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1 Methods

1.1 Different Scales to define Contact Patterns
Although the contact matrices are often described with the matrix Mi,j that we define in the main text (which
we will call the intensive scale), sometimes two other scales are used:

• Extensive scale: Ci,j that is the total number of contacts between age-groups i and j.

Ci,j = Mi,jNi (1)

• Density scale: Fi,j that is the fraction of contacts between age-groups i and j among all possible contacts
that actually take place.

Fi,j =
Ci,j

NiNj
=
Mi,j

Nj
(2)

These two scales are symmetric by construction. Therefore they might seem a better option to work with, as
they directly avoid the problem of non-reciprocity. However, unlike Mi,j they do not remain invariant when the
total number of individuals increases maintaining the shape of the demographic structure, so a correction for
the total population will always be needed. In this work, we describe magnitudes in the intensive scale mostly,
but the translation to other scales is always possible through equations 1 and 2. It is also possible to work with
any of these scales as long as the force of infection is properly defined.

1.2 Treatment of empirical survey matrices
As stated in the main text, we need to perform some transformations before we can compare the different
empirical studies:

• Most of the studies report the matrix in the intensive scale (Mi,j). Some of these studies however (specif-
ically France1, Japan2 and China3) report their results using the density scale (see equation 2) except for
a global factor. Thus, we transform them so they operate in the scale of Mi,j , assuming the demographic
structure as reported by the United Nations (UN) Population Database4 for the specific year of the survey.

• The studies use different age granularities. We adapt all surveys to the division of age groups used by the
POLYMOD project, i.e., 15 age groups: 0-5, 5-10, 10-15,..., 65-70, 70+. For this adaptation sometimes we
have to aggregate age-groups (some studies have more divisions for young children) but mostly we have
to divide age-groups. In order to do so, we assume homogeneity inside the broader original age-groups.
The studies with less age-groups (China that has 4, and Kenya that has 6) are therefore more sensitive
to this process.
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In Table A we summarize the information about the 16 empirical contact matrices collected for this work.

Country Year Age Groups Participants Reference

Belgium May 2005 - September 2006 (2005) 15: 0-5, 5-10,...,65-70,70+ 750 Mossong et al. (POLYMOD)5

Finland May 2005 - September 2006 (2005) 15: 0-5, 5-10,...,65-70,70+ 1006 Mossong et al. (POLYMOD)5

Germany May 2005 - September 2006 (2005) 15: 0-5, 5-10,...,65-70,70+ 1341 Mossong et al. (POLYMOD)5

Great Britain May 2005 - September 2006 (2005) 15: 0-5, 5-10,...,65-70,70+ 1012 Mossong et al. (POLYMOD)5

Italy May 2005 - September 2006 (2005) 15: 0-5, 5-10,...,65-70,70+ 849 Mossong et al. (POLYMOD)5

Luxembourg May 2005 - September 2006 (2005) 15: 0-5, 5-10,...,65-70,70+ 1051 Mossong et al. (POLYMOD)5

Netherlands May 2005 - September 2006 (2005) 15: 0-5, 5-10,...,65-70,70+ 269 Mossong et al. (POLYMOD)5

Poland May 2005 - September 2006 (2005) 15: 0-5, 5-10,...,65-70,70+ 1012 Mossong et al. (POLYMOD)5

France February - May 2012 15: 0-5,5-10,...,65-70,+70 2033 Béraud et al.1
Russia January - February 2016 12: 0-5,5-10,...,50-55,+55 505 Ajelli and Litvinova6

China 2009 - 2010 (2009) 4: 0-5,6-19,20-64,+65 1821 Read et al.3
Japan Spring 2011 12: 0-2,3-5,6-11,12-14,15-19,20-29,...,70-79,+80 3146 Ibuka et al.2
Hong Kong 2015-2016 (2015) 15: 0-5,5-10,...,65-70,+70 1149 Leung et al.7
Kenya August 2011 - January 2012(2011) 6: 0-1, 1-5, 6-15, 16-19, 20-49, +50 1080 Kiti et al.8
Uganda January - March 2014 10: 0-2, 2-4,5-9, 10-14, 15-24,...,55-64,+65 568 Le Polain de Waroux et al.9
Zimbabwe March - August 2013 16: 0-5,5-10,...,70-75,75-80 2490 Melegaro et al.10

Table A: Information about the 16 contact matrices collected. When the period of the study comprises more
than one year, we specify in parenthesis the year taken as reference for posterior analysis.

From each one of these studies, and after performing the transformations previously specified (when needed)
we obtain a contact matrix M

(surv.)
i,j . However, due to limitations in the survey and errors in the reporting

process, these matrices will not fulfil reciprocity perfectly. Thus, we perform an initial correction for reciprocity,
that consists of averaging the number of contacts measured in one direction (i to j) and the reciprocal (j to i),
which for the C matrix means:

C
(surv.)
i,j =

M
(surv.)
i,j Nini +M

(surv.)
j,i Njnj

ni + nj
(3)

and, when taken back to the M scale:

M
(rec.)
i,j =

(
M

(surv.)
i,j ni +M

(surv.)
j,i

Nj

Ni
nj

)
1

ni + nj
(4)

where ni is the number of participants in age-group i and Ni is the population of age-group i in the cor-
responding country during the specific year of the survey as extracted from the UN database4. Thus, we are
applying a weighted average that needs the age-distribution of the participants. When the latter information
is not available, we perform a regular average. This process can also induce some bias since for some cases, the
survey of contacts has been performed in some specific settings (rural or semi-urban) that might not be repre-
sentative of the whole country. This correction of reciprocity has been used before, either to present empirical
data10 or to ensure reciprocity in a simulation by adapting the contact patterns to the specific demographic
structure considered.11,12 The possibility to use this pair-wise correction, which we will label as Method 1 (M1)
to solve the problem of reciprocity has been explored in the main text.

In equation 4, we have named the resultant matrix M (rec.)
i,j , where the super-index indicates that the matrix

fulfils reciprocity. We still apply one more transformation, that consists of normalizing the matrices so that the
mean connectivity of the population is equal to 1. The mean connectivity follows the formula:

〈k〉 =

∑
i,j

M
(rec.)
i,j Ni

N
(5)

where N =
∑
i

Ni. Thus, we obtain:

M
(rec.+norm.)
i,j =

M
(rec.)
i,j

〈k〉
=

M
(rec.)
i,j N∑

i,j

M
(rec.)
i,j Ni

(6)

Hence, in this work we are not addressing the average intensity of contacts (and how it differs between coun-
tries) and we focus exclusively on the relative differences between age-groups. Although geographical differences
in global contact rates is a problem of interest, we have not studied them for three main reasons. First, for
France, Japan and China, the studies report a matrix that is proportional to Fi,j and we do not have direct
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information on the intensity of contacts. Second, it depends on the definition of contact itself and therefore
methodological biases could arise. Most studies define a contact as any interaction that includes physical touch-
ing and/or face-to-face conversation for a minimal time period (that varies between studies), and even report
data on physical contact separatedly, but some only consider one type of contact (only physical contacts in
Kenya8, and only conversation in Russia6 and Uganda9). And third, for many problems, the scaling of this
contact matrix is performed independently and therefore not having the overall intensity of contacts is irrele-
vant.13

After this process we end up with the matrix M (rec.+norm.)
i,j (that we will name simply as Mi,j) for each one

of the 16 countries for which we have contact data. We assume that, except for the limitations in the survey,
these matrices are valid in their respective countries during the year when they were measured.

1.3 Properties of projection methods
The different methods of transforming a matrix Mi,j into a matrix M ′i,j when moving from a demography Ni

to a demography N ′i that we have studied can be formulated as:

• M0: Unadapted Contact Patterns.
M ′i,j = Mi,j . (7)

• M1: Pair-wise Correction

M ′i,j =
1

N ′i

1

2

(
Mi,jN

′
i +Mj,iN

′
j

)
= Mi,j

1

2

(
1 +

NiN
′
j

NjN ′i

)
. (8)

• M2: Density Correction

M ′i,j = Mi,j

NN ′j
NjN ′

. (9)

• M3: Density Correction + Normalization

M ′i,j = Mi,j

N ′j
Nj

N ′∑
i,j

Mi,j
N ′

iN
′
j

Nj

. (10)

1.3.1 Reciprocity

The main property that a Contact Matrix should fulfill is reciprocity in the number of contacts:

Mi,jNi = Mj,iNj =⇒ Mi,j

Mj,i
=
Nj

Ni
. (11)

Thus, when moving to a different demographic structure (where, in general, the ratio Nj

Ni
will change), M0

does not preserve reciprocity:

M ′i,j
M ′j,i

=
Mi,j

Mj,i
=
Nj

Ni
6=
N ′j
N ′i

. (12)

However, it is easy to see that the rest of the methods do preserve reciprocity:

• Reciprocity in M1:

M ′i,j
M ′j,i

=
Mi,j

Mj,i

1 +
NiN

′
j

NjN ′
i

1 +
NjN ′

i

NiN ′
j

=
Nj

Ni

NjN
′
i+NiN

′
j

NjN ′
i

NiN ′
j+NjN ′

i

NiN ′
j

=
N ′j
N ′i

NjN
′
i +NiN

′
j

NiN ′j +NjN ′i
=
N ′j
N ′i

. (13)

• Reciprocity in M2:
M ′i,j
M ′j,i

=
Mi,j

Mj,i

NN ′j
N ′Nj

N ′Ni

NN ′i
=
Nj

Ni

N ′j
Nj

Ni

N ′i
=
N ′j
N ′i

. (14)
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• Reciprocity in M3:
M ′i,j
M ′j,i

=
Mi,j

Mj,i

N ′j
N ′i

Ni

Nj
=
Nj

Ni

N ′j
N ′i

Ni

Nj
=
N ′j
N ′i

. (15)

Notice that in this case the factor N ′∑
i,j

Mi,j

N′
i
N′

j
Nj

is the same for M ′i,j and for M ′j,i.

As a global measure of the reciprocity error (E ∈ [0, 1]) we use the total fraction of non-reciprocal contacts:

E =

∑
i,j>i

|Ci,j − Cj,i|

1
2

∑
i,j

Ci,j

=

∑
i,j>i

|Mi,jNi −Mj,iNj |

1
2

∑
i,j

Mi,jNi

. (16)

It will be zero for methods M1, M2 and M3.

1.3.2 Intrinsic Connectivity

Let us define the matrix Hi,j as the contact pattern resulting after assuming homogeneous mixing (also known
as proportional mixing) embedded in a population structure Ni (normalized to have a connectivity of 1):

Hi,j =
Nj

N
, (17)

where N =
∑
i

Ni.

Thus, we can define the intrinsic connectivity Γi,j as the ratio between the contact rate and what we would
have in the case of homogeneous mixing (Γi,j = Mi,j/Hi,j = Mi,j

N
Nj

). The entries of this matrix will be larger
than 1 if the connectivity between age-groups i and j is more than what would be expected under the homoge-
neous mixing scenario, and viceversa.

We study the evolution of this matrix (i.e., Γ′
i,j

Γi,j
=

M ′
i,j

Mi,j

Nj

N ′
j

N ′

N ) with the four methods:

• Intrinsic Connectivity with M0:
Γ′i,j
Γi,j

=
M ′i,j
Mi,j

Nj

N ′j

N ′

N
=
Nj

N ′j

N ′

N
. (18)

It is not constant.

• Intrinsic Connectivity with M1:

Γ′i,j
Γi,j

=
M ′i,j
Mi,j

Nj

N ′j

N ′

N
=

1

2

(
1 +

NiN
′
j

NjN ′i

)
Nj

N ′j

N ′

N
=

1

2

(
Nj

N ′j
+
Ni

N ′i

)
N ′

N
. (19)

It is not constant.

• Intrinsic Connectivity with M2:
It is constant by definition:

Mi,j = Γi,j
Nj

N
= Γi,jHi,j =⇒ Γi,j =

Mi,j

Hi,j
is constant. (20)

• Intrinsic Connectivity with M3:

Γ′i,j
Γi,j

=
M ′i,j
Mi,j

Nj

N ′j

N ′

N
=
N ′j
Nj

Nj

N ′j

N ′∑
i,j

Mi,j
N ′

iN
′
j

Nj

N ′

N
=

N ′∑
i,j

Mi,j
N ′

iN
′
j

Nj

N ′

N
. (21)

It only changes in a global factor N ′∑
i,j

Mi,j

N′
i
N′

j
Nj

N ′

N .
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Only M2 (and M3 except for a global factor) preserves the intrinsic connectivity. M0 and M1 however, change
the tendency of mixing between different age-groups. In order to understand the importance of this, let us sup-
pose that we have an initial matrix that follows the assumption of homogeneity (i.e., Mi,j = Hi,j =⇒ Γi,j = 1).
Then, we would have that from an initial situation of homogeneous mixing we end up with heterogeneities
artificially produced by the change on the shape of the demographic pyramid if we follow methods M0 or M1,
while M2 will still provide homogeneous mixing regardless of the demographic structure.

Also notice that there exists a relation between Γi,j and the matrix Fi,j =
Mi,j

Nj
that we described in equation

2. The method M2 can also be seen as the one that preserve the density scale applying a correction for the
total population size F ′i,j = Fi,j

N
N ′ .

1.3.3 Mean connectivity

The mean connectivity 〈k〉, i.e, the average number of contacts per individual, is given by:

〈k〉 =

∑
i,j

Mi,jNi

N
(22)

We have normalized the empirical contact matrices to have a mean connectivity of 1. When transferring
these contact matrices to different demographies we have that the mean connectivity might change depending
on the method:

• Mean connectivity in M0:

〈k′〉 =

∑
i,j

Mi,jN
′
i

N ′
. (23)

• Mean connectivity in M1:

〈k′〉 =

∑
i,j

Mi,j
1
2

(
1 +

NiN
′
j

NjN ′
i

)
N ′i

N ′
=

∑
i,j

Mi,jN
′
i

N ′
. (24)

As M1 consists of a re-arrengment of the contacts that already exist in M0 to correct reciprocity, it can
be shown that they actually share the same mean connectivity.

• Mean connectivity in M2:

〈k′〉 =
N

(N ′)
2

∑
i,j

Mi,j

N ′jN
′
i

Nj
. (25)

• Mean connectivity in M3:

〈k′〉 =

∑
i,j

Mi,j
N ′

j

Nj

N ′∑
i,j

Mi,j

N′
i
N′

j
Nj

N ′
=

∑
i,j

Mi,j
N ′

iN
′
j

Nj∑
i,j

Mi,j
N ′

iN
′
j

Nj

= 1. (26)

M3 consists of a normalization of M2, so it trivially preserves the mean connectivity.

1.4 Comparison of intrinsic contact patterns
With M2 and M3 we define the contact patterns as the product of two factors, the intrinsic connectivity Γi,j

and the density of available contactees. These matrices Γi,j are proportional to the matrix of contacts that we
will have in a perfectly squared demography (where all age-groups have the same size). Thus, the definition of
the Γi,j matrices is specially useful to compare the social mixing of different countries beyond the influence of
demographic structure. We will define two magnitudes to characterize intrinsic contact patterns, the proportion
of young (less than 20 years old) connectivity (Y ) and the assortativity coefficient (r)14.

Y =

∑
i<20y.,j

Γi,j∑
i,j

Γi,j
=

∑
i<20y.

k(i)∑
i

k(i)
, (27)
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r =

∑
i,j

(
Γi,j − k(i)k(j)∑

i,j
Γi,j

)
E(i)E(j)

∑
i,j

(
k(i)δi,j − k(i)k(j)∑

i,j
Γi,j

)
E(i)E(j)

, (28)

where k(i) =
∑
j

Γi,j , and E(i) is the (mean) age associated to age-group i.

1.5 SEIR model
To demonstrate the importance of choosing the correct procedure to project contact patterns in time, we simulate
the spreading of an influenza like disease using the different methods described in this paper. We choose a
short-cycle disease so that we can assume that the population structure is constant during each simulation. To
parametrize our model we will use the values of an influenza outbreak that took place in Belgium in the season
2008/200915.

The disease is described using a Susceptible-Exposed-Infectious-Recovered (SEIR) model. Susceptible in-
dividuals can catch the disease with a transmissibility rate β per-contact with an infective individual. Once
infected, individuals remain on a latency state for ε−1 = 1.1 days on average. Then, they become infectious for
µ−1 = 3 days on average, period when they can transmit the infection to susceptible individuals. After that,
they recover and become immune to the disease. We use a discrete and stochastic model where the population
is divided into 15 age classes. Social mixing is quantified by the contact matrices extracted from the data,
normalized accordingly. Time is discretized with a time step of ∆t = 1 day and the results are averaged over
104 runs.

We consider two different scenarios. For scenario 1, we consider the reproductive number to be R = 2.12,
the same at all times and countries. With this value, we obtain the appropiate β for each country and each
year so that the largest eigenvalue of the matrix

Ki,j =
β

µ
Mi,j

Ni

Nj
(29)

in the case of the methods M0, M1 and M3 and

Ki,j =
β

µ
Γi,j

Ni

N
(30)

in the case of the method M2 is equal to the reproductive number, R. Note that as we are adjusting β in each
case to obtain the desired value of the reproductive number, the mean connectivity of the matrix will not play
a role. Thus, we would obtain exactly the same results using M2 and M3, as their only difference is the global
contact rate and it will be incorporated in β. For this reason, in the main text we have only compared the first
three methods: M0, M1 and M2.

For scenario 2, we use the values of β obtained in 2005 at all different times. With a constant infectiousness,
the differences in mean connectivity will change the outcomes, and M2 and M3 are not dynamically equivalent
in this case.

2 Additional analysis

2.1 Comparison with Prem et al.
In a recent work by Prem et al.16, the contact pattern from the Polymod project5 (averaged over the 8 European
countries) is exported to different countries. However, the approach proposed in16 to complete that task implies
the integration of a series of data of disparate nature: household structures, pupil-to-teacher ratios, school
enrollment rates, and also age distributions. In this sense, although our work also allows to perform a similar
analysis and project an averaged Polymod matrix (for example) to other non-Polymod countries, in our case,
this can be done using demographic data on populations’ age distributions alone without including further data.
As a means to evaluate the accuracy of our more economic approach compared to that proposed in16, we have
focused on the eight non-Polymod countries for which we have independent empiric data (France, Russia, China,
Hong Kong, Japan, Kenya, Uganda and Zimbabwe), and compared, for each of them, three different contact
matrices: A) the empiric ones, B) the projections obtained starting from the Polymod data, and applying the
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Conuntry Our projection vs. Prem et al. Prem et al. vs. Surveys Our projection vs. Surveys

France 0.932 0.827 0.849
Russia 0.878 0.800 0.909
China 0.962 0.235 0.315
Japan 0.933 0.675 0.770
Hong Kong 0.909 0.661 0.856
Kenya 0.971 0.566 0.563
Uganda 0.948 0.649 0.670
Zimbabwe 0.964 0.573 0.609

Table B: Correlation index of the comparison of different contact patterns. For the 8 non-Polymod countries
considered in this work, we make three comparisons: (1) our projections of the Polymod matrix vs. the
projections made by Prem et al., (2) the projections made by Prem et al. vs the empirical data measured in
those countries and (3) our projection vs the same empirical data.

transformations proposed in16 and C) an equivalent projection of the Polymod pattern using either M2 or M3
as proposed in this work.

In order to obtain the projections based on our method, we first need to produce an average of the Polymod
contact matrices. To do so, we first select the Polymod matrices, correct for reciprocity in each of them
(assuming demographies of the year 2016) and normalize. Then we build an average Polymod matrix as:

M
(Polymod)
i,j =

∑
c
M

(c)
i,j n

(c)
i∑

c
n

(c)
i

(31)

where the superindex c indicates the specific country of the Polymod study, and n(c)
i is the number of par-

ticipants of age i in country c. Then, we extract Γ
(Polymod)
i,j assuming as demography the sum over all Polymod

countries. Using this matrix, we obtain projections for the other non-Polymod countries (using either M2 or
M3, which are equivalent for the sake of these analyses).

Once we obtained our own trans-national projections of the Polymod data, we can compare them against
the matrices proposed in16 as well as against the empirical data reported in the different surveys conducted in
the eight countries listed in table B. Importantly, the projections based on our method, which are based on
the age-distributions of the countries analyzed alone, correlate very strongly with the projections proposed in16

(r>0.9 everywhere but in Russia), even though these precise a considerably larger amount of detailed data to be
built. Even more surprisingly, we see how our projections correlate slightly better to the actual contact patterns
observed in empirical studies conducted in these different countries, pointing to the fact that, among all sources
of heterogeneity in social mixing, age is arguably more important than other considerations that seemingly play
secondary roles. However, correlations between projections and empiric data are not always consistent, but,
perhaps unsurprisingly, only high enough when Polymod data is projected into other European settings (Russia
and France). This warns once again against the indiscriminate extrapolation of contact structures measured in
specific geographical areas to settings belonging to other continents or characterized by profound cultural or
demographic differences.
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