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SUPPLEMENTARY	FIGURE	AND	TABLE	LEGENDS	

Figure	S1.	Breaks	detected	by	γ-H2AX	and	END-seq	in	pre-B	cells,	related	to	Figure	1.		

A.	 Schematic	 of	 DSB	 induction	 by	 AsiSI,	 ZFN	 and	 RAG	 endonuclease.	 DSBs	 can	 be	

produced	either	in	G1	arrested	cells	(top	panel,	pre-B	imatinib	treatment	for	48	hours)	or	

in	cycling	cells	 (bottom	panel).	B.	γ-H2AX	(red)	 immunofluorescence	(IF)	 in	LIG4-/-	pre-B	

cells	 after	 48	 hours	 imatinib	 treatment	 to	 produce	 RAG	 breaks	 C.	 	 γ-H2AX	 (red)	

immunofluorescence	(IF)	after	48	hours	imatinib	treatment	together	with	DOX	treatment	

during	the	 last	24	hours	and	4OHT	treatment	during	the	 last	4	hours	to	simultaneously	

produce	RAG-,	ZFN-	and	AsiSI-	breaks.	D.	Diagrammatic	explanation	of	END-seq	detection	

of	 an	AsiSI	 break	 site.	E.	 Reads	 from	 each	 end	 of	 the	 two-ended	 break	 have	 opposite	

divergent	 orientation.	 Top	 panel	 shows	 a	 track	 corresponding	 to	 the	 same	 AsiSI	 site	

shown	in	Figure	1B	with	all	reads	mapped	without	strand	specificity.	Below,	the	reads	are	

split	 in	those	mapping	to	the	plus	strand	(black)	and	to	the	minus	strand	(red).	Bottom	

panel	schematic	explains	how	the	reads	are	distributed	into	the	negative	strand	(red)	and	

positive	strand	(black).		

	

Figure	S2.	AsiSI	and	ZFN	on	and	off-target	breaks,	related	to	Figures	2	and	3.		

A.	 END-seq	 reads	 on	 chromosome	 8	 for	 G1-arrested	 (top	 track)	 and	 cycling	 (bottom	

track)	WT	 pre-B	 cells	 4	 hours	 after	AsiSI	 induction.	 Predicted	AsiSI	 sites	 are	 indicated	

above	the	first	track	by	bars,	and	y-axes	indicate	number	of	reads.	B.	Pie	chart	showing	

different	type	of	breaks	detected	in	G1	arrested	LIG4-/-	pre-B	cells	(treated	with	imatinib,	

DOX	and	OHT)	identified	by	peak	calling.	C.	END-seq	reads	at	the	constant	region	of	the	



	

IgH	 locus	 in	WT	B	 cells	 stimulated	 for	 class	 switch	 recombination	 for	 3	 days	 (top	 data	

track)	and	input	control	(bottom	data	track).	The	positions	of	the	constant,	D	and	J	gene	

segments	are	displayed	on	the	top.	Switching	regions	Sγ1	and	Sµ	are	 indicated.	D.	ZFN	

on-target	(top	panel)	and	a	ZFN	off-target	(bottom	panel)	DSB	detected	in	DOX	treated	

G1	 arrested	 LIG4-/-	 pre-B	 cells	 by	 END-seq.	 The	 sequence	 surrounding	 both	 ZFNs	 is	

illustrated,	with	perfect	matches	indicated	in	bold	upper-case	and	mismatches	in	lower-

case.	E.	Normalized	read	count	at	each	broken	AsiSI	site	in	G1	arrested	LIG4	-/-	pre-B	cells	

induced	for	AsiSI	cleavage	 in	vivo	vs.	 in	vitro	digestion	with	recombinant	enzyme	in	the	

agarose	plug.	

	

Figure	S3.	DSB	end-resection	detected	by	END-seq,	related	to	Figure	4.			

A.	Top	panel	shows	the	read	coverage	auto	scaled	to	the	highest	peak	at	one	AsiSI	site	

detected	 in	 cycling	WT	 pre-B	 cells.	 Bottom	 panel	 shows	 the	 magnification	 of	 the	 top	

panel,	which	reveals	END-seq	reads	that	are	distal	from	the	initial	AsiSI	site.	B.	Schematic	

representation	of	a	non-resected	end	detected	by	END-seq.	C.	Schematic	representation	

of	 a	 resected	 end	 detected	 by	 END-seq.	 5'-3'	 nucleolytic	 degradation,	 represented	 in	

yellow,	 generates	 3'	 overhangs,	 which	 are	 blunted	 at	 different	 positions,	 and	 give	 an	

irregular	pattern	of	accumulated	reads	distal	to	the	break	site.		

	

Figure	S4.	DSBs	at	antigen	receptor	loci	in	pre-B	cells,	related	to	Figure	5.				

END-seq	reads	at	TCRα	(A),	TCRγ (B)	,	IgH	(C),	and	Igλ	(D)	for	LIG4-/-	(top	track)	and	RAG1-

/-	 (botton	 track).	 Position	of	 the	V,	D	and	 J	 gene	 segments	 are	 indicated	at	 the	 top.	E.	



	

Magnified	view	of	RAG-induced	DSBs	mapped	by	END-seq	at	the	Jκ	locus.	The	position	of	

the	 gene	 segments	 (black	 rectangles)	 and	RSSs	 (red	 triangles)	 are	 indicated.	 Top	panel	

shows	 reads	 at	 signal	 and	 coding	 ends	 for	 each	 gene	 segment.	 Bottom	panel	 shows	 a	

magnification	 of	 the	 DSB	 at	 Jκ1.	While	 RAG	 breaks	 at	 the	 signal-ends	 are	 precise	 and	

blunt,	the	irregular	shape	of	the	reads	is	caused	by	end-resection	in	the	absence	of	LIG4.			

	

Figure	S5.	RAG	endonuclease	on-	and	off-target	activity,	related	to	Figure	5.		

A.	 Pie-chart	 classification	 of	 RAG	 off-targets.	 B.	 Example	 of	 RAG	 off-target	 DSBs	 in	

clusters.	 Tracks	at	 the	 top	 show	END-seq	 reads	 for	LIG4-/-	 (first	data	 track)	and	RAG1-/-	

(second	 data	 track),	 with	 off-target	 DSBs	 highlighted	 in	 blue.	 Blue	 triangles	 represent	

cryptic	RSSs.	Third	and	fourth	data	tracks	show	Rad21	and	CTCF	ChIP-seq	respectively.	

	

Figure	S6.	DSB	repertoire	in	primary	thymocytes,	related	to	Figure	6.		

END-seq	 reads	 at	 the	 TCRβ	 (A),	 TCRγ (B)	 and	 IgH	 (C)	 loci	 for	WT	 (top	 data	 track)	 and	

RAG2-/-	TCRβ	transgenic	(bottom	data	track)	thymocytes.	The	positions	of	all	the	V,	D	and	

J	gene	segments	are	displayed	in	the	top.	

	

Figure	S7.	Comparison	between	RIC	store	and	DSB	repertoire,	related	to	Figures	6	and	

7.				A-B.	Plots	comparing	RIC	scores	calculated	for	each	RSS	at	the	TCRα	locus	and	total	

number	 of	 reads	 for	 signal	 (A)	 and	 coding	 (B)	 ends	 detected	 by	 END-seq	 in	 WT	

thymocytes.	C-D.	Same	as	(A,	B)	for	Igκ	locus	in	LIG4-/-	pre-B	cells.			

	



	

Table	 S1.	 Comparison	 between	 END-seq	 and	 BLESS	 at	 AsiS1	 break	 sites,	 related	 to	
Figure	1.		
	
Table	S2.	ZFN	off-targets	and	AsiS1	single	nucleotide	polymorphisms,	related	to	Figures	
1-3.	
	
Table	 S3.	 RAG	 off-target	 DNA	 breaks	 associated	with	 c-RSS	 detected	 in	 LIG4-/-	 pre	 B	
cells,	related	to	Figure	5.		
	
Table	 S4.	 Relationship	 between	 DSBs	 detected	 by	 END-seq,	 annotated	 RSSs	 and	 RIC	
scores,	related	to	Figures	6	and	7.		
	
Table	S5.	RAG	off-target	DNA	breaks	associated	with	c-RSS	detected	in	WT	and	ATM-/-	

thymocytes,	related	to	Figures	6	and	7.		
	

	



	

Supplementary	Experimental	Procedures	
	
Cell	lines	and	Immunofluorescence.		

Abelson-transformed	 pre-B	 cells	 (Bredemeyer	 et	 al.,	 2006;	 Lee	 et	 al.,	 2013)	 were	

retrovirally	 transduced	 with	 the	 tetracycline-inducible	 ER-AsiSI,	 pTRE3G-HA-ER-AsiSI	 as	

previously	 described	 (Santos	 et	 al.,	 2014).	 For	 RAG	 induction,	 pre-B	 cells	were	 treated	

with	3	μM	imatinib		for	48h	at	1	x	106	cells/ml.	The	ATM	kinase	inhibitor	KU55933	(Tocris)	

was	used	at	15	μM.	For	induction	of	ZFN	and	ER-AsiSI,	pre-B	cells	were	treated	with	DOX	

at	1	μg/ml	for	24h	and	with	4OHT	at	1μM	for	4	hours.	Immunofluorescent	staining	with	

γ-H2AX	 (JBW301	Millipore,	1/10,000)	antibody	was	performed	 in	parallel	 in	each	pre-B	

cell	experiment	to	verify	a	proper	DSB	induction.		

	

Mice	

C57BL/6	WT,	ATM-/-	(provided	by	A.	Wynshaw-Boris),	and	RAG2-/-	mice	expressing	a	Vβ8	

transgene	 (provided	 by	 K.	 Hathcock)	 between	 4	 and	 18	 weeks	 of	 age	 were	 used	 to	

prepare	single	cell	suspensions	from	whole	thymocytes	and	splenic	B	cells	(purified	using	

depletion	 with	 anti-CD43	 beads).	 For	 class	 switch	 recombination	 experiments	 purified	

splenic	B	cells		were	cultured	with	LPS	(25	μg/ml;	Sigma),	IL-4	(5	ng/ml;	Sigma)	and	RP105	

(Anti-Mouse	 CD180	 (0.5	 μg/ml;	 BD	 Pharmingen)	 for	 3	 days	 as	 previously	 described	

(Callen	et	al.,	2007).	

	

RAG	off-targets	and	RIC	scores	



	

Following	the	mapping	and	aligning	of	sequence	reads,	a	peak-calling	algorithm	(SICER)	

(Zang	et	al.,	2009)	was	used	to	identify	regions	or	peaks	of	significant	enrichment	around	

sites	 of	 DNA	 breaks.	 Each	 peak	 was	 then	 scanned	 for	 the	 RAG	 recognition	 motif	 -	

CAC/GTG,	 and	 the	 pattern	 of	 sequenced	 reads	 surrounding	 the	motif	was	 established.	

Given	 that	 reads	 linked	 with	 a	 specific	 RAG-targeted	 CAC/GTG	 are	 expected	 to	 be	 in	

proximity	 to	 that	 particular	 motif,	 a	 weighting	 or	 confidence	 index	 was	 developed	 as	

follows:by	using	a	 “W”	base-pair	 (bp)	window	centered	on	each	CAC/GTG	motif,	 reads	

aligning	within	 this	window	were	 determined	 and	weighted	 by	 an	 index	 in	which	 four	

possible	combinations	of	reads	relative	to	the	break/motif	site	were	considered.	For	each	

combination,	we	calculated	a	downstream	and	upstream	read	score	from	the	weighted	

sums	as	shown	below:			

Downstream read score =
N!!"#$

! ∗W!
!
!!!

N!!"
! ∗W!

!
!!!

	

	

Upstream read score =
N!!"

! ∗W!
!
!!!

N!!"#$
! ∗W!

!
!!!

	

	

where,		N!!"#$
! 	is	the	number	of	plus-strand	reads	at	location	‘i’	downstream	of	the	DSB.	

Similarly,	  N!!"
! ,N!!"

! ,N!!"#$
!  all	 denote	 numbers	 of	 reads	 at	 relevant	 locations.	 W!	

indicates	the	weighting	value	used	at	location	‘i’	away	from	the	DSB.		

RIC	scores	were	calculated	from	annotated	RSSs	using	the	RSSsite	(Merelli	et	al.,	2010).	

For	gene	segments	positions	and	RSS	functionality	for	mouse	C57BL/6J	Immunoglobulin	



	

and	 T	 cell	 receptor	 in	 GRCm38.p3	 assembly	were	 obtained	 from	 the	 IMGT	 Repertoire	

(Lefranc,	2001).	
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