition, per Reviewer #2’s suggestion, the purity of tumor cells in the analyzed 
samples were assessed using the Sequenza software package9. This analysis revealed 
a mean tumor cell purity above 40% (ranging from 21% to 82%), which is 
comparable to other similar and recent publications for melonama (54% on average, 
ranging from 14% to 95%)10, prostate cancer (34% on average, ranging from 23% to 
79%)11, and neuroblastoma (78% on average, ranging from 22% to 98%)12 . This QC 
data set is now presented as Supplementary Table 2. In addition, we plotted the 
tumor cell purity against the normalized enrichment score (NES) of each infiltrating 
immune cell population (Response Figure 2). We found that tumor loci with lower 
purity are in general those with higher NES for neutrophils, macrophages and 
activated/differentiated T cells. This suggests that immune cell infiltration may 
contributes significantly to lower tumor tissue purity scores.  

 

5. Fig 1B-D. The x axis is unreadable. Authors need to show this data somewhere so 
its directly readable. The authors need to make the spatial relationships between these 
data clear in terms of tumor location.  

 

We have removed the x-axis label in the original Figure 1B-D and presented high-
resolution images as Supplementary Figure 2. To present the spatial relationships, 
all samples from the same patient are now annotated in coded colors. 

 



6. Inflamed signatures and the lack of correlation with TMB in the untreated setting 
has already been explored by others, such as Spranger et al. PNAS (PMID: 27837020). 
The finding that spontaneous immune activity does not correlate with TMB is thus not 
novel. Furthermore, it is already known that immune enriched microenvironments 
only loosely correlate with response to immune checkpoint inhibitors. This paper adds 
nothing novel on this front. 

 

The main novel findings of our manuscript are as follows: 1) we provide direct 
evidence that intratumoral immune cytotoxicity is highly heterogeneous in different 
regions of a single tumor; 2) we show that the TMB is moderately associated with 
local T cell clonal expansion, but cannot predict whether that locus is inflamed or 
associated with PD1 ligand expression. Furthermore, our data also suggest that the 
nature of mutations, rather than the number of mutations, may be more critical for 
reprogramming the immune microenvironment; 3) we show that immune 
heterogeneity is associated with the complexity of immune cell infiltration. 

 

7. There are issues with the machine learning work. It seems that the authors have 
selected specific genes to include. How did the authors control for bias here for input 
variable selection? 

 

The essential hypothesis for our immunogenomics analysis is that a broader 
knowledge base can enhance the accuracy of prediction. Armed with this broad base, 
we let machine learning help us to reduce complexity and make simple categorization.  
It is true that our input variables were selective but they are selected based on 
previous findings and reasonable assumptions. To our knowledge, in comparison to 
other recently published algorithms7, our immune map is built on the highest number 
of variables. We included the expression of 31 immunoregulatory genes (e.g.,  ICOS, 
IDO1, PDCD1, TIGIT, LAG3, etc.) and the abundance of 28 subpopulations of 
infiltrating immune cells (e.g., activated CD8+ T-cells, MDSC, Tregs, etc.), which are 
variables commonly selected by other analytic programs7,13. In addition, we took 
neoantigen loads and T cell repertoire clonality into consideration. Furthermore, since 
signal transduction provides the fundamental mechanism underlying tumor cell 
growth and metabolism (e.g., JAK, Wnt), immune regulation (e.g., STATs, NFκB), 
and microenvironment formation (e.g., proteins involved in angiogenesis and 
hypoxia), we calculated 217 enrichment scores representing 217 signal transduction 
pathways from BIOCARTA database14. Taken together, this shaped our selection 
strategy for variable inputs. 

 



8. The authors have not controlled for local immune checkpoint expression or 
immune suppressive immune subsets (ie. MDSC + others) that may prevent 
neoantigens from being targeted. The analysis of association they performed did not 
account for confounders. 

 

As presented above, the relevant abundance of suppressive immune populations, such 
as Tregs, Th2 cells, CD56dim NK cells, immature DCs, plasmacytoid DCs, tumor 
associated macrophages, neutrophils, and MDSCs, have been taken into account in 
our algorithm. Also, our machine learning program included well-established immune 
checkpoint molecules, such as ICOS, IDO1, PDCD1, CTLA4, TIGIT, LAG3, 
HAVCR2, CD274, and HHLA2. These parameters are summarized in 
Supplementary Table S9. 

 

9. The authors did not validate their immune map with pathologic assessment but 
relied on only gene expression level data. Furthermore, they have no idea which 
cellular compartment these genes come from. The immune map analysis is at best 
preliminary. Flow destroys the spatial information that could be gained.  

 

In recent years, new algorithms deconvoluting gene expression data represent one of 
most exciting bioinformatics achievements. Dissecting out immune cell subset 
frequencies from tissue expression profiles is an efficient way to assess tissue 
microenvironment15. The prototype algorithm, which uses gene set enrichment 
analysis (GSEA) to dissect cell populations, was first established by Barbie et al., in 
200916. In 2010, the first signature gene set was developed to dissect immune cell 
population17. Following these successes, numerous subset-specific signatures have 
been designed and validation experiments have been performed to improve the 
accuracy of enumeration18-21. As of today, this is a mature tool and frequently used in 
tumor microenvironmental analysis7,22-24. The subset-specific gene signature adopted 
in our assays has been validated in previous publications7,22,23. We agree with 
Reviewer #1 that the limitation of this analysis is the loss of spatial information. 
Figure 3B represents an effort to validate the computation-aided prediction. 

 

10. It is well known that immune recognition may be influenced by mutational 
clonality. When clonality is taken into consideration (ie. clonal vs subclonal mutation 
burden), does immune activity correlate with higher burden? Fig 3 begins to address 
this but does not parse out this important analysis.  

 



We thank Reviewer #1 for this insightful suggestion. Indeed, higher clonal mutational 
burden and low subclonal mutational heterogeneity is associated with superior 
prognosis in immunotherapy-naïve NSCLC cohort and clinically benefited group in 
checkpoint blockade therapies25. To exclude subclonal mutations as a confounding 
factor, we dissected clonal mutational burdens using two independent methods25,26. 
One is developed by Blakely et al26, which defines frequency of each somatic 
mutational allele (MAF) after normalization by the ploidy (extracted from Sequenza 
analysis). The value of each MAF for each allele is then divided by the maximal value 

of all MAFs to reach the normalized MAF (nMAF). If nMAF≥ 0.2, this mutation is 

defined as the clonal somatic mutation; and, the nMAF value for subclonal somatic 
mutation is < 0.2. Alternatively, McGranahan et al.25 defines clonal mutation as a 
mutation that presents in all collected loci after multi-sampling a patient;  and, any 
mutations that only presents in the subset of loci is defined as subclonal mutation. As 
shown in Response Figure 1, with both methods, subtraction of subclonal mutations 
fails to improve the correlation between TMB and local immune cytotoxicity. We 
now present this data as Supplementary Figure 4. 

 

 

Response Figure 1 (also new Supplementary Figure 4). Correlation between clonal 
mutational loads and local immune cytotoxicity. Clonal mutations are defined as “ubiquitous 
and truncal” mutations as previous described by Blakely et al., 26 (A, B) or McGranahan et 
al.,25 (C, D) in contrast with subclonal mutations, which are only identified in a fraction of 
tumor cells. After subtraction of subclonal mutations, the clonal mutational burden was 

plotted against INF-γ expression or cytolytic activity, a parameter comprised of both PRF1 
and GZMA expression. R, coefficient of Pearson correlation. Shaded areas represent the 95% 
confidence interval of fitting. 



 

 

Response to Reviewer #2  

  

General comments  

  

The manuscript by Jia et al. describes a study on the spatial heterogeneity of the 
genetic and immune profiles in NSCLC. The authors analyzed multiple biopsy 
samples from 15 patients and identified immune heterogeneity within patients. 
Furthermore, the results indicate that the mutational burden was not associated with 
immune cytotoxicity.  

  

While intratumoral genetic heterogeneity has been well studied, the heterogeneity of 
the tumor immunity has not been comprehensively characterized. Thus, the findings 
of the study are of potential interest to a wider audience.  

 

We appreciate Reviewer #2’s comments regarding the novelty and significance of our 
manuscript. 

 

However, there are several issues that need to be addressed. First, the figures and the 
figure labels are very small and extremely hard to read. One has to zoom in 400% in 
order to read the labels. All figures should be redone and enlarged.  

 

We apologize for this unsatisfactory presentation. To address this, we have now 
enlarged all figures such that their labels are legible.  

 

Second, the method section is too brief and buried in the supplementary material. It is 
difficult to evaluate the study given insufficient information (see also specific 
comments).  

 

Per Reviewer #2’s suggestion, we now provide additional details in the Materials and 
Methods section.  



 

Third, the raw data was not deposited in an appropriate database and hence, the results 
of the analyses cannot be reproduced. It is an imperative to deposit data in a public 
repository. Notably, there are publicly available repositories that can be used to 
deposit data and access the data – also with restrictions due to privacy limitations. For 
example, data deposited in GDC/dbGAP have a controlled access and clearly 
specified procedures to access the data.  

 

We thank Reviewer #2 for raising this important expectation. We have now uploaded 
all raw data to the Gene Expression Omnibus (GEO) database. Because this is a large 
amount of data, the verification steps at GEO are slower than we expected. As of 
today, we have only received an accession number for the RNASeq dataset, which is 
GSE112996. We anticipate that the accession numbers for the TCR Rep-seq and WES 
datasets will be available in the coming weeks.  

 

And fourth, many of the statements are either not correct or even speculative and the 
authors should rewrite the manuscript and carefully describe the findings.  

 

We now realize based on these and similar concerns raised by Reviewer #1 that we 
did not deliver a clear message in our initial submission. In an effort to clarify our 
findings and interpretations, we have now substantially revised the manuscript based 
on the constructive and insightful comments from all three reviewers. Many of these 
modifications are described in detail in our response to Reviewer #1’s specific 
comments above. 

  

Specific comments  

  

The use of the word “compartmentalized” in the title and throughout the manuscript is 
not optimal, as it would refer at clearly separate/identifiable areas or structures of the 
tumors. “Spatial heterogeneity” would be more appropriate to describe the molecular 
and immunological diversity. 

 

We like this term “spatial heterogeneity” very much and have adopted it to replace 
“compartmentalized” throughout the manuscript. Following this suggestion, we also 



changed the title of this manuscript to “Local Mutational Diversity Drives 
Intratumoral Immune Heterogeneity in Non-Small Cell Lung Cancer”. 

  

Different ecological measures of diversity, including the Shannon’s entropy, inverse 
Simpson and complementary Simpson indices, can be applied to describe T cell 
repertoires. However, there is no “Shannon clonality index” as reported in the 
manuscript. Shannon entropy-based clonality index is more appropriate. Both indices 
should be described in the methods section. 

 

Reviewer #2 is correct on this issue and we apologize for our inappropriate use of this 
phrase. The parameter presented in Figure 1 is in fact the Shannon entropy-based 
clonality index. This has been corrected both within the figure as well as in the 
Materials and Methods section describing our computational process. 

  

L. 157-164: The lack of thorough explanation in the Methods section hampers the 
evaluation of some of the analyses performed. For instance, it is not clear how the 
“immune map” was built. From caption Figure 2 caption it seems that MDS was used. 
If so, the immune map would be far from being robust (as claimed at L. 178), as the 
location of each sample in the immune map would depend on the set of samples 
considered in the MDS analysis. 

 

Reviewer #2 is correct that we used MDS to construct the immune map. The three 
most commonly used tools for dimension reduction are PCA (principal component 
analysis), MDS (multi-dimensional scaling) and t-SNE (t-distributed stochastic 
neighbor embedding). Generally, t-SNE is the most robust among the three while 
PCA is the least robust. However, t-SNE is only suitable when analyzing a large 
number of samples; we do not think our sample size is big enough for it.  We chose 
MDS mainly based on sample size.  

 

Using MDS, we assigned a spatial location for each sample according to 278 
dimensions of defined immune-related features. We utilized the random forest 
machine learning strategy and performed 100 iterations. For each round, 2/3 of 
samples were randomly selected as the discovery set, and 1/3 samples were assigned 
as validation set. This randomness was determined using a standard random number 
generator program in the R package. A prediction model (decision tree) was 
calculated based on each discovery/validation set. After 100 iterations, the resulting 
100 decision trees were incorporated into one proximity matrix to minimize the 



artificial or random bias. It is true that the resolution of our map is determined by the 
dynamic range provided by our data set. However, this method indeed provided a 
relatively more robust separation than other assays tested in our study. Nevertheless, 
we understand Reviewer #2’s concern and no longer describe the immune map as 
“robust” in the manuscript. We have also revised the Materials and Methods section 
to include a description of these analytic procedures. 

 

 L. 208-209: Please clarify how the “distinct phenotypic nature of different mutations 
may directly modify the immune response”.  

 

We have modified this sentence as “different mutations may play distinct roles in 
modifying the immune response27”.  

  

L. 216-218: The authors refer to immunologically hot tumors, but it is not clear from 
the figure how were these tumors defined. Furthermore, the data is not sufficient to 
state that cells are executing anti-tumor immunity or pro-tumor suppression. It would 
be better to name the cell types. 

 

We have now labeled Figure 2A to more clearly indicate the regions of the immune 
map designated as immunologically “hot” and “cold” microenvironments. We also 
now provide additional details in the figure legend to facilitate comprehension. In L. 
216-218, per reviewer’s suggestions, we list the cell types executing anti-tumor 
immunity or delivering pro-tumor suppression in the revised manuscript. For the 
immune map, the regional designation of tumor loci for their immunological 
phenotype is impacted by local immune cell infiltration. However, abundance of 
infiltrations is only a fraction of factors taking in consideration to generate immune 
map. Therefore, we cannot name specific cell types on the immune map. 

  

L. 218-222: Can the correlation of the immune-cell NES be biased due to tumor 
purity?  

 

To test whether our immune cell NES metric is biased due to tumor purity, we 
calculated tumor cell purity using the Sequenza9 tool based on our WES data. The 
estimated tumor cell purity was listed in Supplementary Table 2. The correlation 
between immune cell NES and tumor cell purity is now shown in Response Figure 2. 



Overall, we observed no significant correlation between these two indexes, supporting 
an unbiased evaluation of immune cell NES in our analysis. 

 

 

 

Response Figure 2. Scatterplot evaluating the correlation between immune-cell NES and the 
purity of tumor tissues. Tumor cell purity in our samples was determined using the Sequenza 
tool. Slope, Pearson fitting line; shaded area, 95% confident interval. 

 

  

Figure 1:  

What are the shaded area and the line in Figures 1E-F?  

 

The shaded areas represent the 95% CI regions; we now include this information in 
the figure legend. 

 

The “Machine Learning” panel of Figure 1A seems to have been copied and pasted 
from Hackl et al. (Nature Reviews Genetics, 2016), with obvious copyright issues.  

Replace in Figure 1A “foci” with “loci”. 



 

We apologize for this mistake. We have updated the “Machine Learning” panel with 
our own illustration and now cite Hackl et al.  

 

Figure 1C: predicted neoantigens should be filtered for expressed ones (using RNA-
seq data). A figure with the neoantigen burden (as 1E and 1F) would be helpful.  

 

Thank you for your suggestion. Since only 44 of the 57 tissues were tested for RNA-
Sequencing, we cannot annotate directly in Figure 1C to show which predicted 
neoantigen accompanied by detectable transcript. However, we provide this 
information in Supplementary Table 8 to list all the predicted neoantigens with 
detectable transcript in RNA-Sequencing data. Neoantigen burdens across tumor loci 
are now presented as Supplementary Figure 3. 

 

Figure 2:  

Instead of dichotomizing the cytolytic activity into two classes, it would be better to 
plot it as continuous variable, like for gene expression levels.  

 

We thank Reviewer #2 for this excellent suggestion. In our revised Figure 2A, we 
now code the cytolytic score of each individual tumor locus using a continuous color 
gradient. 

  

Figure 3:  

Figure 3A which variable was plotted (NES?).. The legend should also explain what 
are the shaded area and the line of Figure 3C.  

 

Figure 3A plots the normalized ssGSEA score. We have added the label to the left of 
the revised figure. In Figure 3C, the shaded area represents 95% confident interval.  

 

 

Response to Reviewer #3  

  



NCOMMS-17-33520  

  

The authors analyzed different regions of lung cancer for somatic mutations, TCR-
beta repertoire and immune signature by DNA-seq and RNA-seq. By standard 
techniques (NetMHC), they predicted neoepitopes and tried to correlate neoepitopes 
with T cell clonal expansion and a signature of immune cytotoxicity. They found 
significant heterogeneity in different tumor regions, T cell expansion was associated 
with mutation burden but not with an immune cytotoxicity signature. These data 
contrast some prominently published papers, in which the immune cytotoxicity 
signature was correlated with decreased predicted neoepitopes. These earlier studies 
were performed with whole tumor tissue and, therefore, the current manuscript is 
important, since it demonstrates that tumor heterogeneity, at least of tumors with high 
mutational burden, introduces a complexity, which when ignored can lead to 
substantial false-positive results.  

 

We appreciate Reviewer #3’s comments on the value and potential clinical impact of 
our results.  

  

A general critique on the current and all related studies, of which almost weekly 
appear new ones, is neoepitope prediction. None of these studies in human cancer 
demonstrated that a predicted neoepitope is indeed a neoepitope. Current algorithms 
predict the peptide-MHC binding affinity (but unlikely for all MHC I alleles) but 
cannot accurately predict proteasomal processing and not at all post-proteasomal 
trimming and whether sufficient peptide-MHC complexes reach the cell surface. With 
vaccinia virus as model, it was shown that only a minor fraction of HLA-A2 predicted 
epitopes were actually immunogenic in HLA-A2 transgenic mice (Assarsson et al. J 
Immunol 2007, 178:7890–7901). No reason to assume that it is different for cancer 
neoantigens. Thus, it is unclear how large the number of wrongly predicted 
neoepitopes is. A cut-off of IC50 of 500 nM is quite low, unclear whether such 
epitopes can elicit a T cell response in the cancer context. How do the results look like, 
if cut-off is 50 or 5 nM? That the T cells in the lung tumors are neoepitope-specific is 
possible but speculative and relies on data from few melanoma patients treated 
successfully with TILs.  

 

Reviewer #3 elegantly outlined the core deficiency of all existing neoantigen 
prediction methods: while current algorithms can predict MHC-I binding affinities 
with very reasonable accuracy, MHC-I binding is not equivalent to antigenicity. 
Therefore, we agree that, like all other neoantigen prediction studies, our current 
analysis is far from ideal. The predicted affinity cutoff to qualify a neoantigen was set 



at 500 nM (Figure 1C and Supplementary Figure 2B) in order to cover most 
possible neoantigens. As suggested by Reviewer #3, we have now performed this 
analysis using a more stringent cutoff of 50 nM predicted affinity (Response Figure 3, 
also Supplementary Figure 3). As shown below, these new results are almost 
identical to those obtained using the 500 nM threshold. 

 

 

 

Response Figure 3 (also Supplementary Figure 3) Correlations between T cell repertoire 
or inflamed immune signature and number of neoantigens predicted using a more 
stringent parameter. Scatterplot showing correlation between the number of predicted 
neoantigens with binding strength < 50 nM, and expanded properties of the T cell repertoire. 
Shannon entropy index of T cell clonality (A) and Simpson diversity index (B) were used to 
depict the T cell repertoire composition. Enrichment of highly expanded clones results in 
higher values for clonality and Simpson diversity. (C-E) Correlation between predicted 
neoantigens (with binding strength < 50 nM) with expression of interferon-gamma, 
granzyme-A, and cytolytic activity (measured as the geometric mean of granzyme-A with 
perforin-1) in log2 of transcript per kilobase million (TPM). R, coefficient of Pearson 
correlation. Shaded areas represent the 95% confidence interval of fitting. 

 

The terms tumor immunity, immunogenic or antigenic are poorly speculative. 
Immunity means “protection” but the T cells do not prevent tumor progression. 
“Reactivity” seems a more appropriate term (Nat Rev Cancer 12: 307-313, 2012). The 
authors have no indication that the expanded T cells ever were functional.  

 



We appreciate Reviewer #3’s precision in language. We agree that “reactivity” is a 
better word to describe this T cell behavior and have adopted this change throughout 
the revised manuscript. 

  

It is not possible for this reviewer to go in detail through this vast amount of omics 
data and judge the bioinformatics. However, all conclusions of the current manuscript 
depend not only on accurate prediction of neoepitopes (see above) but also on 
accurate determination of the HLA class I haplotype. It seems that Optitype is not 100% 
accurate (Journal of Human Genetics (2017) 62, 397–405). 

 

Indeed, in the original manuscript HLA typing was performed using Optitype, which 
has a reported prediction accuracy of 97%28. Since accurate HLA haplotype is 
essential for neoantigen prediction, to validate our results we have re-analyzed our 
whole-exome data using HLA-VBseq29. This algorithm produced results that are 
identical to those generated by Optitype. We have noted this additional analysis in the 
revised Material and Methods section. 

 

For better judging the data, a Table with all mutations, predicted IC50 and RNAseq 
reads would be helpful.  

 

We thank Reviewer #3 for this suggestion. As requested, we now include this 
information in Supplementary Table 8 (predicted neoantigens with binding strengths) 
and Supplementary Table 10 (RNA expression in transcripts per million). 

 

Fig 1B-D are not understandable. Figure labels are too small.  

 

We thank Reviewer #3 for pointing this out and have enlarged these figures and their 
associated labels. Also, more detailed descriptions have been added for Fig. 1B-D and 
provided in Supplementary Figure 2.  

 

Lines 123-138: Lavin et al., 2017, Cell 169, 750–765 might be relevant to be cited.  

Suppl Fig S3 should be labeled.  

Reading the manuscript was difficult, since some Suppl Tables were wrongly labeled, 
e.g. Suppl Table 5 was missing.  



 

We apologize for these omissions and mistakes and have corrected them in the 
revised manuscript as suggested. 

  

In conclusion, bearing the above critiques in mind, the manuscript is interesting, 
because it puts into question current popular views and illustrates the problem with 
this type of analysis. 

 

We again thank Reviewer #3 for her/his close and expert reading of our study. 
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Reviewers' Comments:  
 
Reviewer #1:  
Remarks to the Author:  
The authors have not addressed my criticisms adequately.  
 
comment 1. the logic of the data interpretation is still faulty. indeed, a number of biomarkers can 
contribute to identifying patients benefiting from immunotherapy but the authors seem to 
perseverate on "challenging" some perceived dogma of TMB when in fact no dogma exists. The 
authors need to make a better effort to adjust their interpretation, which is still not adequate.  
2. validation sequencing was not done as I asked for  
3. the machine learning concerns are not addressed. the approach is biased by preexisting 
selected input parameters. no rationale was given for inclusion other than ad hoc choice.  
4. deconvolution does not perform well and in fact can perform quite poorly. the authors so not 
orthogonally validate with pathologic assessment.  
 
 
 
Reviewer #2:  
Remarks to the Author:  
The authors satisfactorily addressed all issues raised in my previous review. Specifically, additional 
analyses, modifications of the manuscript and the figures contributed to clearly present the 
message and highlight novel findings.  
 
 
 
Reviewer #3:  
Remarks to the Author:  
Except for one point, the authors have addressed all concerns: Supplementary Tables 6 and 8 are 
not readable and should be presented in an easy readable and informative form.  



Sep 27, 2018 

 

Response to Reviewer #1 

The authors have not addressed my criticisms adequately 

1. The logic of the data interpretation is still faulty. indeed, a number of biomarkers 
can contribute to identifying patients benefiting from immunotherapy but the authors 
seem to perseverate on "challenging" some perceived dogma of TMB when in fact no 
dogma exists. The authors need to make a better effort to adjust their interpretation, 
which is still not adequate.  

We thank Reviewer #1 for urging us to clarify our message. As stated in our previous 
rebuttal letter, we do not deny the value of TMB or other biomarkers for predicting 
the efficacy of checkpoint blockade, even though the field generally agrees that the 
predictive value of all current biomarkers needs further improvement. We also agree 
with Reviewer #1 that, although TMB remains one of the most widely employed 
biomarkers, there is currently no prevailing dogma used to predict patient 
responsiveness to antitumor immunotherapy.  

Rather than challenging the current clinical application of TMB, the central 
conclusion from our study is that intratumoral mutational and immune heterogeneity 
in NSCLC are much higher than has been previously appreciated. As a secondary 
consideration, our study presents direct evidence that TMB and its associated 
neoantigen load do not necessarily predict local anti-tumor immune responses in 
checkpoint blockade-naïve patients. This could be the result of many immunological 
mechanisms, one of which is the negative feedback elicited locally to suppress T cell 
responses, as presented in Fig. 3C.  

In our previous revision, we also discussed two recent publications that closely align 
with our conclusions1,2. First, in a study of pancreatic cancer immunotherapy-naïve 
patient cohorts, TMB failed to predict T cell immune reaction or prognosis1. 
Moreover, when three clinical trials (two with anti-CTLA4 against melanoma3,4 and 
one with anti-PD1 against NSCLC5), were revisited, the general consensus was that 
neoantigen quality, which represents the antigenicity of mutations, has superior 
predictive value compared to neoantigen quantity (TMB)2. It is worth noting that 
these three cohort analyses are the same ones used to establish the TMB-efficacy 
correlation; moreover, the same researchers who originally published the TMB-
efficacy correlation are now making this adjustment. Their new antigen quality/fitness 
theory is reflected in our mutation evolution analysis (Fig. 3E), which shows that five 
of six patients with heterogeneous immune microenvironments display a dichotomy 
of mutations that separates cold versus hot regions into divergent evolutionary 
directions: other than homogenous (progenitor) mutations at every loci, hot and cold 
tumor regions did not share any common mutations. This suggests that the functional 
nature of a mutation-carrying protein may also play a role in determining the 
immunogenicity of neoantigens. Taken together, these results do not challenge the 
value of TMB as a biomarker for patient stratification. Rather, they provide a working 
hypothesis to explain why, as a single biomarker, TMB is imperfect.  

Finally, we would again like to emphasize that our intention has never been to dispute 
the utility of TMB, which remains a valuable but limited biomarker for predicting 
patient responsiveness. Instead, our study emphasizes the remarkably high mutational 



and immune heterogeneity present within primary untreated human lung tumors and 
its relevance toward guiding patient treatment decisions. 

 

2. Validation sequencing was not done as I asked for 

Repeating whole exosome sequencing for the purpose of validation was not explicitly 
requested during the first round of review. Therefore, we provided rationale 
explaining why we trust the sequencing service provided by the clinical diagnostic 
company (Geneplus-Beijing). 

NGS and its associated bioinformatics tools have significantly advanced in recent 
years, making it a stable and reproducible commodity for researchers. In some 
genetics studies, researchers return to first-generation technology (such as Sanger 
sequencing) to validate their final discoveries, typically being a very limited number 
of key pathogenic variants at the very end of the analysis pipeline. In oncology fields, 
especially in descriptive landscape-style research that looks into the overall profile of 
a tumor genome instead of a particular mutation, it is rarely seen necessary to perform 
orthogonal resequencing confirmation. In particular, both Foundation Medicine’s 
FoundationOne CDx and MSKCC’s MSK-IMPACT panels, which are both FDA-
approved TMB-deriving NGS panels, do not include an orthogonal sequencing 
validation process. The sequencing platform used in our research, together with its 
mutation calling pipeline, is based on the same level of clinical environment built on 
top of commercial reagents and capture kits that have passed stringent quality control, 
follows industrial best-practice, and is thoroughly validated and approved by Chinese 
governmental agencies. It should therefore be trusted to produce the same level of 
accuracy and reproducibility.  

Additionally, oncology studies are challenging and unique in the sense that clinical 
tumor samples are limited in quantity and virtually impossible to reproduce. In our 
study, each WES analysis consumes approximately 500 ng of DNA. As a result, 
orthogonal resequencing of each mutation at the genomic level for the purpose of 
technical confirmation is not practical. 

Nevertheless, we understand Reviewer #1’s concern and performed validation 
sequencing using an independent NGS platform. Accordingly, we picked five samples 
with sufficient remaining DNA, namely P002.T5, P002.T6, P004.T3, P019.T2, and 
P019.T3, and performed independent WES resequencing and data analysis with a 
second clinical diagnostic NGS service (GeneCast Biotechnology Co., Ltd.). This 
validation NGS employed a different WES capture kit and mutation calling was 
performed using a different bioinformatics pipeline. In addition, based on our original 
data, TMB from these five patient samples covered a wide mutational range. 

Despite possible technical variation between the two facilities, the overall 
concordance rate across the two facilities is 94.34%, which is satisfactory. In addition, 
upon closer inspection of the discordant variants, we found that most are low 
frequency variants passing VAF threshold on one platform but not the other, which is 
reasonable. For individual samples, concordance across the two facilities can be 
harder to reach if the total number of variants is low. This is particularly true of 
sample P019.T3 where the concordance rate is only 57.14%. However, these 
discordances do not affect our overall conclusions since we focused on the aggregate 
numbers of mutations instead of individual ones: samples possessing high mutational 
loads have been confirmed to be indeed high and low mutational load samples are 



indeed low (Response Figure 1). We have attached an Excel spreadsheet in this 
revision detailing this concordance analysis.  

 

 

Response Figure 1. Validation sequencing of exome data by an independent lab. 
Scatterplot showing the number of somatic mutations as detected by two qualified 
sequencing labs (GeneCast and Geneplus). The regression line and correlation 
coefficient are labeled within the plot. 

 

3. The machine learning concerns are not addressed. the approach is biased by 
preexisting selected input parameters. no rationale was given for inclusion other than 
ad hoc choice. 

The purpose of machine learning is to reduce complexity and simplify categorization. 
We recognize that our immune gene panel is a subset of the whole transcriptome. It is 
true that our input variables are selected, which is also true of every other customized 
panel depicting the tumor microenvironment6-10.  To our knowledge, in comparison to 
other recently published panels or algorithms6-10, our immune map is built with the 
highest number of variables. Our selection criteria is described in detail in the 
manuscript. Most importantly, the selective nature of immune panels, including ours 
and others’, is based on previous findings and reasonable assumptions, which allows 
us to qualitatively describe relevant characteristics of the tumor microenvironment. A 
major goal of tumor immune microenvironment phenotyping is to guide candidate 
selection for immune-oncology treatment. In fact, many clinical trials have showed 
favorable outcomes for patients with “hot” tumor microenvironments, and each of 
these studies used a customized immune panel to define this “hotness”7-10. 

4. Deconvolution does not perform well and in fact can perform quite poorly. the 
authors so not orthogonally validate with pathologic assessment. 

Sample ID Total Num of 
Mutations 

Detected by 
GenePlus

Mutations in 
GenePlus Human 
Exome v3 but not 

in GeneCast 
MedExome Panel

Remaining 
GenePlus 

Mutations in 
GeneCast Panel 

Region

Remaining 
GenePlus 

Mutations Not 
Detected by 

GeneCast

Mutations 
Detected by 

GenePlus and 
GeneCast

GeneCast 
Mutations Not 

Detected by 
GenePlus

Total Num of 
Mutations 

Detected by 
GeneCast

Overall 
Concordance

P002.T5 376 17 359 21 338 14 352 95.08%
P002.T6 380 16 364 20 334 13 347 95.29%
P004.T3 25 1 24 7 17 3 20 77.27%
P019.T2 19 0 19 1 18 3 21 90.00%
P019.T3 3 0 3 1 2 2 4 57.14%
Subtotal 803 34 769 50 709 35 744 94.34%

WES resequencing confirmation of five representative samples: summary



Upon Reviewer #1’s request, we re-quantified immune cell infiltration using the 
independent xCell method11 as supporting evidence. The major results obtained using 
ssGSEA (Fig. 3) were validated by this new bioinformatics package (Response 
Figure 2).  

 

 

Response Figure 2. Analysis of immune cell infiltration by the xCell method. 

(A) xCell analysis identifying the relative infiltration of immune cell populations for 
44 NSCLC tumor samples with available RNA-Sequencing data. The relative 
infiltration of each cell type is normalized into a z-score. (B) Correlation between 
infiltration of cell types executing anti-tumor immunity (ActCD4, ActCD8, TcmCD4, 
TcmCD8, TemCD4, TemCD8, Th1, Th17, ActDC, CD56briNK, NK, NKT) and cell 
types executing pro-tumor, immune suppressive functions (Treg, Th2, CD56dimNK, 
imDC, TAM, MDSC, Neutrophil, and pDC). The shaded area represents the 95% 
confident interval. (C, D) Scatterplot showing correlation between heterogeneities of 
TMB and immune cell infiltration. X-axis: an average pairwise correlation coefficient 
was calculated to quantify the divergence of immune cell infiltration and presented as 
1-value for clear visualization. Higher values, heterogeneous immune cell infiltration; 
lower values, homogeneous immune cell infiltration. Y-axis: variation in genomic 
mutations was determined by either coefficient of variation (C) or intra-tumoral 
heterogeneity (D). Higher values, heterogeneous TMB; lower values, homogeneous 
mutation pattern. 

 



Response to Reviewer #2 

 

The authors satisfactorily addressed all issues raised in my previous review. 
Specifically, additional analyses, modifications of the manuscript and the figures 
contributed to clearly present the message and highlight novel findings. 

We thank Reviewer #2 for her/his evaluation and appreciation of our study.  

 

Response to Reviewer #3 

 

Except for one point, the authors have addressed all concerns: Supplementary Tables 
6 and 8 are not readable and should be presented in an easy readable and informative 
form. 

We thank Reviewer #3 for her/his comments regarding the novelty and clinical 
significance of our study. We have remade Supplementary Tables 6 and 8 to be more 
readable and browsable with Excel. 
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Reviewers' Comments:  
 
Reviewer #1:  
Remarks to the Author:  
The authors have done a good job of answering my questions.  
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